
1

Active Stitching:
Beyond Batch Processing of Panoramas

Brian Summa, Julien Tierny, Peer-Timo Bremer Member, IEEE , Giorgio Scorzelli, and
Valerio Pascucci Member, IEEE

Abstract—There currently exist a number of excellent techniques to capture, register, and blend digital panoramas. However,
the problem is treated as an automated batch process, which can take several minutes to produce a panorama. Unfortunately,
many of the algorithms involved are prone to errors and/or artifacts and may require meticulous tuning to achieve high quality
results. This not only requires expert knowledge, but given the complex techniques involved can also result in a tedious and time
consuming trial-and-error process. Each update may influence previous corrections and take minutes to be computed. Previews
are typically not available or, at best, are provided as unintuitive outputs from each batch process. As a result, the existing
workflow to create a panorama can be exasperating and exploring different aesthetic choices, such as image selection, etc., is
too time consuming to be feasible. In this paper, we move from the traditional inflexible and sequential batch creation to a more
versatile, interactive approach. We introduce novel techniques to enable a user-driven panorama workflow that leverages quick,
meaningful previews and stream processing to provide the first end-to-end, interactive creation pipeline. This new workflow
provides users with online control of the acquisition, registration, and composition without any constraints on input or use of
specialized hardware and allows for the first time unconstrained, in-the-field panorama creation on commodity hardware. In
particular, our approach is based on: (i) a new registration acceleration scheme to provide instant feedback independent of the
number or structure of images in the panorama; (ii) a new mesh data structure to support arbitrary image arrangements; and (iii)
a new scheme to provide previews of and progressively stream seam calculations.

Index Terms—Panorama stitching, Interactive composition, Streaming panorama computations

F

1 INTRODUCTION

Panorama creation is a popular application in digital
photography and there are a number of excellent
techniques and systems to capture, register, and blend
panoramas [5], [6]. Unfortunately, due to the variabil-
ity of natural images and challenges, such as, changes
in lighting or dynamic objects, erroneous results are
common and frustrating to repair. This is due in no
small part to the current modi operandi of systems (and
current research) to consider panorama creation to be
an offline, fully- or semi-automatic batch process.

Currently each aspect of panorama creation (acqui-
sition, registration, and composition) is considered a
distinct stage typically linked sequentially by their
inputs/outputs, see Fig. 1 (a). This approach leads to
a forward-only workflow not well suited for engaging
users. For instance, problems occurring in one stage
often cascade through the pipeline before a user is
given meaningful feedback. Furthermore, all steps are
highly interdependent and even for an expert, it is
difficult to understand what caused a particular prob-
lem or how to correct it without creating new issues.

• B. Summa, G. Scorzelli and V. Pascucci are with the SCI Institute, Uni-
versity of Utah. Emails: {bsumma, scrgiorgio, pascucci}@sci.utah.edu.

• J. Tierny is with CNRS - LTCI. Email: tierny@telecom-paristech.fr.
• P.-T. Bremer is with Lawrence Livermore National Laboratory. Email:

bremer5@llnl.gov.

Non-interactive components of the pipeline require
users to meticulously tune a large number of, not
necessarily intuitive, parameters or edit the panorama
manually between batch stages. This requires an in-
depth knowledge of the techniques involved. Even
interactive techniques [2] assume input from a pre-
vious batch phase. Therefore, any interactive edits
will be lost if a previous component is adjusted. This
frustrating trial-and-error workflow requires a signif-
icant amount of tedious work even if the pipeline is
executed quickly. However, as shown in Fig. 1 (a),
it may take minutes for a user to receive meaning-
ful feedback especially if adjustments are made to
the start of the pipeline. Feedback can be given to
the user by visualizing results at the end of each
stage, but it is difficult to predict the implications
of an edit with such a myopic view. Additionally,
panorama creation is an artistic application; therefore
there exist aesthetic choices such as which images
to use, where to place seams, etc. Typically, these
remain unexplored since they do not lend themselves
to automated approaches, yet manual intervention is
too costly and time consuming to be practical. Finally,
image acquisition is assumed to be an invariable pre-
process and thus problems in this phase such as
missing or out-of-focus images are not correctable.

While some of the challenges seem inherent to the
algorithms and/or the general problem setting, a
significantly more user friendly approach could be



2

(a) (b)

Acquisition Registration Composition Solution + Feedback

One to All Bundle Adjustment (SBA) Panorama Weaving Poisson BlendingImage warping

