
ManyVis: Multiple Applications in an Integrated Visualization

Environment

Atul Rungta, Brian Summa, Dogan Demir, Peer-Timo Bremer, Member, IEEE, and Valerio Pascucci, Member, IEEE

(a) (c)(b)

Fig. 1. ManyVis allows the custom integration of disparate applications into a single, seamless ManyApp. This figure illustrates some
of the functionality of our PowerPoint Presentation ManyApp. This integrated application allows a user to embed and manipulate
external applications into their PowerPoint presentation. (a) Video codecs are often a problem when embedding video. With ManyVis
a presenter can just embed the video player (VLC) itself. (b) Embedding a demo application is also simple. (b purple inset) Often
projector and room conditions may cause a demo to be presented poorly. With ManyVis a presenter can adjust the color, brightness
and contrast in real-time. (c) More sophisticated manipulation is possible with ManyVis. In this example a presenter creates a fully
integrated MeshLab [2] demo by cropping the unnecessary GUI and applying an alpha transparency to the embedded application (c
purple inset). The application maintains full interactivity. (d) Often demo programs contain more GUI elements than necessary for a
presentation (d purple inset). ManyVis can customize the demo’s layout for a better presentation.

Abstract—As the visualization field matures, an increasing number of general toolkits are developed to cover a broad range of
applications. However, no general tool can incorporate the latest capabilities for all possible applications, nor can the user interfaces
and workflows be easily adjusted to accommodate all user communities. As a result, users will often chose either substandard
solutions presented in familiar, customized tools or assemble a patchwork of individual applications glued through ad-hoc scripts
and extensive, manual intervention. Instead, we need the ability to easily and rapidly assemble the best-in-task tools into custom
interfaces and workflows to optimally serve any given application community. Unfortunately, creating such meta-applications at the
API or SDK level is difficult, time consuming, and often infeasible due to the sheer variety of data models, design philosophies, limits
in functionality, and the use of closed commercial systems. In this paper, we present the ManyVis framework which enables custom
solutions to be built both rapidly and simply by allowing coordination and communication across existing unrelated applications.
ManyVis allows users to combine software tools with complementary characteristics into one virtual application driven by a single,
custom-designed interface.

Index Terms—Visualization environments, Integrated applications, Macros, Linked views.

1 INTRODUCTION

Visualization is an integral part of advanced research in science
and engineering, therefore various excellent visualization tools exist
[20, 34, 19] each with its own strengths. These tools are very good
at certain tasks but are not very well- suited for others; for example,
despite providing a very general library for visualization, The Visu-
alization Toolkit (VTK) cannot contain all the numerical capabilities
of software like MATLAB and Mathematica. Many of these tools are
complementary (for example, VTK, MATLAB, and PowerPoint) but
it is very difficult, if not impossible, to make them work together in a
single, integrated environment. Researchers are savvy in understand-
ing the positives and negatives of these tools and will often manually
integrate several into their workflows.

A common integration strategy is to generate data from one tool,

• Atul Rungta, Brian Summa, Dogan Demir, and Valerio Pascucci are with

the SCI Institute, University of Utah. Emails: {arungta, bsumma, ddemir,

pascucci}@sci.utah.edu.

• Peer-Timo Bremer is with Lawrence Livermore National Laboratory.

Email: bremer5@llnl.gov.

Manuscript received 31 March 2013; accepted 1 August 2013; posted online

13 October 2013; mailed on 4 October 2013.

For information on obtaining reprints of this article, please send

e-mail to: tvcg@computer.org.

convert it to a common format, and pass it as an input to another. Syn-
chronizing data between tools can be error prone, tedious, and time
consuming. A common solution to this problem is to extend tools via
provided application programming interfaces (APIs). These APIs, al-
though very powerful, are often too limited in functionality to provide
an ideal solution. More importantly, each API is specific to a certain
application (even for an application version) and therefore cannot pro-
vide generality. For example, a developer may allow communication
between two programs via their APIs, but integrating a third applica-
tion would require a significantly new code base.

Visualization researchers on the other hand are faced with the cor-
responding challenge of deploying their solutions. Even using good
software design principles, integrating capabilities into a custom sys-
tem requires significant time and effort. This can be frustrating for
both the scientific collaborators anticipating short term solutions as
well as the visualization researchers for whom one-time implementa-
tion efforts are of low priority. Alternatively, visualization researchers
can make their solution available as stand alone tools or libraries shift-
ing the integration effort to potential users. However, in many cases,
application scientists have neither the resources nor the expertise nec-
essary to successfully integrate disparate tools into their current sys-
tems. Therefore it is common for visualization researchers to provide
small, specific tools to collaborators thereby integrating the new tech-
niques into the scientists’ pipeline described above.

In this paper, we propose an alternative method of deployment



which is fast, provides immediate benefits to scientific collaborators,
and allows visualization researchers to achieve a wide dissemination
of their algorithms through single, stand-alone implementations. Our
framework, called ManyVis, drastically reduces the time lost by users
in dealing with multiple applications and, for the first time, provides
an integrated application in which separate tools communicate and co-
ordinate. ManyVis sits between the user input and the windowing sys-
tem, recording, augmenting, and automating user interactions and dis-
play to create a single, seamless user experience. In the design of this
framework, our guiding principle: if a user can accomplish a task,
ManyVis should support such a task seamlessly. We provide several
examples of the ManyVis accomplishing the type of tasks common in
the scientific community using a combination of several open source,
commercial, and custom applications. Using ManyVis, the develop-
ment of these examples, from conception to a workable solution, re-
quired only a few hours as opposed to the days or months of effort that
traditional methods, if at all feasible, would have required.

In particular, our contributions are:

• the ManyVis framework that intercepts, coordinates, and pro-
cesses low-level user interactions and allows combining them
into higher level, task-oriented operations,

• the ManyMacro system built using ManyVis to allow the easy
creation and execution of custom scripts and applications which
leverage the ManyVis core primitives,

• the ManyWorkflow system, which schedules and coordinates
complex workflows with multiple applications and exposes the
user to a unified interface of a seamless, interactive environment
called a ManyApp,

• a demonstration of our new approach with several ManyApps,
including an exemplary case of building Powerpoint presenta-
tions that integrate live demonstrations of external software tools.

In Section 2, we will introduce the ManyVis framework and pro-
vide details on ManyMacros and ManyWorkflows. In Section 3, we
will describe how the framework, ManyMacros, and ManyWorkflows
can be used to design new integrated applications. Finally, in Section
4 we will discuss our approach and provide a thorough performance
evaluation and limitations.

1.1 Related Work

In a system such as ManyVis the two primary challenges are to enable
the sharing of information across disparate tools as well the automa-
tion of common user interactions. This section discusses some existing
approaches aimed at addressing these problems.

