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ABSTRACT

Processing massive imagery in a distributed environment
currently requires the effort of a skilled team to effi-
ciently handle communication, synchronization, faults, and
data/process distribution. Moreover, these implementa-
tions are highly optimized for a specific system or clus-
ter, therefore portability or improved performance due to
system improvements is rarely considered. Much like
early GPU computing, cluster computing for graphics is
a highly-specialized field for few experts.

In this work, we experiment using the cloud as a possi-
ble alternative to the status quo, abstracting away much
of the complexity associated with current implementations.
As gigapixel images increase in prevalence, the need for
a higher level of abstraction for broadly accessible de-
ployment is clear, much like the emergence of CUDA,
OpenCL and DirectCompute for multicore and general pur-
pose GPU computing. The increased availability of cloud
resources as a commodity offers a unique opportunity to
adopt this level of abstraction and extend the distribution
and development of large image algorithms to a much
wider community. This can potentially lead to a drastic
decrease in deployment time for algorithms allowing for
faster testing of new ideas. The abstraction of the cloud
can allow simple, system oblivious implementations which
are more portable, fault-tolerant, and likely to scale as hard-
ware improves.

In this paper, we detail how to reformulate graphics al-
gorithms to perform well on the cloud and what con-
siderations need to be made for an efficient implementa-
tion. Specifically, we show the use of gradient domain
techniques to stitch large panoramas on Apache Founda-
tion’s open source implementation of Google’s MapReduce
framework called Hadoop. With the proper redesign of cur-
rent algorithms, we show how one can balance processing
and data movement to achieve implementations well suited
for the cloud.
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1 Introduction

Due to the availability of high-resolution cameras and in-
expensive robots to automatically capture large image col-
lections [19], gigapixel images are becoming increasingly
more prevalent. Tools to create and share large, stitched
panoramas are easily accessible over the internet. Larger
images, gigapixels in size, are freely distributed online such
as satellite imagery from the United States Geological Sur-
vey (USGS) website and planetary images from the High
Resolution Imaging Science Experiment (HiRISE).

Methods have been recently developed to process these im-
ages on commodity hardware, but even the most clever out-
of-core method cannot hope to achieve the performance of
a large distributed system. Despite the continued emer-
gence of these massive format images, distributed methods
still remain complicated to implement due to the need to
distribute data and computation efficiently, handle faults,
and coordinate the cluster nodes. This often results in
highly specialized code written in many months and with
great effort by a group of programmers. Often, this code is
so specifically tailored to a platform or system that porting
requires too much duplication of effort and is frequently not
considered. However this specialization typically leads to
outstanding performance, taking problems that once took
hours to compute down to mere minutes.

We owe the inspiration for this paper to the emergence of
GPU programming in the 1990s where the move from hard-
ware specific implementations by experts to open standards
revolutionized research and the industry. One can also draw
from multicore programming’s more recent history with
the emergence of APIs such as CUDA SDK, OpenCL and
DirectCompute which offer a level of abstraction above the
graphics pipeline for general purpose GPU (GPGPU) com-
puting. Much like the current use of distributed systems,
GPGPU programming was once an area of expertise of a
dedicated few.

History has shown that levels of abstraction that remove
complexity from a code base can be instrumental in the ad-
vancement of technologies. Abstraction that allows simple
and portable code accelerates innovation and reduces time
to develop new ideas. In this paper we explore the cloud as
such abstraction, allowing a developer to ignore much of
the more tedious and complex elements in implementing a
distributed graphics algorithm.



A general scheme cannot beat the performance of highly
specialized and optimized code. Often for organizations
with resources, there may be cases where speed and effi-
ciency are more important than the cost to create and main-
tain a typical implementation. Although with increased
availability of cloud commodities, there is now the oppor-
tunity to offer more members of our community the ability
to develop new algorithms for a distributed environment.
For example, the Salt Lake City example in this paper
would have cost a mere $50 to compute using Amazon’s
Elastic Reduce [6].

In the following, we outline how to extend a particularly
expensive imaging technique, gradient domain image pro-
cessing, to the cloud. Processing in the gradient domain
offers a very specific challenge for parallelized solutions
since it requires the capture of large scale trends that are
only typically found in full, global solutions. In Section 2
we cover the related work in gradient domain methods,
their solution, computing the solution in a distributed or
out-of-core environment, and our cloud implementation
of choice, Hadoop. Section 3 gives details on Hadoop
and the MapReduce framework. In Section 4, we outline
the basics of gradient domain processing and detail our
panorama stitching implementation for MapReduce and
Hadoop. Section 5 discusses the results for our test im-
ages and scalability of our implementation. We conclude
with a discussion about the work in Section 6.