49.2 (31.6) s

53.9 (29.7) s

1.6 s

16.5 s

9.0 (1.4) s

40.4 (5.6) s

6.2 s

15.3 s

19.5 s

55.4 s

43.8 megapixel, 18 images

149 megapixel, 22 images

Matching
All to All

4.5 (2.6) s

3.2 (1.3) s

Acquisition

Registration

Composition

Feedback Solution

Fig. 1. (a) Traditional batch panorama creation is fairly limiting. The sequential pipeline considers each step
separately and user feedback is typically only available at the end. Problems at any stage cascade down the
workflow and can have drastic effects on the quality of a panorama. Moreover, problems in acquisition are
often not correctable except by capturing new images. Modifying any portion such as changing source images,
adjusting registration parameters, and/or manually moving image alignment would incur not only the delay due
to the operation but all delays due to subsequent computations. As the example timings above show, the delay
for a user to see the result of their edit is significant and therefore makes adjustment a tedious or impossible
task. Timings are given as CPU (GPU) from our test system using standard registration (OpenCV [1]), boundary
(Panorama Weaving [2]), and poisson blending (FFT [3], [4]) implementations. In addition, tasks which process
output to feed into a new stage such as the warping of the registered images for boundary computation add
an additional significant delay. (b) Rather than the traditional thinking of developing techniques to shorten the
pipeline, in this work, we provide novel new techniques to shorten the user feedback loop meaningfully. This
allows a user to intervene, correct, and modify the stages of the pipeline in an intuitive, seamless way.

constructed following three principles:

• Image acquisition should be considered part of
the panorama workflow and the user should be
allowed to add (or remove) images on-the-fly in
any order or configuration;

• All user input should be accompanied with in-
stantaneous previews of the results oblivious to
input structure or hardware available; and

• All user manipulations should be interactive and,
if necessary, rely on streaming computation to
refine the initial preview.

Such an approach would allow a feedback loop as
shown in Fig. 1 (b) that provides a significantly better
user experience than previous approaches. A tightly
integrated pipeline with appropriate previews pro-
vides a single seamless application where every phase
is configurable and editable at all times. Further-
more, assuming unconstrained, hardware-agnostic al-
gorithms, such an environment can be deployed in-
the-field allowing a user to edit a panorama as images
are acquired. Some current mobile devices already
attempt to provide such capabilities by combining
acquisition with panorama creation. However, these
approaches are too limited in scope and rely on too
many assumptions to be viable for professional results
on general panorama configurations with commodity
hardware.

This paper introduces a number of new and improved
techniques aimed at incorporating the principles dis-
cussed above into a state-of-the-art panorama work-
flow. While the panorama creation is a well stud-
ied area, due to the inherent “batch” thinking that
characterizes previous work, techniques currently fall
short of these principles. Rather than concentrating

on accelerating the entire pipeline or the individual
stages, this work is concerned with their interplay and
how to couple and preview all stages into a single
seamless experience.

Current registration acceleration techniques rely on
assumed acquisition structure, specialized hardware
and/or a significant external data stream, such as
video from the acquisition. In this work, we show how
to allow a user to add or remove images on-the-fly or
streamed from a camera while continuously adjust-
ing, correcting, or constraining the final solution. As
images are added, a user is provided with immediate
registration feedback without any of the assumptions
of the previous techniques. At any point the user can
adjust the registration to guide the optimization, or if
necessary register images by hand to, for example,
focus on small yet important aspects of the scene.
The user is also allowed to seamlessly apply filters
and/or external image processing algorithms, exper-
iment with and adjust different image boundaries,
and preview the final color corrected image. Previous
work in interactive image boundaries [2] assumes a
rigid image layout not compatible with user-acquired
and/or interactively assembled panoramas. Further-
more, the initial calculation is considered a single
batch process. In this work, we show how to stream
the solution without any assumed structure of the
panorama. Finally, we provide a prototype system
which has two main use cases: a post-acquisition
editing application (Drag-and-Drop Editing) and an
online-acquisition in-the-field system (Live Capture),
see Fig. 2.

In particular, the contributions of this paper are:

• A unified workflow for online acquisition and



3

Fig. 2. Our new methods for interactive creation of
panoramas enable, for the first time, in-the-field ac-
quisition of professional quality panoramas with no
assumptions on the structure of the images or spe-
cialized hardware; (inset green) a computer coupled
with a tablet device provide full editing in-the-field;
(inset purple) a panorama created from an in-the-
field deployment of the prototype software. In-the-field
editing can allow a user to potentially identify missing
data during acquisition and acquire new images to fill
in gaps (inset red) and/or fix registration misalignment
on the spot (inset yellow) for this panorama. (52.9
megapixel, 15 images).

real-time editing of panoramas that allows users
complete control over panorama creation with no
assumed constraints on input data or need of
specialized hardware.

• A registration acceleration scheme to provide
instant feedback independent of the number of
images that does not rely on assumed acquisition
structure.

• A new general data structure to encode image
and boundary relations with support for arbitrary
and dynamic inputs.

• A streaming composition workflow that allows
users to receive instant previews of image bound-
aries and the final corrected image with stream-
ing updates.

• The first end-to-end, interactive panorama cre-
ation system. This system is lightweight and de-
ployable on commodity laptops and tablet de-
vices to achieve in-the-field panorama creation
and editing.

1.1 Background and Related Work

This section covers the relevant background mate-
rial on panorama creation and the algorithms in-
volved. However, while our approach covers the en-
tire pipeline from acquisition to color correction, the
discussion will focus on the areas most relevant to
our contributions: registration, panorama composi-
tion, and end-to-end systems.