Inter-application interaction and application extension. Inter-
application (or inter-process) communication is a fundamental com-
ponent of all modern computer operating systems. Communication
between applications can vary from simple file passing or shared mem-
ory to more complex message passing via pipes or sockets. Typically,
this communication operates at the lower system level, therefore spec-
ifications for communication must be decided at the time of develop-
ment. Consequently, communication standardization often only exists
on a per application basis. Frequently, it is problematic (if not im-
possible) to allow two programs to communicate if they were not de-
signed to do so from the outset. Of particular note are groups such as
The Common Component Architecture (CCA) Forum [1] or the com-
mercial Common Object Request Broker Architecture (CORBA) [28]
which work to standardize communication across separate applica-
tions. Despite these efforts, at this time such standardization in com-
munication is not widely adopted. However, two notable exceptions to
this rule exist: a) the operating system’s clipboard [25, 9] (pasteboard,
etc.), which is often standardized by the operating system and ubiq-
uitous in modern applications and b) file passing between programs,
which frequently supports open or well documented formats. In this
paper, we will show how our system, ManyVis, will take advantage of
these two exceptions to allow for communication between programs
which were never designed to do so.

In addition to the visualization tools outlined in the previous sec-
tion, commercial software companies such as Adobe [3] and Mi-
crosoft [26] support extension and inter-application communication
amongst some of their products with development kits that employ
a proprietary application programming interface (API). Closed source
APIs are often very limited in scope by only allowing extensions in
areas the company’s developers want or predict will be useful. In ad-
dition, these systems are typically in direct competition and therefore
collaboration between companies to allow communication between
their software is nonexistent. In contrast, open source systems offer
a potential limitless scope for extension. However, for large open-
source projects modifying an implementation often requires a signifi-
cant investment in effort to learn the intricacies of the system. There-
fore development teams for these projects will, again, supply a limited
API [15, 29] to developers.

Automated and scripted interaction. The support of automating
common user interactions with a graphical user interface (GUI), es-
pecially when the interactions are repetitive, is a desirable and useful
feature found in a wide-range of applications. Modern operating sys-
tems provide resources to aid developers in adding this support. Ex-
amples include Apple’s AppleScript or Automator and Microsoft’s Vi-
sual Basic and JScript. Scripting support on the program level includes
examples such as Maya Embedded Language (MEL) or Python script-
ing support in Autodesk software and Python scripting support in The
Blender Foundation’s Blender. Scripting user interactions need not in-
volve traditional programming, and can be automatically recorded by
the user through the visual interface. Adobe’s Actions are one such
example where the user can record their actions to re-execute common
interactions.

Automating user interaction is a topic typically studied in the hu-
man/computer interaction (HCI) community. Of particular interest, is
the work in Programming by Demonstration or Example (PBD) [12].
As a research area, PBD hopes to replace the programming of new sys-
tem behaviors with a user’s example input or scripted user interactions.
This allows for a rudimentary programming model that requires no ex-
pertise from the user and has the ability to allow communication and
coordination of separate programs without the need to use specific sys-
tem APIs. PBD also has applications in the design of intelligent help
systems, where an expert’s interactions are recorded to be replayed in
order to help a novice user. Examples include applications for guided
tutorials [10], technical support [22], help across different applications
and dynamic environments [33], printed tutorials for image editing ap-
plications [16], content-adaptive image manipulation macros [11], or
full documentation of image content creation [17]. Work has even
been done to make user macros more stable by introducing debugging
schemes [11].

PBD can also be used in the design of interface agents, software
to aid users in accomplishing tasks that are too complex or repetitive
to accomplish alone. Past work has shown that these agents, when
combined with GUI interactions, can be used to interface with closed-
source, commercial applications or handle the coordination between
multiple programs [23]. This work has also shown that for an agent
to be general, it must have an internal model of the program it is ma-
nipulating on the user’s behalf. By coupling user interaction with im-
age processing such as pattern recognition or segmentation, agents can
build such a model with machine learning [38, 7]. These internal ap-
plication models have obvious implications in cognitive modeling and
have the potential to give new cognitive modeling techniques access
to a wide range of software [6]. Given our system’s target use, the
overhead due to model building would be undesirable and as we show
in the following sections, also largely unnecessary achieve powerful
applications.

Of particular interest is the work in PBD to automatically create a
sequence of user interactions which is used to perform a specific or
number of tasks. This sequence is typically called a macro. PBD is
frequently used to record a macro or create a macro script based on a
user’s actions. PBD macro generation has proven to be popular in a
variety of application contexts [12, 24]. As mentioned earlier, simi-
lar techniques have been adopted in software systems such as Adobe’s



ManyVis Core

Applications PowerPoint MeshLab ...

Process Manager Window Manager Display ManagerAPI Handler Event Handler

UserInformation Control

UserManyVis Core

Applications

ManyMacro

ManyApp

ManyWorkflow

(a) (b)

Fig. 2. (a) The primitive operations provided by ManyVis along with their
control and information flows. ManyMacros and ManyWorkflows utilize
these primitives to build custom unified ManyApps. (b) A block system
diagram of a ManyApp. The ManyVis core primitives interface with the
user and applications directly. ManyMacros leverage these primitives
into more sophisticated operations. ManyWorkflows handle the coor-
dination and synchronization of ManyMacros, ManyMacro scripts, and
possibly ManyVis core elements.

Photoshop [4]. Macros created via PBD have been used for systems
to work with 2D graphics [21], desktop actions [27], business email
tasks [36], data analysis tasks [14], and web browsing [35]. Recent
research [13] has applied PBD to aid visual programming for GUI
testing as well. Again like agents, most of these examples typically
require a system to have some high level knowledge of the application
which it is manipulating. The VisMap [39] and TRIGGERS [5, 31, 32]
systems are particularly relevant since they have been designed to
work generally with any program. Even though they have only been
shown to work with simple examples, these systems give a sense of
how such interactions can be used as a powerful tool. ManyVis uses
these lessons learned to provide the first fully automated GUI interac-
tion system for visualization.