In particular, our contributions are the following:

e The first distributed Poisson solver for imaging imple-
mented in Hadoop;

e A new tiling method to solve a Poisson system for im-
age editing that captures large scale trends and only
requires a small memory footprint with no additional
disk storage requirements except where required by
Hadoop;

e A practical example of extending a modern graphics
algorithm into the MapReduce framework, detailing
the main challenges that must be addressed for an ef-
ficient implementation.

2 Related Work

Poisson Image Processing. Gradient-based editing is a
computationally expensive yet fundamental piece of any
advanced image editing application. Given a guiding gra-
dient field constructed from one or multiple source images,
these methods attempt to find a smooth image that is clos-
est fit in a least squares sense to the guiding gradient. This
concept has been adapted for seamless cloning [36], drag-
and-drop pasting [26] as well as matting [40]. Further-
more, gradient-based techniques can reduce the range of
HDR (High Dynamic Range) images for display on stan-
dard monitors [17] or hide the seams in panoramas [2,29,
32,36]. Other applications include detecting lighting [25]

or shapes from images [43], removing shadows [18] or re-
flections [5], and painting in the gradient domain [34]. An
alternative to gradient based methods using Mean-Value
Coordinates has been introduced to smoothly interpolate
the boundary difference between images to mimic Dirich-
let boundary conditions [16]. Currently, this technique does
not extend to parallel solutions on distributed systems for
applications such as panorama stitching due to the depen-
dency between solved images and their unsolved neigh-
bors.

Poisson Solution. Gradient based image processing typi-
cally requires the solution to a 2D Poisson problem. Com-
puting the solution to Poisson equations efficiently, in par-
allel, or on distributed systems has been the focus of a large
body of work; therefore we only offer a cursory review in
this paper. Methods exist to find a direct Poisson solution
using Fast Fourier transforms [3,4,24,33]. With our cho-
sen framework, direct FFT methods would require two full
MapReduce jobs to compute. In the next section we will
outline why it is desirable to have a minimum number of
passes. Often the Poisson problem is simplified by dis-
cretization into a large linear system whose dimension is
typically the number of pixels in an image. Methods exist
to find the direct solution to the linear system. We refer the
reader to Dorr [15] who provides an extensive review on
direct methods and Heath et al. [23] who provide a survey
on parallel algorithms. Often, especially in distributed sys-
tems, it is a far simpler implementation to use an iterative
method to find a solution. Iterative Krylov subspace meth-
ods, such as conjugate gradient, are often used due to their
fast convergence. However for larger linear systems, mem-
ory consumption is the limiting factor and iterative meth-
ods such as Successive Over-Relaxation (SOR) [7] are pre-
ferred.

If accuracy is not a driving factor, a coarse approxima-
tion to the Poisson solution may be sufficient. Extending a
coarse solution to finer resolutions using Bilateral upsam-
pling [31] has been shown to produce good results for ap-
plications such as tonemapping. Such methods have not
yet been shown to handle applications such as panorama
stitching where the solution is typically not smooth at the
seams between images.

Often multigrid methods are used to aid the convergence
of an iterative solver. These techniques include precondi-
tioners [20,41] and multigrid solvers [10, 11]. There exist
different variants of multigrid algorithms using either adap-
tive [1,8,9,28,37] or non-adaptive meshes [27,29]. There
has been much work in distributed multigrid methods and
we refer the reader to [12] for a survey of current methods.

Recently, it has been shown that combining upsampling
and the coarse-to-fine half of a multigrid cycle gives qual-
ity results for imaging [39]. In this paper, it was shown that
an initial coarse solution, when upsampled and used as the
initialization of an iterative solver, produces results visually
indistinguishable from a direct solution.