Registration: Image registration is a long-standing
problem in computer vision and comprehensive re-
view of related techniques is beyond the scope of

this paper. Instead, we refer the reader to [7], [8]
for an excellent overview. Here we concentrate on
rotational, or near rotational panoramas and to a large
extent follow the approach of Browne and Lowe [9].
The basic workflow is to extract feature points for all
images, for example SIFT features [10], find pairwise
matches between images using a RANSAC (random
sample consensus) [11] estimation, and finally com-
pute global rotational and camera intrinsic parameters
using Bundle Adjustment [12], [13], [14], [15]. At its
core, Bundle Adjustment is an iterative, non-linear op-
timization which is computationally expensive, prone
to falling into local minima, and very sensitive to
outliers. Consequently, considerable effort has been
spent to improve its performance and scalability [16],
[17], [18], [19], [20], [21], [22], [23], [24] and to trim
outlier images before the optimization is started [25],
[26], [27], [9], [28].

Video based acquisition and registration offer an al-
ternative solution to performance problems [29], [30],
[31], [32], [33], [34]. Use of video hurts the generality
of an approach since video streams are not necessarily
available from all commodity cameras. If available,
video can be used for acquisition or tracking although
the former uses of a lower resolution data stream and
often constrains motion to one single slow movement.
Furthermore, it often prevents images from being re-
taken to correct problems. Video tracking can be-
come problematic when using a CMOS sensor due
to its rolling shutter. This can be offset by using high
framerates although this is not commonly available
in practice, especially from digital photo cameras
(Nikon, Canon). Additionally, cameras will block the
view finder during streaming, which severely disrupts
usability by requiring a user to acquire images purely
through the video-registration application interface.

Registration quality remains problematic due to issues
inherent to the optimization, feature mismatches, or
unexpected motions. Some of these issues can be
addressed as a post-process [35], [36] but these tech-
niques still rely on traditional registration approaches,
such as feature matches, and therefore cannot be as-
sumed to be effective for all cases. Instead, we assume
that problems with the registration are likely and
propose a user driven approach for their correction.
By providing a fast preview, a user can intervene
and repair problems as they appear. Coupled with
automated and semi-automated user interventions
this leads to a powerful registration environment, as
has been shown for 3D reconstruction in the work of
Levoy et al. [37].

Composition: Once projected into a common frame,
it is often desirable to merge mosaics into a single,
seamless image. The simplest approach is to blend all
images to achieve a smooth transition and we refer
the reader to [8] for an excellent overview of such



4

techniques. However, blending does not work well for
scenes with dynamic objects or registration artifacts.
Instead, one typically computes “hard” boundaries, or
seams, between images to uniquely determine a source
image for each pixel.

Graph Cuts [38], [39], [40], [41] approaches have
been commonly used to find seams that minimize
the transition between images. However, they are
computationally and memory expensive and difficult
to constrain. Recently, Summa et al. [2] have intro-
duced Panorama Weaving based on the observation
that a high quality seam network can be constructed
by combining pairwise seams between images. They
propose a structure called the adjacency mesh to encode
boundary relations between images and use it as a
dual to the seam network. However, the adjacency
mesh relies on a number of assumptions about the
arrangement of the images restricting it to only a
subset of possible configurations. For a truly uncon-
strained interactive approach, however, non-standard
arrangements are quite common as the user adds
and removes images and experiments with different
options. To support these cases we propose a new
structure we call the fragment mesh which handles
nearly arbitrary image arrangements as well as dy-
namic updates.

Finally, the resulting patchwork can then be processed
using gradient domain based techniques [42], [43] to
minimize transitions and color correct the panorama.
A coarse gradient domain solution has been shown in
previous work [44] to provide a good approximation
to the final color correction. Therefore, a fast, low res-
olution solution can give a user a good approximate
preview of the final panorama result.

In-the-Field Systems: Given the ability to create
panoramas it is natural to aim towards viewing and
editing them in-the-field as images are acquired, see
for example, Baudisch et al. [45], [46]. Often these sys-
tems rely on video streams which we have discussed
previously as being problematic. Other mobile regis-
tration systems require a remote backend to provide
a panorama solution [47]. This is obviously a prob-
lem for acquisitions where network access is slow or
unavailable. Panorama creation is available on smart-
phones with programs such as the iOS Panorama
App, Xperia, Scalado, PhotoSynth, and Autostitch.
However, these often restrict the types of panoramas
and ways in which can be acquired. For instance
the iOS app requires a single sweeping horizontal
movement. They also only provide a single solution
with no interaction to correct potential problems. For
instance there is no interaction in PhotoSynth beyond
capture and undo operations. Moreover, these sys-
tems are designed to use the mobile device’s internal
low resolution camera. Therefore they would not be
acceptable applications for users who wish to use

their professional SLR cameras. Finally, some require
use of specialized internal hardware like gyroscopes
or accelerometers. Unlike these mobile solutions, our
new technologies allow systems to be created that are
fast enough for panoramas to be computed on any
commodity laptop with photographers using their
own external cameras with no restriction on the way
in which the images are acquired or need for special-
ized hardware. When combined with a tablet device,
this can allow a user to process and edit panoramas
in-the-field, see Fig. 2.

