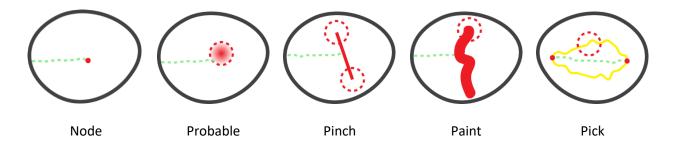
Flexible Live-Wire: Image Segmentation with Floating Anchors

Supplemental Material: User Feedback

B. Summa¹, N. Faraj¹, C. Licorish¹, and V. Pascucci²


¹Tulane University, United States ²SCI Institute, University of Utah, United States

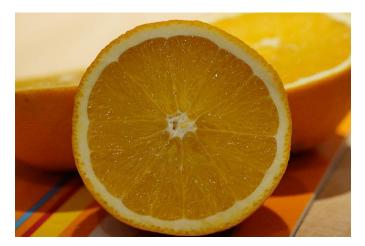
User feedback

In this document, we describe the procedure used to elicit user feedback on our flexible anchors compared to the standard approach and the resulting survey. We performed the survey on both touch display and classical keyboard + mouse configurations. To represent the standard approach we used Adobe Photoshop's Magnetic lasso tool in the classical keyboard + mouse configuration. Due to the OS of our touch device, a node-anchor-only version of our software represented the standard.

Training

We explained to the user how to every anchor available in our system displayed bellow.

The user then train by segmenting the boat in the image bellow, when the user felt comfortable with the system she proceeded to perform the tasks described in the following section.


Tasks

Users were asked to perform the following tasks:

1. Segment the flower using the standard approach (node-only) and our new paint anchor:

2. Perform two segmentations of the orange, the full orange then the inner part i.e. without the peel using the standard approach (node-only) and our new flexible anchors:

3. Segment the pinwheel with their choice of anchors:

Once the users had performed the prescribed tasks, they were asked to fill the following survey to collect their impressions on our system.

Survey

Device Type							
Touch	Mouse	Mouse+Keyboard					
How often do you use image processing software?							
1	2	3	4	5			
Never				Always			
Compared to the standard approach, how did you find the new approach?							
1	2	3	4	5			
Harder				Easier			
Compared to the standard approach, did you arrive at your desired segmentation:							
1	2	3	4	5			
Slower				Faster			

How did you find the flexibility of constraint choice?

 1
 2
 3
 4
 5

 Not Useful
 Useful
 Useful

Please rank the following anchors from most (1) to least (5) useful?

 Node
 Paint
 Pinch
 Probable
Pick

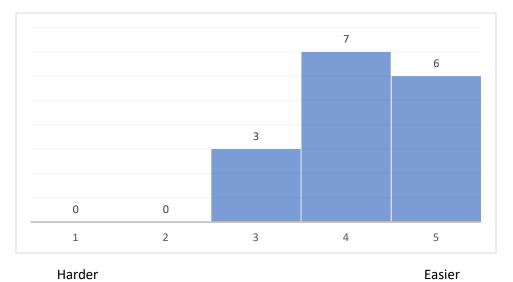
Would you use a paint, pinch, probable, or pick anchor if available in image processing software?

Yes No

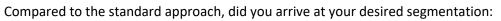
Results

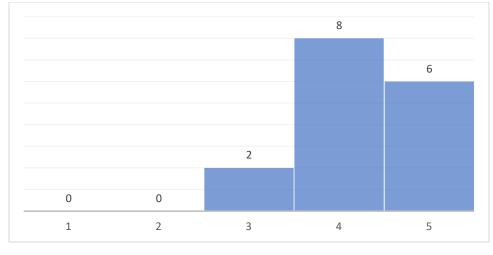
In this section, we present the collected data from the above-mentioned survey.

Device Type

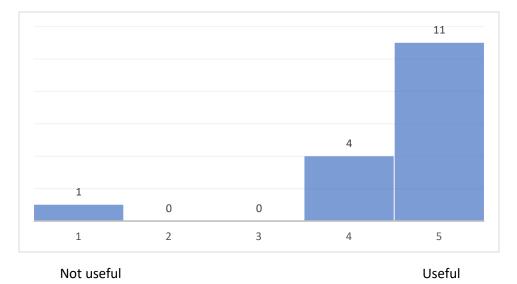

7 Touch 9 Mouse+Keyboard

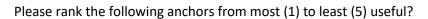
How often do you use image processing software?