Out-of-Core. We refer the reader to Toledo [42] for a sur-
vey of general out-of-core algorithms for linear systems.
Most algorithms surveyed assume that at least the solu-
tion can be kept in main memory, though this is rarely
the case for large images. For out-of-core processing of
large images, the streaming multigrid method of Kazhdan
and Hoppe [29] and the progressive Poisson method [39]
have so far provided the only solutions. Recently, stream-
ing multigrid has been extended to a distributed environ-
ment [30] and has reduced the time to process gigapixel
images from hours to minutes. Out-of-core methods of-
ten achieve a low memory footprint at the cost of signifi-
cant disk storage requirements. For example, the multigrid
method [29] requires auxiliary storage an order of magni-
tude greater than the input size, almost half of which is due
to gradient storage. The distributed multigrid requires 16
bytes/pixel of disk space in temporary storage for the solver
as well as 24 bytes/pixel to store the solution and gradient
constraints. For their terapixel example, the method had
a minimum requirement of 16 nodes in order to accom-
modate the needed disk space for fast local caching. In
contrast, our approach needs only 6 bytes/pixel of tempo-
rary storage to work well with Hadoop and no additional
storage if chosen to be implemented with standard MPL
Our method could solve, albeit slowly, any image on one
node as long as the original and solved data in byte for-
mat could be saved to disk (with an additional temporary
copy of the original data when using Hadoop). Stream-
ing multigrid also assumes that the image gradient is pre-
computed, which would require a separate distributed pass.
Our approach solves directly from the original image data
in one MapReduce pass by computing gradients on the fly.
The multigrid method [29,30] may also be limited by main
memory, since the number of iterations of the solver is di-
rectly proportional to the memory footprint. For large im-
ages, this limits the solver to only a few Gauss-Seidel iter-
ations and therefore may not necessarily converge for chal-
lenging cases. Our method’s memory usage is independent
of the number of iterations and can therefore solve images
that have slow convergence.

Systems for large imagery often store images as a collec-
tion of tiles at the highest resolution; therefore methods that
use this structure would be desirable. Stookey et al. [38]
use a tiled base approach to compute an over-determined
Laplacian PDE. By using tiles that overlap in all dimen-
sions, the method solves the PDE on each tile separately
and then blends the solution via a weighted average. Un-
fortunately this single pass method cannot account for large
scale trends beyond a single overlap and therefore can only
be used on problems which only have local trends. This
method also maintains a single pass at the cost of a 8 times
increase in solver computation and transfers 4 times the
original data size.

MapReduce and Hadoop. MapReduce [14] was devel-
oped by Google as a simple framework to process massive
data on large distributed systems. It is an abstraction that
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Figure 1: (a) The two phases of a MapReduce job. In the
figure, three map tasks produce key/values pairs that are
hashed into two bins corresponding to the two reduce tasks
in the job. When the data is ready, the reducers grab their
needed data from the mapper’s local disk (b) A diagram
of the job control and data flow for one Task tracker in a
Hadoop job. The dotted, red arrows indicate data flow over
the network; dashed arrows represent communication, the
blue arrow indicates a local data write and the black ar-
rows indicate an action taken by the node.

owes its inspiration to functional programming languages
such as Lisp. At its core, the framework relies on two sim-
ple operations:

e Map: Given input, create a key/value pair.
e Reduce: Process all values of a given key.

All the complexity of a typical distributed implementation
due to data distribution, load balancing, fault-recovery and
communication are under this abstraction layer and there-
fore can be ignored by a developer. This framework, when
combined with a distributed file system, can be a simple yet
powerful tool for data processing.

Hadoop is an open source implementation of MapReduce
maintained by the Apache Software Foundation and can
be optionally coupled with its own distributed file system
(HDEFS). Pavlo et al. [35] found that Hadoop was easy to
deploy and use, offered adequate scalability, has very ef-
fective fault-tolerance, and, most importantly, was easy to
adapt for complex analytic tasks. Hadoop is also widely
available as a commodity resource. For example, Amazon
Web Services — a service suite that has become nearly syn-
onymous with cloud computing in the media — provides
Hadoop as a native capability [6]. Companies have begun
to use Hadoop as a simple alternative for data processing on
large clusters [22]. For instance, The New York Times has
used Hadoop for large scale image to PDF conversion [21]
. Google, IBM, and NSF have also partnered to provide a
Hadoop cluster for research [13].

3 Hadoop

This section briefly reviews some of the fundamentals of
the MapReduce framework and how to design graphics
algorithms to work well with Hadoop and Hadoop’s Dis-
tributed File System (HDFS). We provide a high level view
to justify design decisions outlined in the next section.