2 REGISTRATION

Registration is fundamentally the mapping of all
images into a common reference frame. As shown
in Fig. 1, current registration techniques are not re-
sponsive enough for our desired approach. In this
section, we will describe a new method for regis-
tration previews to address this problem. We target
the most common panorama acquisition format, ro-
tational panoramas, and save other motion models
for future extensions. Conceptually, our work is based
upon the approach of Brown and Lowe [9] augmented
to allow for instantaneous, online registration pre-
views. The preview provided is high quality while
making little or no assumptions about the structure
of the input and requiring no hardware to maintain
accuracy or efficiency. While the details of Brown and
Lowe [9] are beyond the scope of this paper, the high
level concepts are fairly straightforward: Given a set
of images, the problem is to find the rotational and
intrinsic camera parameters for each image such that
in the global reference frame the error between images
is minimized. Error in this context is usually defined
as the distance in projection space between matching
features of different images.

The first step in registration is to extract feature
points from each image. In this work, we use either
SURF [48] or ORB features [49]. In our experience,
SURF provides higher quality results but ORB is
computationally more efficient. The latter can become
significant in the Live Capture application.

2.1 Pairwise Matching

Once features are extracted they are matched using a
RANSAC (random sample consensus) [11] estimation
of a direct linear transformation (DLT) [50]. Subse-
quently, each pair of images is given a confidence
of the matching based on the estimated pairwise
homography. Pairs with confidence above a threshold
are considered matched in the final estimation. This
information is stored in the form of a pairwise corre-
spondence graph with nodes representing images and
arcs between matched images. Similar to OpenCV [1],



5

Fig. 3. Support for the interactive adding and removing
of images while providing a fast preview enables a
user to explore the space of all panoramas for any
image dataset. For example, a user can make multiple
distinct panoramas (top: blue, bottom: red) from this
single dataset where, for example, the departing cable
car (bottom inset) appears only in the one panorama.

Brown and Lowe’s confidence test can be made a
metric, c = nf/(α + βni), with α = 8.0, β = 0.3, nf
being the number of features, and ni the number of
inliers in the reprojection of their estimated pairwise
deformation. Typically, a feature match is considered
to be an inlier if it lies within a few pixels (1-3) in
the reprojection. Finally, the panorama is pruned by
considering only the largest connected component in
the pairwise correspondence graph [27].

For our offline, Drag-and-Drop Editing application
brute-force matching of all images as a pre-process
typically takes on the order of tens of seconds, which,
as a one time cost to start a session, we find quite
acceptable. However, during a Live Capture session
computing all matches becomes a bottleneck. A com-
mon practice is to assume that the next image is taken
in the neighborhood of the last registered image(s).
But, in an interactive session this may not be the case.
Instead we use a variation of this idea and search
for a possible neighbor starting at the previously
added image and expand the search in a breadth-first
order in the pairwise correspondence graph. Once a
single good match is found, we use the corresponding
homography to find a possible image footprint in the
panorama. To find more matches, the algorithm tests
this footprint against the bounding boxes of current
panorama images. If their bounding box falls within
a certain distance of the footprint (typically the size
of a panorama image), the algorithm tests them for
matches. This approach addresses the problem of only
finding the first good match(es) but not all, due to the
restricted search window. While there exist patholog-
ical cases where this strategy defaults to a global all-
to-all matching, we have found that it works well in
practice. This is the only input structure assumption
we will make for the technique, although this is purely
for performance and input that deviates from this
assumption is still handled.

Fig. 4. Comparison between a registration obtained
with our preview (top) and a full (middle) bundled
adjustment. The registration of the last image took
0.181 and 15.046 seconds for the preview and full com-
putations respectively (149 megapixel, 22 images).
Bottom: layout of the boundary of the images for the
two solutions (transparent blue: preview, red: full).

2.2 Registration Preview

After matching, bundle adjustment is used to find
parameters that minimize the global error. The non-
linear optimization of the bundle adjustment is an
expensive operation, and can take on the order of
seconds even for panoramas of moderate size. Fur-
thermore, it has been shown to scale cubicly in the
number of images [16]. While this is acceptable for
an offline batch process it can be quite disruptive in
an interactive session and degrade as more images
are added. Nevertheless, experimenting by adding
and removing images is a valuable tool for users
to create their ideal panorama, see the example in
Fig. 3. To address this problem we introduce a high
quality and efficient preview to the full optimization.
We build upon previous Localized Bundle Adjustment
work [21] where only the last k images are considered
for the optimization. However, instead of using the
order of the images to decide on the set of free
parameters, we use the current confidence in the
matching. More specifically, we couple two images
whose current estimated parameters produce a high
confidence, c, and remove the corresponding degrees
of freedom from the global system. The subsequent
preview will treat such pairs as a single image which
can drastically reduce the number of free parameters.
Note that the confidence value is recomputed after
every preview/full bundle adjustment or user edit
to keep a current view of confidence throughout the
editing session.