2 MANYVIS

ManyVis is an abstract, low-level framework for managing application
execution, application window management, intercepting and process-
ing user inputs, accessing application API elements, and augment-
ing an application’s display. Figure 2 illustrates the structure of the
framework. Apart from the inputs, ManyVis coordinates process man-
agement, windowing, and possible communication between applica-
tions. This enables ManyVis to function as a quasi-virtualization en-
vironment giving enhanced/augmented (low-level) control over appli-
cations, allowing them to work together. Using ManyVis, a user can,
for example, coordinate time-varying data across multiple applications
using a single time line, edit images with Photoshop which are too big
to be imported directly, and/or create presentations which can have live
applications embedded. Our prototype is designed for the Windows 7
operating system and relies on Win32 API calls to intercept user in-
puts, although the framework itself is general and can be applied to
any underlying OS. The main components of ManyVis are:
Process Manager. At startup, a ManyVis session launches a set of ap-
plications to manage. Applications are initialized by creating the cor-
responding process via system API calls and retrieving the handles to
windows the application creates. Application windows are addressed
by the (P, T, C) triple where P is the ID of the process that created the
window. T and C are the title and the class name of the window re-
spectively. This allows ManyVis to identify windows uniquely and as-
sociate them to a process. Although the title and class of a window are
normally enough to identify a window uniquely, this approach doesn’t
work for cases where there are multiple instances of the same applica-
tion. The triple ensures that the title and class of a window along with
its process ID uniquely identify a window.
Window Manager. To allow the display and coordination of multi-
ple applications each with the possibility of having multiple windows,
ManyVis ties into the main operating system’s window manager. This
coupling allows ManyVis to move, resize, or change the current win-
dow focus. Additionally, developers can create custom user interface
elements (e.g., buttons, sliders) via the Window Manager for later in-
tegration into their ManyApp.
Event Handler. ManyVis achieves much of its functionality acting
as an intermediary for user input. In its simplest form, ManyVis can
determine which program the user wishes to interact with and passes

that information along to the proper program (provided by the Pro-
cess Manager). As detailed in Section 2.1, when recorded, edited and
saved into a ManyMacro this handler allows for powerful functional-
ity. Series of events can be created to perform one or multiple opera-
tions on one or multiple applications. Events can be passed as either
using messages or inputs (according to the Win32 API). Using the for-
mer, the operating system passes events to windows using messages,
while sending direct inputs to the foreground window. A major ad-
vantage of using messages is that it does not require the mouse to be
physically present at a particular position. Inputs, on the other hand,
require the mouse cursor to be physically present at a particular posi-
tion to function. This may cause undesired results if there is accidental
mouse movement during event playback (ManyMacros). That being
said, messages suffer from a major drawback: Posting a message to
a particular window may not always work due to the window compo-
sition. If a window is composed of several smaller windows, send-
ing a message to the parent window does not guarantee the events are
passed to the proper child window. Inputs on the other hand, despite
their drawbacks, are guaranteed to send the right input to the right
window. Although, ManyVis has provisions for both (messages and
inputs), the prototype system uses inputs due to this guarantee. Our
current prototype blocks user movements during playback to ensure
proper ManyMacro executions.

API Handler. User input events are a powerful tool used by ManyVis
to achieve much functionality. Although, they may not provide all (or
event the best) functionalities necessary to achieve a desired ManyVis
application. Therefore, ManyVis includes a module to access applica-
tions’ APIs using its native scripting language (for example: VBScript,
MEL etc). The use of APIs helps create ManyVis Objects which are
application specific. For example, Microsoft PowerPoint exposes a
rich set of functions giving access to many of the objects that com-
prise a presentation. ManyVis uses this to create custom ManyVis
objects allowing access to the underlying application. A PowerPoint
shape is a ManyVis Object (amongst others) and can embed any ap-
plication easily in a PowerPoint slide. It allows the user to start/end
presentations, change the size of boxes, etc., all at runtime.

Display Manager. To give the end-user the impression of a common
application, ManyVis also resides just above the application level be-
tween each application and the display. Since ManyVis has access to
all the windows of the applications, it is possible to alter the window
contents. Since an application window from creation to display on the
screen is simply an image, ManyVis allows for the integration of any
image processing technique as well. For our prototype application, we
show how to integrate the ImageMagick library to process application
windows before they display on the screen. This enables a user to
apply a wide gamut of filters and effects on windows’ contents while
maintaining interactivity with applications. For example, this allows
the ability for a user to change color or contrast, crop, splice, or ap-
ply transparency to a window. This component is optional and can be
disabled for an application if no processing is necessary.

2.1 ManyMacro

The components detailed above are the primitive functionalities of the
ManyVis framework. One or several of these primitives can be de-
veloped into a sophisticated ManyMacro element and a ManyMacro
script is a sequential collection of these new elements. ManyMacro
elements can be thought as a custom, mini-application which uses
the ManyVis Core primitives as an API-like interface. A ManyMacro
script is recorded as a collection of elements saved as XML. Each el-
ement in the script stores its needed state and behavior allowing each
to be independent of the elements preceding or succeeding it.

In its simplest form, a ManyMacro resembles a sophisticated macro
system by recording and playing back mouse and keyboard events
via a direct interface with the Event Handler. Using ManyVis’ Pro-
cess Manager, a user input recorder associates an interaction with
the proper application window. Since the process ID is different ev-
ery time an application is started, ManyMacro stores ”normalized”
(scoped) process IDs which are assigned in the order the process was
started. This makes the interactions scoped to a particular process and



allows multiple instances of the same application to be handled cor-
rectly. The ManyMacro captures the size of a window and coordinates
of the mouse pointer relative to the window to make the playback in-
dependent of the size and position of the window. The ManyMacro
also stores the time elapsed between each event to create a timeline
and to make the playback mimic the original user interactions accu-
rately. Playback is simply the replaying of the recorded events sequen-
tially with the proper timings. Although, ManyMacros offer far more
expressive operations due to their close coupling with the ManyVis
framework. For example, processes can be launched or killed via the
Process Manager. Windows can be moved, resized and/or brought into
focus via the Window Manager. Program specific calls via API Han-
dler operations or custom elements developed using these operations
can be made.

ManyMacros can also use ManyVis’ Display Handler to allow pre-
sentation of a final custom application in a reduced, purpose-oriented
interface by letting the ManyVis developer control the content of appli-
cation windows. When working with multiple applications, it is very
often the case that the screen space is utilized more by the interface
elements than the area of interaction. For example, an image editor
application interface may consist of a number of toolbars and buttons
while the user needs to actively use only one tool. This is acceptable
for a workflow with a few applications; however, as the complexity of
the task increases, this causes many unnecessary interface elements to
be on screen at once, causing diversion of focus. For such a scenario,
the adjustment of interface is needed. Adobe Photoshop [4] at the
time of this writing supports creation of multiple custom workspace
layouts, yet this is far from being a feature widely implemented in the
rest of available commercial applications. Even for applications where
the workspace can be customized, the use of the same tool for different
tasks often requires different workspace arrangements. The workflow
interface can be built by drawing the contents on the screen in a way
defined by the user through actions such as cropping, resizing the dy-
namic content or even processing pixel data. Such a model not only
allows the user to eliminate unnecessary interface elements, but to also
append further actions to the ones that exist. The workflow manager
provides this functionality via ManyVis’ Display Handler. Multiple
applications can be presented to a user as a single, GUI-minimal view.
Furthermore, ManyVis allows full integration of image processing li-
braries (ImageMagick in our prototype system), which a workflow can
use to provide a wide range of effects and filters to apply to the appli-
cation window images.