The map function operates on key/value pairs producing
one or more key/value pairs for the reduce phase. The
reduce function is a per-key operation that works on the
output of the mapper (see Figure 1(a)). Hadoop’s sched-
uler will interleave their execution as data is available.
Currently, Hadoop does not support job chaining. There-
fore, any algorithm that requires two passes will likely re-
quire two separate MapReduce jobs. While this will likely
change in the future, at this time minimizing the number
of passes is an important consideration since the overhead
incurred by launching new jobs in Hadoop is significant.
In Section 4.2 we detail our algorithm which requires only
one pass.

Hadoop has been optimized to handle large files and to pro-
cess/transfer small chunks of data. For many applications
including the one outlined in the next section, understand-
ing Hadoop’s data flow is vital for an efficient implementa-
tion, much like random memory access must be considered
in a GPU.

Input. The Hadoop distributed file system stripes data
across all available nodes on a per block basis with repli-
cation to guarantee a certain level of locality for the map
phase and to be able to handle system faults. When a job
is launched, Hadoop will split the input data evenly for all
map instances. For our example, allowing Hadoop to ar-
bitrarily split the input data could result in fragmented im-
ages. Therefore, the system allows the developer to special-
ize the function reading the input which we use to constrain
the split to only occur at image boundaries.

MapReduce transfer. During execution, each mapper
hashes the key of each key/value pair into bins. The num-
ber of bins equal the number of reducers (see Figure 1(a))
and each bin is also sorted by key. The map first stores and
sorts the data in a buffer in memory but will spill to disk if
this is exceeded (the default buffer size is 512 MB). This
spill can lead to poor mapper performance and should be
avoided if possible. After a mapper completes execution,
the intermediate data is stored to a node’s local disk. Each
mapper informs the control node that its data is finished
and ready for the reducers. Since Hadoop assumes that any
mapper is equally likely to produce any key, there is no as-
sumed locality for the reducers. Each reducer must pull its
data from multiple mappers in the cluster (see Figure 1). If
a reducer must grab key/value pairs from many local disks
on the cluster (possibly an N-to-N mapping), this phase
can have drastic effect on the performance.

Job coordination is handled with a master/slave model
where the control node, called the Job tracker distributes
and manages the map and reduce tasks. When a program
is launched the Job tracker initiates Task trackers on nodes
in the cluster. The Job tracker then schedules tasks on the
Task tracker maintaining a communication link to handle
system faults (see Figure 1(b)).
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Figure 2: Our tile-based approach: An input image is di-
vided into equally spaced tiles. In the map phase after a
symbolic padding by a column and row in all dimensions,
a solver is run on a collection of 4 tiles labeled by numbers
above. After the mapper finishes, it assigns a key such that
each reducer runs its solver a collection of 4 tiles that have
a 50% overlap with the previous solutions.

4 MapReduce Image Processing

This section briefly reviews the Poisson system at the core
of gradient domain image processing. We then detail our
algorithm to produce a Poisson solution on the cloud.

4.1 Gradient Domain Methods

Rather than operating directly on the pixel values, gradient
based techniques manipulate an image based on the value
of a gradient field. Seamless cloning, panorama stitching,
and high dynamic range tone mapping are all techniques
that belong to this class. Given a gradient field G(z,y),
defined over a domain  C R?, we seek to find an image
P(z,y) such that its gradient VP fits G(z, y).

In order to minimize ||VP — G|| in a least squares sense,
one has to solve the following optimization problem:
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Minimizing equation (1) is equivalent to solving the Pois-
son equation AP = div G(z,y) where A denotes the
Laplace operator AP = 81}; + %ZI; and div G(x,y) de-

notes the divergence of G.

For images, we discretize the differential form AP =
div G(z,y) using finite differences into the following
sparse linear system: Lp = b. Each row of the matrix
L stores the weights of the standard five point Laplacian
stencil, p is the vector of pixel colors, and b encodes the
guiding gradient field. Both L and b encode boundary con-
ditions as well. Gradient domain techniques are typically
defined by how the guiding gradient field is computed and
what boundary conditions are chosen. For instance, seam-
less cloning uses Dirichlet boundaries set to the color val-
ues of the background image and the foreground image’s
gradient as the guiding field (see Perez et al. [36] for a
detailed description). For panorama stitching, Neumann
boundary conditions are used and the guiding gradient field
is computed as a composite of the gradients from the source
images. At image boundaries, where an unwanted large
gradient exists (the seams), the gradient between images is



Figure 3: Although the result is a smooth image, without
coarse upsampling the final image will fail to account for
large trends that span beyond a single overlap and can lead
to unwanted shifts in color. Notice the vertical banding
denoted by the red arrows.