We successively couple image pairs by decreasing
confidence until we have either reduced the number
of free parameters sufficiently to ensure an interactive
response, or all remaining pairs fall below a given
confidence threshold. Furthermore, new images and
their high confidence matches are prevented from be-
ing coupled before at least one bundle adjustment has



6

been performed. We typically aim for bundle adjust-
ments equivalent to a four to eight image panoramas
and use 1.0 as a lower bound on the confidence. The
target size can be adjusted based on the resources
available in the system. While this does not strictly
guarantee an interactive response (since all image
pairs could be below the confidence threshold) we
found these parameters work well in practice. To
refine our preview, we run a full bundle adjustment
in the background and update the registration when it
becomes available. The shift between the preview and
full solution is typically slight (see Fig. 4) and there-
fore we can maintain user edits such as ones discussed
in Sec. 3.1 when the new parameters are applied. As
a practice, any registration manipulation by the user
should be reset unless specifically constrained since
the background update should improve registration
accuracy.

3 COMPOSITION

After registration, images are projected onto a com-
mon frame and need to be assembled into a seamless
image. One common approach is to compute a label-
ing that determines for each pixel in the panorama
which original image is best to use as source. The
resulting patchwork can then be processed using gra-
dient domain based techniques to hide the transitions
and color correct the final panorama. In this section,
we describe how to stream this process in a fast and
robust manner for general panorama configurations.

3.1 Generalized and Streaming Seams

The pixel labeling is typically described as a collection
of seams dividing regions of different labels. They are
computed by minimizing a pixel-based energy usu-
ally aimed at avoiding noticeable image transitions.
The fastest current technique, Panorama Weaving [2],
allows interactive seam computation and manipula-
tion. Rather than searching for a globally optimal
solution, this technique shows that a seam network
can be assembled efficiently by combining pairwise
boundaries between images in a fast and entirely local
fashion. This leads to a framework that is significantly
faster and more flexible than global approaches while
often producing superior results. However, as we will
explain, Panorama Weaving’s mesh data structure is
restricted to simple image arrangements and thus
not suitable for an interactive environment where
arbitrary inputs must be supported.

The adjacency mesh of Panorama Weaving is based
on the observation that the dual of a seam network
is a mesh with vertices representing individual im-
ages, edges representing boundaries between pairs
of images, and faces representing branching points

(a) (b) (c)

Fig. 5. The seam network for the simple arrangement
of the six images shown in (a) is dual to the mesh
of (b), where vertices correspond to images, edges
to pairwise seams, and faces to branching points.
For simple arrangements this adjacency mesh can be
constructed as the union of faces corresponding to
each overlapping set of images (c).

where multiple seams meet (see Fig. 5). Summa et
al. create a seam network by defining the mesh as
a set of polygons that each represent a (maximal)
set of pairwise overlapping images (see Fig. 5(c)).
The vertices of the polygons correspond to individual
images (or rather parts of images not shared within
the set) and polygons are combined into a global mesh
by merging vertices representing the same image.
Assuming a valid adjacency mesh, a seam network
can be constructed by computing pairwise boundaries
for all edges in the mesh and connecting them at
branching points. While this solution is in principle
more constrained than a global optimization, in prac-
tice the resulting seams often have lower energy and
additionally allow interactive manipulation.

The adjacency mesh of the Weaving approach implic-
itly assumes a common, but simple, arrangement of
images. For more general configurations, often seen
in iterative and unconstrained panorama acquisition,
it can produce erroneous results or fail entirely. In
particular, the adjacency mesh assumes that:

1) Each image is represented by exactly one ver-
tex in the mesh; or, alternatively, in the final
panorama each image contributes a single, simply
connected region.

2) A set of k images, where every pair of images
overlap, contains at least one common pixel and
corresponds to a k-fold branching point.

As shown in Fig. 6, it is easy to find examples where
these assumptions are violated and thus no valid ad-
jacency mesh can be constructed. For example, Fig. 6
(top) shows a typical configuration when mixing land-
scape with portrait images. The resulting panorama
must contain multiple disconnected regions of a single
image – something the adjacency mesh is not able to
represent. Fig. 6 (bottom) shows a more subtle issue
where a set of k pairwise overlapping images share no
common pixel. Therefore, by definition there cannot
exist a k-fold branching point and instead multiple
lower order branching points must be created. The



7

Fig. 6. Image arrangements not supported by the
Panorama Weaving mesh: (top left) multiple connected
components for pixel labelings; (top middle) an exam-
ple of an arrangement with such a configuration; (top
right) the fragment mesh and final seam configuration
for the previously unsupported configuration; (bottom
left) an arrangement that gives a Weaving image clique
despite that there exists no area that has valid pixels
from all images; (bottom middle) an example arrange-
ment from Fig. 1 with such a configuration; (bottom
middle inset) The sight purple-blue overlap results in
an erroneous clique; (bottom right) the fragment mesh
and proper seam configuration.

adjacency mesh would neither detect nor be able to
correctly handle such cases.