2.2 ManyWorkflow

ManyMacros provide a developer full scripting and programming ac-
cess to the ManyVis core infrastructure. However a ManyMacro
script, by itself, is still a single collection of serial operations. Many-
Workflow bridges this gap by providing developers the ability to
schedule and coordinate multiple ManyMacro scripts. By doing this,
a developer can provide powerful new ManyVis applications (see Fig-
ure 2) which combine several disparate applications into a single seam-
less environment.

The ManyWorkflow allows a developer to coordinate and augment
ManyMacros or ManyMacro scripts. One or several macros or macro
scripts can be bundled into workflow actions. Actions can be executed
on a schedule, via user input captured by the Event Handler, via cus-
tom buttons provided by the Window Manager, by ManyMacros, or
even by other actions. In this way, a ManyWorkflow can allow much
flexibility and allow for the coordination and synchronization of appli-
cations easily. For example, if time-dependent data is being viewed or
analyzed in multiple applications, a time step change in one window
can trigger all applications to move time via ManyMacros or Many-
Macro scripts. This execution is unseen by the user and gives the
impression of a seamless new application.

Merging and coordinating display and interactions already allows a
powerful system as shown in the previous work in PBD. What makes
the ManyWorkflow far more powerful is the way it allows the control
of the information flow between applications, allowing communica-
tion between multiple applications whose interfaces are not designed

to interact in automated way. The ManyWorkflow enables commu-
nication between programs by leveraging methods that a typical user
would follow to transfer content between different applications. With
this manager, programs may communicate by inserting data to and
reading from the clipboard via actions. They may also be set by a
ManyWorkflow action to read and write to the same file(s) on the un-
derlying system. If no common file format is available or previous
methods are not applicable, each program can also communicate with
a third party process or via application objects from the Application
Handler. Although flexible, actions are limited to what can be accom-
plished through a program’s interface or via ManyVis objects. For
instance, the microscopy example detailed in Section 3.3 would not be
possible if the out-of-core viewer did not allow the insertion of new
buffer values via the clipboard or the file menu, or did not provide a
way to determine the viewer’s viewport location and resolution. In
other words, we exploit and coordinate the existing functionalities of
the tools but do not necessarily create new ones.

3 MANYAPPS

In this section, we demonstrate how ManyWorkflows and Many-
Macros can be used to create custom ManyVis applications
(ManyApps). First, we will introduce a simple ManyApp useful in
debugging ManyMacros. Next, we will detail our exemplar Presenta-
tion ManyApp. Finally, we will describe several additional ManyApps
for scientific visualization.

3.1 Debugger ManyApp

Macros have a tendency towards instability or inefficiency as noted
in previous work [11] on event driven macros. Therefore a debugger
is necessary in order to enable the achievement of a desired behavior
more easily. ManyVis provides an initial bootstrap application which
provides a step-by-step ManyWorkflow debugger. Note that this de-
bugger is an application built using its own ManyWorkflow. In the de-
bugger, a user can step through all ManyMacros sequentially or skip
to a particular macro element. If the user jumps forward, all inter-
mediate ManyMacros are executed. At each breakpoint, the debugger
prints the related ManyVis state information to the console, exposing
the state of the primitives. The user is also presented visual feedback of
the actual ManyWorkflow as the ManyMacros are executed while the
current ManyMacro is presented to user either directly or as a high-
lighted element in corresponding ManyMacro script. The debugger
lets the user ”step back” by rolling back certain ManyMacro elements.
While useful, this backwards step relies on the fact that the element
did not change the application state. For instance, user interactions
which load a new file would be unsupported. Even with this limita-
tion, this backward movement in the debugger is still useful enough to
warrant its inclusion. For example, a drag or scroll operation can often
be undone. With this debugger ManyWorkflows and ManyMacros can
correct undesired behavior.

3.2 Presentation ManyApp

Commonly, visualization researchers will give presentations on new
techniques or algorithms. These presentations will often include a live
demo of a prototype application. Switching between the presentation
software and the demo is a cumbersome, error-prone, and stressful
process. Additionally, due to room or projector conditions the bright-
ness, contrast or color of the demo may not present the application in
the best light.

Finally, successful embedding of a video into a presentation can
be highly variable due to codecs and format of the video file. Often,
researchers will switch to a robust video player, like VLC [30], instead
of being at the mercy of the presentation software’s embedding. In
this section, we detail how to design a Presentation ManyApp via a
custom ManyWorkflow. Using the building blocks detailed previously,
we show how a developer can create a highly customized, interactive
presentation that alleviates all of these common problems.

At a high level, the ManyWorkflow consists of a single presentation
application, Microsoft PowerPoint, with one or several applications



1

2

3

Fig. 3. Presentation User Interface. The Presentation ManyApp al-
lows users to easily insert virtually any application without the need
for programming. In this figure, the steps are outlined for the inser-
tion of a video player into a presentation. (1) A user creates or selects
a PowerPoint shape. (2) They choose to insert from the supplied GUI
(purple). (3) To complete insertion they select the proper application
window. PowerPoint and the embedded application remain interactive.

that the user wishes to embed. The presentation application is cus-
tomized by the creation of specialized ManyMacros that use Applica-
tion Handler API objects tied to PowerPoint VBscript. The presenta-
tion software can be considered a “host” application, which drives the
actions and display of the “embedded” applications.

Creation. The creation of a presentation inside the new ManyApp is
its own custom workflow. As an initial process, a user manually cre-
ates a ManyMacro script to denote which applications will be used
in the new application (with PowerPoint being the host application).
ManyMacros can be called for each embedded application, or new
ManyMacros can be recorded at this time, to bring each program to its
desired state. To embed the applications, the user creates one or mul-
tiple powerpoint shapes on the desired slide, selects the right applica-
tion (by putting focus on them), and via the provided GUI indicates
to ManyVis to insert the application. ManyVis, in turn uses a custom
ManyMacro that utilizes objects in the Application Handler to find the
coordinates of the selected shape and the window. The ManyMacro
also records the shape ID and slide number in order to identify the
shape uniquely in the presentation. Insertions are saved if the user is
satisfied with the result as a custom ManyMacro script that is called if
the presentation is relaunched. To provide a seamless user experience,
the screenshot of the current state of the application is inserted into the
slide. By doing this, a placeholder shape for the program appears in
the slide and can be edited via PowerPoint. If the application needs to
be adjusted, it can be un-embedded, modified, and re-inserted.