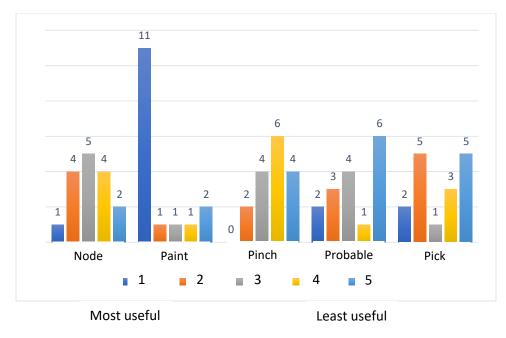



Never

Always


Compared to the standard approach, how did you find the new approach?





How did you find the flexibility of constraint choice?

Would you use a paint, pinch, probable, or pick anchor if available in image processing software?

14 1

Yes No

Timings in seconds for the 7 touch screen users

Flower	Flower	Orange standard live-wire		Orange ours
standard live-wire	paint anchor	outer+inner	both	both
60	20	15+11	26	18
67	30	27+13	40	27
32	20	11+9	20	25
39	15	15+13	28	6
45	37	15+10	25	18
49	27	14+16	30	15
63	39	13+15	28	11

Supplemental: Flexible Live-Wire: Image Segmentation with Floating Anchors

B. Summa¹, N. Faraj¹, C. Licorish¹, and V. Pascucci²

¹Tulane University, United States ²SCI Institute, University of Utah, United States

Algorithm 1 UpdateAnchorSet

Interactive update and minimum path lookup during anchor set adjustment: **Input:** anchor set: A_i ; set of new nodes for anchor: $\{n\}$ **Output:** minimum path: \mathcal{P} $A_i \leftarrow setNodes(\{n\})$ ⊳ update nodes $m \leftarrow FindMinCostNode(A_i) \quad \triangleright cost = cost(\mathcal{T}_i^{\mathcal{F}}) + cost(\mathcal{T}_i^{\mathcal{B}})$ $\mathcal{P}_i^{\mathcal{F}} \leftarrow \text{EXTRACTMINPATH}(A_{i-1}, n, \mathcal{F})$ ▷ If anchor exists $\mathcal{P}_{i}^{\mathcal{B}} \leftarrow \text{EXTRACTMINPATH}(A_{i+1}, n, \mathcal{B})$ return $\mathcal{P}_{i}^{\mathcal{F}} \cup \mathcal{P}_{i}^{\mathcal{B}}$ ▷ If anchor exists **procedure** EXTRACTMINPATH(A_i , n, D) $\mathcal{P}_i^{\mathcal{D}} \leftarrow \mathsf{PATHLOOKUP}(\mathcal{T}_i^{\mathcal{D}}, n) \triangleright \text{ tree traversal from } n \text{ to root}$ if $\mathcal{D} == \mathcal{F}$ then $\mathcal{P}^{\mathcal{D}} = \mathcal{P}^{\mathcal{D}} \bigcup \text{ExtractMinimumPath}(A_{i-1}, n, \mathcal{F})$ $\triangleright (\mathcal{D} == \mathcal{B})$ else $\mathcal{P}^{\mathcal{D}} = \mathcal{P}^{\mathcal{D}}$ | J ExtractMinimumPath(A_{i+1}, n, \mathcal{B}) end if return $\mathcal{P}^\mathcal{D}$ end procedure

Algorithm 2 CommitAnchorSet

Tree calculations post user adjustment of an anchor set: **Input:** anchor set, A_i COMMITFORWARD (A_i) COMMITBACKWARD (A_i)

procedure COMMITFORWARD(A_i) $\{n\} \leftarrow getNodes(A_i)$ $C_i^{\mathcal{F}} \leftarrow getCosts(\{n\}, \mathcal{T}_{i-1}^{\mathcal{F}})$ $\mathcal{T}_i^{\mathcal{F}} \leftarrow COMPUTETREE(\{n\}, C_i^{\mathcal{F}})$ COMMUTECOMMEND(A_i)	⊳ If anchor exists
COMMITFORWARD (A_{i+1}) end procedure	
procedure COMMITBACKWARD (A_i)	
$ \{n\} \leftarrow getNodes(A_i) \\ C_i^{\mathcal{B}} \leftarrow getCosts(\{n\}, \mathcal{T}_{i+1}^{\mathcal{B}}) $	
$C_i^{\mathcal{B}} \leftarrow getCosts(\{n\}, \mathcal{T}_{i+1}^{\mathcal{B}})$	
$\mathcal{T}_i^{\mathcal{B}} \leftarrow \text{COMPUTETREE}(\{n\}, C_i^{\mathcal{B}})$	
COMMITBACKWARD(A_{i-1})	▷ If anchor exists
end procedure	
procedure COMPUTETREE({ <i>n</i> }, <i>C</i>)	
InitTreeCalculation($\{n\}, C$) \triangleright initialize	costs to fl. anchor
$\mathcal{T} \leftarrow \text{RunOptimization}()$	⊳ Dijkstra's, etc.
return ${\cal T}$	
end procedure	