Additionally, the adjacency mesh provides only lim-
ited support for dense image collections, i.e. panora-
mas with very large degrees of overlap. These ar-
rangements often contain images entirely covered by
others. Since considering such images adds additional
seams and therefore raises the overall seam energy,
the adjacency mesh would simply disregard the extra
images. However, in an interactive setting, often a
user may want to include objects which only appear
in the covered image. We introduce the fragment mesh:
a new structure applicable to virtually arbitrary image
arrangements that naturally supports hidden images
while providing the same speed and flexibility in
seam creation and manipulation as the Panorama
Weaving approach.

The only assumption of our structure is that the in-
tersection of two images is a single, simply-connected
region and that their differences are sets of simply-
connected regions. In practice, the only cases violat-
ing these conditions are images embedded entirely
inside another image. This is a degenerate case where
discarding the interior image always leads to lower
energy seams. In general, if two images are found that
violate this condition or the user decides specifically
to include an internal image, the outer image can be
split to construct a canonical arrangement.

Below, we formally introduce the concept of a frag-
ment graph for groups of images, discuss how frag-

1 2

34

Fig. 7. Clusters can be found with a clockwise walk
along image boundaries. At boundary intersections, if
the direction is chosen to maximize the count of images
which have a valid pixel, then this must lead to a loop.
The final count determines whether the k-clique is a
k-cluster.

ment graphs can be combined into a joined frag-
ment graph and finally describe how to construct the
fragment mesh from the joined graph. We initially
describe the framework in terms of an automatic post-
processing approach before discussing the improve-
ments necessary for a dynamic version.

Fragment Graphs: The first step of computing an
adjacency mesh is to identify (maximal) sets of over-
lapping images which will correspond to branching
points of the seam network. Summa et al. use cliques,
fully connected subgraphs, of the overlap graph of all
images to define polygons. Here the overlap graph is
defined as a graph with nodes for each image and
edges between all images sharing pixels. However,
as shown in Fig. 6 (bottom), there can exist cliques
that do not share a common region and thus do not
correspond to branching points. Instead, we use the
notion of a cluster to describe a set of images that
share pixels:

Definition 3.1 (Cluster): A set of k images {I1, . . . , Ik}
is called a cluster if their intersection is non-empty, i.e.
I1 ∩ . . .∩ Ik 6= ∅. A cluster is maximal if there exists no
image I such that {I1, . . . , Ik, I} is a cluster.

Similar to Summa et al. but only using cliques that
are also clusters, we extract all maximal clusters from
the panorama. Given that the number of images is
typically small we use a brute force approach to find
all cliques and then test each clique to determine
whether it defines a cluster. As shown in Fig. 7, the
test consists of a walk along image boundaries. Given
a k-clique, we start at a non-shared corner walking
clockwise around the image which guarantees that
to the right hand side lies a region covered by one
image. As we cross boundaries of other images we
choose the next boundary to walk as the one with
maximal overlap count. We continue walking along
the boundary until we encounter an image a second
time. If the overlap count is now k, the k-clique is a
cluster; otherwise it is discarded.

Initially, we extract only maximal clusters. However
all concepts work for general clusters, as long as no



8

cluster is a subset of another. As will be discussed in
more detail below, using non-maximal clusters pro-
vides additional flexibility for users to, for example,
include redundant images. Each cluster contains a
region shared by all images and at least two regions
that are not shared. We call such non-shared regions
fragments:

Definition 3.2 (Fragment): Given a cluster
C = {I1, . . . , In} a fragment FC

Ii
is defined as a

maximal simply connected subset of Ii ∈ C such that
FIi ∩ Ik = ∅, for all i 6= k.

Given a single cluster, a valid seam network divides
the domain according to fragments, as shown in Fig. 8
and 9. Note that boundaries between fragments are
in fact seams between pairs of images. We define the
fragment graph of a cluster as the dual to the seam
network with vertices for each fragment and directed
edges for each seam. The fragment graph is computed
through a walk around the boundary of the cluster
to assemble the oriented polygon of fragments (see
arrows in Fig. 8).

Joined Fragment Graphs: Fragment graphs describe
the seam network of a single cluster. However, to
describe the global seam network, fragment graphs
of neighboring and, more importantly, overlapping
clusters must be combined. The first step is to match
vertices between fragment graphs. For the adjacency
mesh this match was trivial as each vertex uniquely
represented a single image. The fragment graph of
a cluster, however, may contain multiple fragments
of the same image and different clusters in general
contain different fragments of the same image. We say
that two fragments (of the same image) are related if
they share a pixel:

Definition 3.3 (Related): Two fragments Fi, Fj of an
image I are said to be related Fi 7→ Fj if and only
if they share a pixel, i.e. Fi ∩ Fj 6= ∅.

We extend this to an equivalence relation by taking
the transitive closure:

Definition 3.4 (Equivalent): Two fragments Fi, Fj are
equivalent, Fi ∼ Fj , if they are related through
transitive closure, i.e. there exists Fks such that Fi 7→
Fk0
7→ . . . 7→ Fkm

7→ Fj .