Presentation. During a presentation, a custom API ManyMacro em-
beds the application by overlaying the selected application window
over its corresponding shape, which for our demo applications is a
rectangle. In presentation mode, shape coordinates change, therefore
as a first step the ManyMacro queries the shape IDs of the embedded
applications for their new locations. Shape IDs are indexed locally to
each slide, therefore the ManyMacro polls PowerPoint on a timer to
keep track of the current slide in order to resolve each shape to the
proper application. During the presentation, the placeholder screen-
shot for the application is swapped for the real application when inter-
action is requested. The application is resized or scaled (e.g. lanczos
downsampling ) via a Display Handler ManyMacro to fit seamlessly
into the new shape size. Any mouse interactions that occur within the
shape, or specified keyboard interactions, can be passed to the embed-
ded application.

At this point, the application description assumes a user would like
to embed the entire application window into the PowerPoint shape like
the video example in Figure 1 (a). Although, using ManyMacros that
leverage the ManyVis Display Handler, there are many more options
possible. Custom GUIs can be created in the slide by cropping, mov-
ing, and resizing the original GUI elements before they are embedded
into the shape. Multiple GUI elements from the same window can be
embedded into different shapes using the same process. The embed-
ded application’s color, brightness, contrast, and saturation can be ad-
justed by enabling and disabling ManyMacro filters as in Figure 1 (b).
These filters and their parameters can be tied to user interactions and

Fig. 4. Ad-hoc Anaglyph Visualization. Two instances of a 3D visualiza-
tion tool are combined for red and cyan 3D anaglyph.

therefore can be adjusted in real-time during the presentation. More-
over, more complex filters, like the transparency color replacement in
Figure 1 (c) or image flood-filling, can be applied to the embedded
application to provide a fully interactive and integrated PowerPoint
application demo.
User Experience. In the previous paragraphs, we have detailed how
a developer can provide the functionality necessary for a PowerPoint
Presentation ManyApp. After this initial creation, a user can embed
virtually any application to create a variety of different presentations.
Before launch, a user specifies a list of programs which they would
like to embed via an XML file. At launch, ManyVis starts each ap-
plication along with PowerPoint. The ManyApp provides a simple
user interface to aid the presentation creation, see Figure 3. A typical
user workflow would be the following: First, the user can select an
application then record or replay a macro to bring the program to a de-
sired state via the ManyVis GUI. Next, the user can draw a PowerPoint
rectangle to denote where to embed an application. With the rectan-
gle selected, a user can embed a selected window via the ManyVis
GUI. The application remains interactive after embedding for further
manipulation. The user can also switch between PowerPoint’s editing
and presentation modes with the application embedded. After they are
satisfied, they can save the entire ManyApp in its current state for later
relaunch. Image processing components such as rescaling or alpha
transparency can be enabled by editing the XML script. Both Figure 1
and the companion video demonstrate a variety of applications seam-
lessly integrated into PowerPoint using the ManyVis system. As pre-
viously mentioned, each example provides a solution to a real problem
faced by visualization researchers when presenting their work. For in-
stance, the MeshLab example in Figure 1 (c) shows how ManyApps
save time and effort along with providing dynamic context. In this ex-
ample, MeshLab model can be aligned with the text in fluid manner.
To achieve this effect outside of our system would require: saving a
screenshot, loading the screenshot into Photoshop for the alpha trans-
parency, and placing the final image into the presentation. This takes
many iterations and on the order of minutes to complete. With the
ManyApp, importing and aligning the model is trivial and instanta-
neous. The application is also interactive during the presentation for
live demos.

3.3 Additional ManyApps

In the following section we detail additional examples of using
ManyVis and show how simple extensions can lead to powerful vi-
sualization tools.
Ad-hoc Anaglyph Visualization. In this example, we show how one
can add new visualization functionality to a tool. Specifically, we add
ad-hoc stereo anaglyph to a 3D application which does not initially
support the functionality. Figure 4 provides an example anaglyph tool.
To provide a ”toe-in” type anaglyph, we need to provide two 3D views
with a slight rotational difference to achieve the desired effect. The
two (left and right stereo) views are presented overlaid to the user fil-
tered by the colors that correspond to the type of 3D glasses used. In
our particular example, these colors are red and cyan. A ManyMacro
first launches two instances of the visualization application with each
application image filtering the output image with the appropriate color
The filtering is achieved with a Display Handler ManyMacro. A final
ManyMacro overlays the two images for display. As an initial phase,
the ManyVis tool allows the user to manually rotate a single view to
achieve the desired offset for 3D viewing or automatically apply the



Fig. 5. Interactive Simulation Filmstrip. Automatic creation of a filmstrip
illustration for time-dependent data. ManyVis provides buttons to define
the number of windows to display. Two additional sliders provide user
input to denote the desired range of time steps.

Fig. 6. Annotation of Microscopy Data. In this example, ManyVis com-
bines a large-scale microscopy image renderer with Adobe Photoshop
to provide a tool for rapid annotation of very high-resolution dataset, a
common workflow in using microscopy data.

offset via a Event Handler ManyMacro. Note, if the viewer exposes an
API that allows the input of the view matrix directly, this manual step
can be traded for an automatic API Handler ManyMacro. After this
initial stage, all input given to the ManyWorkflow is passed to both
viewers, keeping the views in sync and in stereo.
Interactive Simulation Filmstrip. Given time dependent data, a com-
mon illustration is to provide a contact sheet or filmstrip of key sim-
ulation time. As Fig. 5 shows, the ManyVis can be used to aid in its
creation. Given an application with time input (slider or text), the a
ManyWorkflow can create an initial number of filmstrip slides given a
user input. Each slide is a separate instance of the program. However,
more sophisticated ManyMacros can be created to leverage the Event
and Display Handlers to achieve the same effect with a single applica-
tion. The time steps for the initial slides are set to be evenly distributed
between the first and last desired time steps. This range is an additional
user input given to a custom ManyMacro in the ManyWorkflow. After
this initial setup, each individual application can be ”uncaptured” to
fine-tune the desired time step. The ManyWorkflow passes all view
interactions to all windows to keep views synchronized.
Annotation of Microscopy Data. A common workflow in mi-
croscopy is the labeling and annotating of data. Methods exist for the
automatic annotation of digital microscopy data, though they can of-
ten be insufficient or specific to a particular test-case. Therefore there
is often a manual portion of this workflow where an expert verifies,
corrects and even adds additional annotation to the work of the auto-
matic method. Often this microscopy data is extremely high resolution
and can be gigapixels in size. This large size can be significant in the
complexity of implementing an annotation system. Moreover, the an-
notation tools created for the scientist must be anticipated in advance.
As is often the case, this predetermined solution may be insufficient
for some tasks. Depending on the complexity of the tools, this may
add significant development time for an implementation. This exam-
ple is the result of conversations the authors have had with three mi-
crobiologists who commonly annotate microscopy images as part of
their day-to-day work. Their workflow consists of using Image-Pro to
capture and view their microscopy data then exporting this data into

Fig. 7. Isosurface Custom Visualization. An isorenderer, Microsoft Ex-
cel, and Mathworks MATLAB (not shown) embedded into a single ap-
plication for an oil reservoir simulation. Users can adjust the timestep
selected in all three programs using the slider indicated by the yellow
arrow or switch the 1D plotting program between MATLAB and Excel
using the button indicated by the orange arrow.