Figure 4: The 512 x 512 tiles used in our Edinburgh (top),
Redrock (middle), and Salt Lake City (bottom) examples.

considered to be zero and the gradient on either side of the
boundary is averaged across the seam [2,29,32,36]. An-
other interesting example is gradient domain painting [34]
which uses artistic input as the guiding field.

4.2 MapReduce for Gradient Domain

Commonly, large images are stored as tiles, which gives us
the underlying structure for our scheme. However, a tiled-
based approach by itself would not account for large scale
trends common in panoramas (see Figure 3). Therefore we
add upsampling of a coarse solution similar to the approach
used in Summa et al. [39] to capture these trends. Our al-
gorithm works in two phases: The first phase performs the
upsample of a precomputed coarse solution and solves each
tile to produce a smooth solution over the extent of the tile.
The second phase solves for a smooth image on tiles that
significantly overlap the smoothed tiles from the first phase.
In this way, the second phase smooths any seams not cap-
tured or even introduced by the first phase solvers. This
algorithm can be simply implemented in one MapReduce
job in Hadoop.

Tiles. = We have chosen an overlap of 50% in both di-
mensions for the second phase due to the simplicity of im-
plementation, although Summa et al. [39] has shown that
a good solution can be found with much less. To easily
accomplish this overlap, we divide the data into tiles 1/4
of the proper size. Figure 4 shows the tile layout for our
test images. Each phase operates on 4 of these smaller
tiles which are combined to construct the larger tiles. To

avoid undefined tiles in the second phase, we add a sym-
bolic padding of one row/column to all sides of the image.
Figure 2 gives an example of a tile layout. An important
component of panorama stitching is a map file which gives
the correspondence from a pixel location in the overall
panorama to the smaller image that supplies the color. This
map file is necessary to determine the difference between
actual gradients and those due to seams. This map also de-
fines the boundaries of the panorama, which are commonly
irregular and do not usually follow the actual image bound-
ary. The panorama boundary is a seam we would like to
preserve. We encode the map file into each individual tile
as an alpha channel. For images such as the Salt Lake City
example, we cannot encode an index for each image in a
byte of data. However, the map is only used to denote if
two pixels are from the same source image or if a pixel is
on the boundary. Therefore a byte is more than enough to
encode this correspondence. The symbolic padding is en-
coded as boundary and images that are not evenly divisible
by our tile size are also padded with boundary. The over-
lapping window size used for our test was 1024 x 1024
pixels which we found was a good compromise between a
low memory footprint and image coverage.

Coarse Solution. As a first step, the first phase of
our solver will upsample via bilinear interpolation a 1-2
megapixel coarse solution. Much like the method from
Summa et al. [39], we precompute the coarse solution in
just a few seconds using a direct FFT solver on a coarsely
sampled version of our large image. In tiled hierarchies,
this coarse image is typically already present. In Hadoop,
this coarse solution is sent along with the MapReduce job
when launched. The Job tracker stores this image on the
distributed file system for Task trackers to pull and store
locally.

First (Map) phase. After loading/combining the smaller
tiles and performing the upsample, the first phase runs an
iterative solver initialized with the upsampled pixel colors.
From our testing, we have found that SOR gives good run-
ning times and low memory consumption and therefore is
our default solver. The solver is considered to have con-
verged when the Ly norm falls below 102 which is based
on the range of byte data. After a smooth image is com-
puted, the solution is split back into its 4 smaller tiles and
sent to the next phase as byte data. Some precision is lost
in the solution data by this truncation of bits and can cause
slower convergence in the next phase. However, in many
distributed systems, the bottleneck is data transfer, there-
fore it is preferable to use smaller data at the cost of in-
creased computation. For the Hadoop implementation, this
first phase of our algorithm fits well with Hadoop’s map
phase. Each mapper emits a key/value pair, where the value
is the data from a small tile and the key is computed in such
a way that we achieve the desired 50% overlap in the next
phase. The key is computed as a row/column pair in the
space of the larger tiles. This key is stored in a 4 bytes be-
fore being emitted. The high word contains the row and the



low word contains the column. For a tile at location (z, y),
the key for sub-tile (4, j) is computed as:

key_row = x x 2 + i 2)

key_col =y x 2+ j; 3)

Below we provide pseudocode for the map phase and Fig-
ure 2 provides an example.