Note that, in practice, the transitive closure is the
natural result of computing pairwise overlaps and
successively collapsing all related fragments into a
single vertex. To combine two (or more) fragment
graphs we first identify all equivalent vertices and
collapse them into a representative vertex. Note that
this search is fast and simple since only fragments
of the same image can be related and each fragment
stores its boundary polygon. It is important to point
out that we maintain all edges during this collapse
even those forming two vertex loops. For individual

fragment graphs the most noticeable effect of this
collapse is that they may become “pinched” at vertices
(see Fig. 8(c) and 8(d)). This effectively splits a frag-
ment graph into two (or more) graphs, which splits
the corresponding branching point.

To create the final joined fragment graph we simply
collect all directed edges into a single graph. Given
that all vertices and edges of this graph have a natural
embedding into the plane, or rather the common refer-
ence frame of the panorama, one can uniquely order
the edges around vertices, which creates a well de-
fined planar embedding of the joined fragment graph.
However, in this graph the polygons corresponding to
individual clusters may overlap. More precisely, their
interiors, uniquely defined through their orientation,
intersect. To construct the fragment mesh whose dual
defines a globally consistent seam network, we re-
move these intersections by shortcutting or removing
polygons.

Fragment Mesh: The fragment mesh is constructed
iteratively from the joined fragment graph by adding
individual fragment graphs one by one. Given a cur-
rent fragment mesh M0 and a new fragment graph
FGi we first find their equivalent vertices and if nec-
essary collapse existing vertices in both structures. We
then determine whether the polygon of FGi intersects
with one or multiple faces of M0 and if so subtract
them from FGi. The only exception to this rule are
loops containing only two edges which are always
removed if possible. If the resulting polygon is not
empty, we add the corresponding edges to M0 to form
M1 (see Fig. 8 and 9). Once the final fragment mesh
has been constructed, we compute the seam network
following the Panorama Weaving approach. For each
edge in the mesh, we precompute a pairwise dual
seam tree and combine them into a global network.
As discussed by Summa et al. care must be taken to
produce non-intersecting seams. The resulting struc-
ture provides all the benefits of Panorama Weaving
in terms of speed, flexibility, and quality of the seams
but for virtually arbitrary arrangements of images.

Dynamic Fragment Meshes: One of the key aspects
of our approach is the ability to add, edit, or remove
images interactively as well as to semi-automatically
change the seam network to improve the panorama.
In this context, constructing the fragment mesh from
scratch each time the set of images changes can be-
come computationally expensive. More importantly,
changing the entire fragment mesh would require
recomputing all seams – something not feasible at
interactive rates. Instead, we maintain the set of
fragment graphs for all active clusters as well as
the current fragment mesh. As images are added or
removed, clusters are created or destroyed. In the
former case we first enter the image into the overlap
graph, compute all clusters it participates in, and



9

(a) (b) (c) (d) (e) (f) (g)
Fig. 8. Constructing a fragment mesh as the combination of fragment graphs. (a) A configuration of six images
with the outer fragments highlighted and the corresponding polygon shown on the bottom. (b)-(e) Show the
maximal clusters in this arrangement on top with the corresponding fragment graphs on the bottom. For (c) and
(d) the right fragment graph shows them after collapsing equivalent vertices. (f) The joined fragment graph with
overlapping pieces shown on top and the corresponding fragment mesh shown on the bottom. (g) The final seam
network corresponding to the fragment mesh shown in (f).

(a) (b) (c) (d) (e) (f) (g)

Fig. 9. Hidden images internal to a cluster can be added to the panorama using subclusters. (a) A configuration
of five images including a hidden green image that will not be a part of the initial solution shown on the bottom.
(b)-(f) Using the five 4-clusters instead of the original 5-cluster results in a new fragment mesh containing a
vertex for the hidden images. The middle row shows the individual fragment graphs with their interior colored to
identify their contribution. The bottom row shows the intermediate fragment mesh as fragment graphs are added.
(g) The final fragment mesh and corresponding seam network containing the hidden image.

finally determine whether it supercedes old clusters.
In the latter case we find all clusters containing the
now deleted image, remove them, and add their
appropriate subclusters.

A set of clusters that are impacted by the change
provides us with a set of vertices that might be
affected and ultimately with a set of faces in the
fragment mesh that could change. We remove these
faces and reconstruct the corresponding portion of the
mesh by re-adding the necessary clusters one-by-one
as described above. This also provides us with the
exact list of edges/seams and branching points that
must be updated.

Mesh User Interactions: Once constructed, the frag-
ment mesh replaces the adjacency mesh in Panorama
Weaving and similarly allows adjusting seams, mov-
ing branching points, or splitting faces to split branch-
ing points. One additional degree of freedom is the
ability to force redundant images to appear. It is
quite common to find clusters containing one or
more images that define no fragment, i.e. are entirely
covered by other images of the cluster. In the ini-
tial construction such images will be ignored. In a
fully automated system this is a reasonable choice as
redundant images typically only add seams, which
is likely to increase the energy and computational

cost. However, redundant images may contain or hide
specific scene elements that a user might want to
include in the solution.