Fig. 8. Exploring Parameter Space Using a Custom Histogram. A cus-
tom ManyApp for the exploration of the topological parameter space of
porous media. This application combines a custom volume renderer
and transfer function editor (left and middle) with a 2D histogram pro-
vided by MATLAB (right).

photoshop for annotation. After annotation, Neurolucida software is
used for analysis of the data. Each stage of their workflow requires te-
dious saving, loading or converting of data. Moreover, our partner sci-
entists have recently begun to capture entire slides as gigapixel-sized
images and desire a quick solution for this data’s integration into their
workflow. This example represents an initial prototype ManyApp to
provide a simple, gigapixel solution for two stages of their workflow.

Assuming we have a stand-alone out-of-core visualizer for the mi-
croscopy data, we would like to use ManyVis to rapidly create a meta-
annotation system for the dataset from the work of Anderson et al. [8].
We have chosen to use ManyVis to integrate the out-of-core visual-
izer with Adobe Photoshop [4] inheriting its many sophisticated im-
age editing tools without going through laborious data conversion, see
Figure 6.

Given an instance of the out-of-core visualizer and the image edit-
ing program, a ManyMacro can overlay the visualizer’s data on the
image editor’s canvas. The viewer’s GUI is trimmed and therefore it
appears to the user as if the data is already in the editor’s canvas. Since
an editor’s canvas is often distinct, this overlay is a simple ManyMacro
image processing problem to detect the canvas and place the viewer
image on it. If the user pans or zooms the microscopy data, the user in-
teraction is passed through to the viewer by the ManyWorkflow. When
the user has reached the desired location, the buffer from the viewer
window is inserted into the editor’s canvas. This is triggered when
the user’s mouse leaves the canvas area and is seamless. The image
data is passed to the editor via a ManyWorkflow with ManyMacros
that copy the data from the viewer to the system clipboard and insert
into the image editor with a COPY-PASTE operation. When the user
is satisfied with their annotation and a save command is given, Many-
Macros trigger the image editing application to copy the image buffer
back into the clipboard. Our out-of-core visualizer is then triggered
by this same ManyMacro to paste the clipboard buffer into its viewing
buffer and then save the buffer into the dataset at the given resolution
and viewport to alternative color channels. If a viewer does not have
this functionality, we could have easily extended the ManyWorkflow/-
ManyMacros to save and load a common file. For resolutions finer
than the resolution of the edited buffer, we have found linear inter-
polation of the annotation data to be sufficient to fill in the missing
data. However, ManyVis still maintains the flexibility to have a Many-



Throughput (inst./s)
320 448 483 577 640 700

Max Inst. 200K 200K 53K 14K 10.5K 9K
Final Delay (s) 0 0 6.7 6.4 6.6 6.6

OS/App (inst./s) 320 448 455 457 456 463

Fig. 9. ManyVis is capable of replaying events at a rate of 700
events/second. The throughput of events (clicks) determines the max-
imum instructions the operating system and calculator application can
process without loss (Max Inst.) and the delay in the application after
the maximum events are sent (Final Delay (s)). Considering the total
runtime with delay, we can estimate the maximum throughput for the
OS/application (OS (inst./s)). With a throughput of approximately 450
events/second, one can expect no loss and no delay during replay.

Macro trigger an out-of-core processor to fill in the finer resolution.
In our companion video we show how this simple ManyApp gives a
rapid deployment of an annotation system with a seamless experience
as if a user were just working with the single image editing application.
Initial feedback has been positive from our microbiologist collabora-
tors and discussions have begun on extensions to cover more of their
workflow and deployment strategies.

Isosurface Custom Visualization. There is a need in creating sim-
ple environments for distribution of visualization tools for both the
dissemination of work, as well as the creation of simple tools to ac-
complish portions of a scientific workflow. In this example, ManyVis
is used to provide a visualization mashup. This application is com-
prised of three separate applications, two of which are closed-source
and commercial. In particular, for this example ManyVis provides a
custom ManyApp for the analysis of an oil reservoir simulation. For
this analysis, the user is interested in exploring over time both the iso-
surface of water saturation alongside a 1D plot of oil pressure, see Fig-
ure 7. Microsoft Excel and Mathworks MATLAB are used to provide
the 1D visualization and a stand-alone isosurface renderer provides the
3D visualization.

The main idea demonstrated in this example is the ability to com-
bine separate tools into a single ManyApp and synchronize their pre-
sentation via a ManyWorkflow and ManyMacros. This enables a user
to chose the application that she/he prefers to present the shared data.
Via ManyMacros, each application will load the dataset in their pre-
ferred standard format at launch. If this format does not exist, a sep-
arate ManyMacro can be configured to automatically convert the data
file into a more common format. Each tool provides an interface to
switch the time-dependent data. In the spreadsheet, this is achieved by
activating the next row, in isosurface renderer it is done by moving the
horizontal slider in the tool’s interface, and in MATLAB this is accom-
plished through keyboard input into workspace console by varying the
index to access the desired row in the matrix. All of these operations
are performed by ManyMacros and coordinated by a ManyWorkflow.
The ManyWorkflow also provides a user with a custom time slider
(via the ManyVis Window Manager). When the user moves this slider,
each of time movement ManyMacros are triggered and each applica-
tion is updated. This allows a continuous inspection of data in different
formats taking advantage of each application’s strengths. Therefore in
a very short deployment time, a unified custom visualization tool can
be built by only creating a few, simple actions.