proc Map(blocklId, image) =
row := blockId >> 16;
col := blockId & OxFFFF;
solver.compute_gradient(image);
solver.upsample_coarse(image, row, col);
solver.SOR(image);
fori:=0to1do
forj:=0to1ldo
keyRow := row * 2 + 1;
keyCol := col x 2 + j;
key := keyRow << 16 + keyCol;
emit(key, solver.tiles[i][j]);

Second (Reduce) phase. The second phase now gathers
the 4 smaller tiles that make up the overlapping window.
These tiles sit as intermediate data on the local disks of the
cluster. If the system accounts for locality, each instance
would only need to gather 3 tiles since the nodes could be
placed such that one tile is always stored locally. After the
data is gathered, the gradients are computed from the orig-
inal pixel values and an iterative solver (SOR) is run af-
ter being initialized with the solutions from the first phase.
The iterative solver is constrained to only work on interior
pixels to prevent this phase from introducing new seams.
Technically, there may be errors at the pixels around the
midpoints of the boundary edges of these tiles, though in
practice we have not seen this affect the solution. This sec-
ond phase fits well with Hadoop’s reduce phase with some
considerations. Hadoop does not account for data local-
ity for the reducers, therefore we must assume the worst
case gather of 4 tiles. Also, the reducers do not have ac-
cess to the HDFS, nor can any task request specific data.
The mappers in the first phase modify the pixel values, but
the reducer needs the original values to compute the gra-
dient vector for the iterative solver. Therefore, the map-
per must also concatenate the original pixel values to the
solved data before it emits the key/value pair. This leads to
a 6 bytes/pixel transfer between phases. Below we provide
pseudocode for the reduce phase.

proc Reduce(blockId, [(mapl,orgl), ..., (map4, orgd)]) =

mapper _output := merge(mapl, map2, map3, map4);
original_tile := merge(orgl, org2, org3, orgd);
solver.compute_gradient(original_tile);
solver.SOR(mapper_output);

emit(BlockId, solver.tiles);

Storage in the HDFS. In Hadoop, saving the image in
standard row major order would lead to poor performance
in the mappers since there is good locality in only one di-
mension. Saving individual tiles would also not be efficient
since Hadoop’s HDFS is optimized for large files. There-
fore we save the data as the large tiles, comprised of the
4 smaller tiles, which the mapper needs in the first phase.
We concatenate the tiles together, row-by-row, into a single
large file.

5 Results

We demonstrate the quality of our approach on three test
panoramas which range from megapixels to gigapixels in
size. We also demonstrate the generality of the abstrac-
tion by running our code, without modification, on a single
desktop and on a large cluster. Finally, we test Hadoop’s
scalability with two of our test panoramas.

The single node tests were performed on a 2xQuad-Core
Intel Xeon w5580 3.2GHz desktop with 24GB of mem-
ory. For our large distributed tests, we ran our method on
the NSF CLuE [13] cluster, which consists of 275 nodes
each with dual Intel Xeon 2.8GHz processors with Hyper-
Threading and 8GB of memory. While still a valuable
resource for research, as modern clusters are concerned
CLuE’s hardware is outdated being a retired system based
on a 6 year old technology since it was originally produced
in 2004. Moreover, CLuE is also a shared resource and all
timings were certainly affected by other researchers using
the machines.

The Edinburgh panorama consists of 25 images with a full
resolution of 16,950 x 2,956 pixels (50-megapixel) and
was broken into 48 tiles. For our single node test, our
method produced a solution in 81 seconds with 8 mappers
and 4 reducers. The Redrock panorama consists of 9 im-
ages with a full resolution of 19, 588 x 4,457 pixels (87-
megapixel) and was partitioned into 96 tiles. Our method
running on a single node solved the panorama in 156 sec-
onds with 9 mappers and 9 reducers. The solver running
on the cluster ran in 199 seconds with 96 mappers and 96
reducers. Due to the small size of the panoramas, the ex-
tra parallelization given to us by the distributed system did
not increase performance. Quite the opposite was true, the
runtimes were worse due to overhead of Hadoop launching
and coordinating many tasks. Also, because the cluster was
a shared resource, this increase in compute time could have
easily come from external influences. See Figure 6 for the
original and solved panoramas.

The Salt Lake City panorama consists of 611 images with a
full resolution of 126, 826 x 29, 633 pixels (3.27-gigapixel)
and was split into 3444 tiles. Our method took 3 hours and
5 minutes to compute a solution on our one node test desk-
top. On the distributed cluster with 492 mappers and 492
reducers the time to compute a solution dropped to 28 min-
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Figure 5: (left) The scalability plot for the Edinburgh (50-
megapixel) panorama on our one node 8-core test desk-
top; (right) the scalability plot for Redrock (87-megapixel)
panorama on the same machine

utes and 44 seconds of which 3 minutes and 24 seconds
was due to Hadoop overhead and 15 minutes was due to
I/O and data transfer between the map and reduce phases.
Running Salt Lake City with 246 mappers and 246 reducers
produced a solution in 39 minutes and 49 seconds of which
2 minutes and 7 seconds was due to Hadoop overhead and
30 minutes was due to I/O and data transfer. Note that these
are all wall clock times and include activity of other people
on a shared system. Moreover, the configuration, which we
could not change, required running at least 3 processes on
every node which have only two cores. Therefore, we can
only hope to have 2/3 compute efficiency out of this cluster.
See Figure 7 for our results. Based on our timing and the
pricing available online, running the 492 mapper/reducer
job would have cost approximately $50 to run on Amazon’s
Elastic Reduce [6]. This is orders of magnitude less expen-
sive and time comsuming than operating and maintaining
a proprietary cluster and would allow any researcher in the
field to experiment with new ideas.

Scalability. Due to the shared nature of the CLuE cluster,
we restricted our scalability tests to only the single node
test desktop. Figure 5 plots the runtime to solve both the
Edinburgh and Redrock panoramas as a function of number
of reducers and mappers. We varied the number of map-
pers and reducers from one to the number of cores. The
plot shows that as both the mappers and reduces increase
so does our performance, but as the total number of both
mappers and reducers meets or exceeds the available cores
of our system, the performance gain flattens. This is an im-
portant observation and must be remembered when choos-
ing an optimal number of mappers and reducers especially
when purchasing time and cores as a commodity.

Fault tolerance. Hadoop has been developed to robustly
handle failures in the cluster. Achieving a fault tolerant im-
plementation is a major challenge on its own and is not eas-
ily available in other distributed frameworks such as MPI.
The tremendous advantage of fault tolerance comes at the
cost of high variability in running times, though jobs are
guaranteed to finish. In fact, all runs on the distributed clus-
ter had some kind of failure in the system at some time dur-
ing the execution and still we were able to get results, which
would not be available with a traditional distributed imple-
mentation. In particular, the running time stated above for

Figure 6: The results of our cloud implementations, from
top to bottom: Edinburgh, 25 images, 16,950 x 2,956,
50-megapixel; the solution to Edinburgh from our cloud
implementation; Redrock, 9 images, 19,588 x 4,457; 87-
megapixel; the solution to Redrock from our cloud imple-
mentation.

the Salt Lake City example with 492 mappers/reducers was
based on the job with the minimum number of failures (95
failed tasks). In practice, we have seen this example run as
long as 49 minutes to account for the 133 failed tasked that
occurred during the job.

6 Conclusions

In this paper, we detailed how the cloud can be used as a
possible alternative to a traditional distributed implementa-
tion for processing massive imagery. We introduced a new
tiled-based method to solve a Poisson system for image ap-
plications that captures large scale trends and does not re-
quire large memory resources, nor does it accomplish this
at the cost of significant data proliferation. We outlined
how this method can be extended to the cloud and what
needs to be carefully considered in order to ensure an effi-
cient implementation. Finally, we presented the first Pois-
son solver for image editing implemented in the MapRe-
duce framework.

We have shown how our abstracted, general implementa-
tion scales and runs well on not only a large distributed
cluster but also a single node. Due to the high level im-
plementation, this portable code is already able to take ad-
vantage of improvements in hardware or in the underlying
Hadoop system. We demonstrated good running times for
images that range from megapixels to gigapixels in size.

One can imagine new researchers and developers us-
ing similarly designed algorithms to perform new com-
plex imaging operations on massive images quickly and
cheaply. For instance, our Salt Lake City example would



Figure 7: Salt Lake City Panorama: 611 images,
126,826 x 29,633, 3.27-gigapixel, (top) Original image
(bottom) Our cloud solution.

have cost approximately $50 to compute on a commodity
Hadoop system [6]. As the history of GPU programming
has shown, abstraction layers which remove some of the
more tedious and complex elements of an implementation
can have significant implications in accelerating new inno-
vations.
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