Exploring Parameter Space Using a Custom Histogram. In the ex-
ample in Figure 8, we build a custom tool to explore parameter space
of porous media. The technique and visualization’s interface are made
available in Gyulassy et al. [18]. The interface provides four sliders
as bounding values for the active contours being visualized. In this
example we chose Mathworks MATLAB to produce the 2D histogram
of the dataset used in the visualization and embedded this plot within
the ManyApp via ManyMacros. A semi-transparent bounding box is
placed on top of the histogram image to represent the active bounding
box intervals. The user of the tool is allowed to move and resize this
box, which translates to adjusting the slider values on the visualiza-
tion interface. The box drawing and slider adjustment are provided by
custom ManyMacros. In supplied video, a user selects a region in the
histogram that is of interest and the change is immediately visible in

Time (ms)
100% 75% 50% 25%

Gaussian - 47.6 24.8 20.6
Cubic - 47.8 24.7 20.4

Lanczos 2-lobe - 48.3 24.8 21.3

Gaussian + Color - 54.7 28.2 22.3
Cubic + Color - 54.6 28.1 22.3

Lanczos 2-lobe + Color - 54.7 28.4 22.3

Color Only 24.9 14.1 7.5 3.0

Fig. 10. Timings for the optional image (ImageMagick) processing for
Google Earth embedded in our Presentation ManyApp (900 x 700 orig-
inal window size). We provide results for typical downsampling filters
and/or HSL color adjustment. All timings are computed as the average
of 1000 runs. Overhead for image processing operations is 16 ms. As
these number show, applications maintain interactivity.

the visualization, which would otherwise require switching between
applications. This example targets a common frustration in data anal-
ysis and, specifically, for the authors of the topological analysis tool.
Often analysis techniques can be highly data dependent. Therefore in
researching new approaches, there is often a large trial-and-error pro-
cess that combines 2D, 3D and topological analysis to understand the
nature of the data. Often for 2D analysis, a researcher will use software
such as MATLAB rather than creating a custom 2D tool. Therefore
there is commonly tedious switching and converting between different
programs during analysis. This demo streamlines this typical work-
flow of several analysis applications into a single experience.

4 DISCUSSION

Performance. All timings and demos were performed on a 2.67 Ghz
i7 Windows 7 system and 6 GB of memory. For macro recording,
ManyVis requires on average 1.5 milliseconds (ms) per event to pro-
cess and store the required data. If we compare that to our test sys-
tem’s USB polling rate of 8 ms (125 Hz) [37], we can safely say
that ManyVis event processing will not cause any performance loss
for user input even for modestly provisioned systems. During play-
back, ManyVis can process and send events at a rate of 700 instruc-
tions/second. As the USB polling shows, this rate is well above what
one would expect from user input. Although, one cannot assume the
OS and application to be designed to handle this rate. Figure 9 pro-
vides an evaluation of this performance. This test was performed by
sending click events to the OS’s calculator to perform a series of ad-
ditions. Lost events would lead to an incorrect result. Clicks were
chosen since the OS and application must process these events. For
example mouse movements factor into ManyVis’s throughput but if
an application does not process these events, they can be considered
to be ignored. Our test system could process 9000 events at full rate
before an event was lost. Even without loss, there is approximately 6.6
seconds of delay from the time the last event was sent to the time the
proper value is displayed on the calculator. This timing was performed
via a screenshot of the calculator taken every 100 ms. By considering
number of events and the time for the application to process all events,
we can calculate that the OS and application can handle a throughput
of approximately 450 instructions per second. Running this test with
varying throughput, we can see similar results. We can hypothesize
that ManyVis can operate with throughput of approximately 450 in-
structions per second with no lost events or delay in the application.
We have tested this rate up to 400K events and verified this hypothe-
sis. This rate is still well above the rate expected from a user created
macro. Figure 10 provides performance results for the overhead in-
curred from ManyVis’s image processing component. This component
is optional since a window can be directly passed through and incur no
overhead. In Figure 10 we provide results for the example in Figure 1
(b), which includes downsampling and/or color correction of a 900 x
700 window. With the component enabled, there is on average 16.1
ms overhead due to the copying and passing of buffers. For downsam-
pling, we have chosen three common downsampling filters although
all possible ImageMagick filters were tested. Even more expensive fil-
ters, not typical for real time applications, add approximately 10 ms
to the filters reported. As the timings show, the application maintains



interactivity. For future work, we plan to test other image processing
libraries and GPU acceleration to further improve these timings.
Limitations. Our current prototype supports a variety of commer-
cial software such as Microsoft PowerPoint, Microsoft Excel, VLC
media player, Google Earth, MeshLab, Adobe Photoshop, and Math-
works Matlab and the authors’ own isosurfacing, large image viewer,
and topological analysis software. Adding additional software support
varies in difficulty. For example, ManyApps such as the ad-hoc stereo
or filmstrip example require just simple custom ManyMacros. Exam-
ples such as the exemplar Presentation ManyApp are more difficult
to develop since they require custom interfaces to a presentation soft-
ware’s API. Therefore a change in presentation software would require
new development. However a user adding new applications into the
currently supported Microsoft PowerPoint is trivial and requires just
interaction without programming. In the current prototype user edits
on some features, such as the image processing components, can only
be enabled by editing the ManyVis XML. This may not be intuitive for
less advanced users, therefore future work will consider how this func-
tionality can be exposed via a user interface. As detailed in the Event
Handler description, the use of Windows API inputs when replaying
user interactions may cause unintended results if a user begins to send
new interactions via the mouse/keyboard while a ManyMacro is being
replayed. Although a limitation, inputs are far superior to the alterna-
tive (messages) which do not handle multiple windowed applications
well. Currently, user interactions are blocked during macro replay to
avoid problems. Future work will be to add a visual cue for a user.
Currently, our PowerPoint ManyApp is limited to embedding applica-
tions into rectangular PowerPoint shapes. Custom ManyMacros can
be designed using the Display Handler’s image processing routines to
support a wider variety of shapes.
Conclusion. In this paper, we have shown the ManyVis framework
for enabling the rapid deployment of custom visualization tools. We
have detailed the design of the core framework, ManyMacros for so-
phisticated operations, and the ManyWorkflow for the coordination
and synchronization of ManyMacros and applications. These tech-
nologies combined provide a powerful development platform which
can build customized solutions. Finally, we have provided real world
examples of ManyVis enabling the rapid and simple design of custom
applications that serve real needs of visualization researchers and their
scientific partners.

ACKNOWLEDGMENTS

This work is supported in part by NSF OCI-0906379, DOE 120341,
DOE DESC0006872, DOE DESC0001922, DOE DEEE0004449,
DOE P01180734, DOE DESC0007446, NTNL 0904631, and
DOE/LLNL B597476. This work was also performed under the
auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under contract DE-AC52-07NA27344 (UCRL-
LLNL-CONF-641029).

REFERENCES

[1] The common component architecture forum,. http://www.cca-forum.org/.

[2] 3D-CoForm. Meshlab,. http://meshlab.sourceforge.net.

[3] Adobe. Acrobat sdk,. http://www.adobe.com/devnet/acrobat.html.

[4] Adobe. PhotoshopTM ,. http://www.adobe.com/products/photoshop.

[5] R. S. Amant, H. Lieberman, R. Potter, and L. S. Zettlemoyer. Visual

generalization in programming by example. Commun. ACM, 43(3):107–

114, 2000.

[6] R. S. Amant, M. O. Riedl, F. E. Ritter, and A. Reifers. Image processing

in cognitive models with segman, 2005.

[7] R. S. Amant and L. S. Zettlemoyer. The user interface as an agent envi-

ronment. In Agents, pages 483–490, 2000.

[8] J. R. Anderson, B. W. Jones, J.-H. Yang, M. V. Shaw, C. B. Watt, P. Ko-

shevoy, J. Spaltenstein, E. Jurrus, K. U. Venkataraju, R. T. Whitaker,

D. N. Mastronarde, T. Tasdizen, and R. Marc. Ultrastructural mapping

of neural circuitry: A computational framework. In ISBI, pages 1135–

1137. IEEE, 2009.

[9] Apple. Pasteboard documentation,. http://developer.apple.com/library/

mac/documentation/cocoa/Conceptual/PasteboardGuide106/

PasteboardGuide106.pdf.

[10] L. Bergman, V. Castelli, T. Lau, and D. Oblinger. Docwizards: a system

for authoring follow-me documentation wizards. In Proceedings of the

ACM Symposium on User Interface Software and Technology, Cool stuff,

pages 191–200, 2005.

[11] F. Berthouzoz, W. Li, M. Dontcheva, and M. Agrawala. A framework for

content-adaptive photo manipulation macros: Application to face, land-

scape, and global manipulations. ACM Trans. Graph, 30(5):120, 2011.

[12] Brooks, Ruven. ”watch what I do: Programming by demonstration,”

edited by allen cypher. International Journal of Man-Machine Studies,

39(6):1051–1057, 1993.

[13] T.-H. Chang, T. Yeh, and R. C. Miller. Gui testing using computer vision.

In CHI, 2010.

[14] Derthick, Mark and Roth, Steven F. Example based generation of cus-

tom data analysis appliances. In Proceedings of the 2001 International

Conference on Intelligent User Interfaces, pages 57–64, 2001.

[15] Gimp. Developer guide,. http://developer.gimp.org.

[16] F. Grabler, M. Agrawala, W. Li, M. Dontcheva, and T. Igarashi. Gener-

ating photo manipulation tutorials by demonstration. ACM Transactions

on Graphics, 28(3):66:1–66:9, Aug. 2009.

[17] T. Grossman, J. Matejka, and G. W. Fitzmaurice. Chronicle: capture,

exploration, and playback of document workflow histories. In K. Perlin,

M. Czerwinski, and R. Miller, editors, UIST, pages 143–152. ACM, 2010.

[18] A. Gyulassy, V. Natarajan, V. Pascucci, and B. Hamann. Efficient compu-

tation of morse-smale complexes for three-dimensional scalar functions.

IEEE Trans. Vis. Comput. Graph, 13(6):1440–1447, 2007.

[19] Kitware. ParaView. http://www.paraview.org.

[20] Kitware. The Visualization Toolkit (VTK). http://www.kitware.com.

[21] Kurlander, David and Feiner, Steven. A history-based macro by exam-

ple system. In Proceedings of the ACM Symposium on User Interface

Software and Technology, By Example I, pages 99–106, 1992.

[22] T. A. Lau, L. D. Bergman, V. Castelli, and D. Oblinger. Sheepdog: learn-

ing procedures for technical support. In J. Vanderdonckt, N. J. Nunes,

and C. Rich, editors, IUI, pages 109–116. ACM, 2004.

[23] H. Lieberman. Integrating user interface agents with conventional appli-

cations. In IUI ’98: Proceedings of the 3rd international conference on

Intelligent user interfaces, pages 39–46, 1998.

[24] H. Lieberman. Your Wish Is My Command — Programming by Example.

Morgan Kaufmann, 2001.

[25] Microsoft. Clipboard documentation,. http://msdn.microsoft.com/en-

us/library/ff468801%28v=vs.85%29.aspx.

[26] Microsoft. Office sdk,. http://msdn.microsoft.com/en-us/office/aa905340.

[27] F. Modugno and B. A. Myers. Pursuit: Visual programming in a visual

domain. Technical Report CMU-CS-94-109, Carnegie Mellon Univer-

sity, The Human Computer Interaction Institute, Jan. 94.

[28] OMG. Common object request broker architecture,. http://www.omg.org.

[29] OpenOffice. Developer guide,. http://wiki.services.openoffice.org/wiki/

Documentation/DevGuide/OpenOffice.org Developers Guide.

[30] V. Organization. Vlc,. http://www.videolan.org.

[31] R. Potter and B. Shneiderman. Pixel data access for end-user program-

ming and graphical macros. Technical Report CS-TR-4019, University

of Maryland, College Park, May 1999.

[32] R. L. Potter. Pixel data access :–interprocess communication in the user

interface for end-user programming and graphical macros. PhD thesis,

research directed by Dept. of Computer Science, 1999.

[33] Ramachandran, Ashwin, Young, and R. Michael. Providing intelligent

help across applications in dynamic user and environment contexts. In

Proceedings of the 2005 International Conference on Intelligent User In-

terfaces, Short papers: personal assistants, pages 269–271, 2005.

[34] D. A. Simulation and C. Initiative. Visit. https://wci.llnl.gov/codes/visit/.

[35] A. Sugiura and Y. Koseki. Internet scrapbook: Automating web browsing

tasks by demonstration. In ACM Symposium on User Interface Software

and Technology, pages 9–18, 1998.

[36] Sugiura, Atsushi and Koseki, Yoshiyuki. Simplifying macro definition in

programming by demonstration. In Proceedings of the ACM Symposium

on User Interface Software and Technology, Papers: Programming by

Demonstration, pages 173–182, 1996.

[37] O. Tscherwitschke. Mouse rate checker, .

http://www.tscherwitschke.de/old/mouseratechecker.html.

[38] Zettlemoyer, L. S., S. Amant, Robert, Dulberg, and M. S. IBOTS: Agent

control through the user interface. In Proceedings of the 1999 ICIUI,

Information Retrieval Agents, pages 31–37, 1999.

[39] L. S. Zettlemoyer and R. S. Amant. A visual medium for programmatic

control of interactive applications. In CHI, pages 199–206, 1999.


	Introduction
	Related Work

	ManyVis
	ManyMacro
	ManyWorkflow

	ManyApps
	Debugger ManyApp
	Presentation ManyApp
	Additional ManyApps

	Discussion