Fortunately, as shown in Fig. 9, creating a fragment
mesh to guarantee the inclusion of a desired image
is straightforward. We simply identify the cluster
containing the hidden image and flag it as invalid. By
construction, the algorithm will instead use all maxi-
mal subclusters. We continue this process until at least
one cluster contains a fragment of the hidden image.
This fragment is subsequently tagged to prevent the
mesh construction from deleting it, which guarantees
that portions of that image will appear in the final
panorama. Thus, a number of seams and branching
points are created, providing new handles for the user
to adjust the scene, as demonstrated in Fig. 10.

Streaming Seams: Once the fragment mesh has been
updated, the seams are computed using the Panorama
Weaving technique. Since seam calculations before
interaction were originally a batch process, we will
now detail how to stream and preview its partial seam
solutions for fast and meaningful feedback. Previous
work in scaling this technique to massive images con-
sidered the calculation to be three interleaved parallel
phases [51], see Fig. 11. We will use this same concept
to stream solutions to the user. The three phases are:



10

Fig. 10. Interactive inclusion of a covered image.
(top) The gray image is completely obscured by other
panorama images. It is not initially included in the con-
struction of the fragment graph (valence-5 branching
point). Our new fragment mesh allows users to force an
image’s inclusion. (middle) In this example, a user can
force inclusion of the image with the red car. (bottom)
This provides needed flexibility to allow full exploration
of all possible panoramas for an image set.

(a) computation of pairwise seam branching points
with one per mesh face, (b) seam computation for
edges which are shared between two faces, and (c)
resolution of seam intersections. As each element of
each phase is completed, the solution can be streamed
to the display. To further make the computation as
responsive as possible we divide seams into two
different classes: new seams that must be recomputed
from scratch and seams which have been created be-
fore but are affected by a recent change in registration.
We further divide the latter category into mild and
severe changes in which the new deformation of the
corresponding image pair for a seam differs signifi-
cantly (based on a threshold). The mildly deformed
seams are warped to adjust their geometry according
to the average change in global deformation of its
two corresponding images. For the new and severely
deformed seams, a straight line seam is immediately
computed. Combined, these two operations provide
a reasonable and virtually instantaneous preview of
the updated panorama. Simultaneously, we add all
new seams and seams that must be updated into
a work queue which is asynchronously processed.
Finally, for local manipulations such as a manual
registration adjustment, due to the locality of the seam
calculation, many of the seams of a panorama need
not be recomputed and are simply maintained. For
example, all seams outside the 1-face neighborhood
of an adjusted image’s vertex in the current fragment
mesh need not be recomputed. The preview seam
deformations can also be used to maintain seam edits
while the panorama data is manipulated, see Fig. 12.

(a) (b) (c)

Fig. 11. Panorama Weaving calculations can be
thought as occurring in three interleaved, parallel
phases: (a) branching point and non-shared edge
(boundary) seam calculations, (b) shared edge seam
calculations, (c) intersection resolution. As each ele-
ment in a phase is completed, its results can provide
meaningful feedback to a user. Previews for seams can
be provided while each is computing.

Fig. 12. As images are added to the panorama,
seam previews are instantly available while solutions
are streamed as they are ready. (in-set zooms) User
edits are maintained throughout. The final result (33.5
megapixel, 8 images).

3.2 Gradient Domain Preview

The final step is an approximate gradient domain
solve to perform the color correction [42], [43]. A
coarse solution has been shown in previous work [44]
to be a good approximation to the final color cor-
rection and any problems affecting the panorama at
this stage tend to appear even at this resolution.
With the fast Fourier based solver by Agrawal [3],
[4], this coarse solution can be provided quickly. If
viewing the solution in detail becomes necessary one
could integrate a progressive scheme, such as the one
provided by Summa et al. [44]. In practice, we have
found users prefer to see the original pixel values they
are editing and the solution as an alternative view.

4 PROTOTYPE SYSTEM

In this section we show how the algorithmic contri-
butions discussed previously can be combined with
the state-of-the-art to produce an interactive envi-
ronment for the creation of high quality panoramas.
Our system, for the first time, allows users to create
panoramas image by image (or by groups of images)
while providing immediate feedback on how different
choices may affect the final outcome. In this man-
ner, users can easily determine which images cause
problems and directly interact with the solution at
any stage. Rather than relying on expert users we
provide a number of natural ways to manipulate



11

the registration and seam computation. For example,
users can drag images to possibly re-initialize feature
matching or manipulate the seam configurations and
geometry in a number of ways.

Panorama
Assembly

Feature	Points
&	Matching

Global	Bundle
	Adjustment

Coupled	Bundle
	Adjustment

Add/Remove
Image

Exis�ng	
Seams

New
Seams

Cluster
Detec�on

Fragment	
Graphs

Fragment	Mesh
Assembly

Pairwise
Seam	Energy

Seam
Computa�on

Seam
Warping

Straight	Line
Seams

Approximate
Poisson	Solve

Seam
Constraints

Branchpoint
Spli�ng

Image
Selec�on

Global	
Processing

Local
Processing

Parallel
Process

User
Interac�on

Load/Capture
Image

Reini�alize
Inliners

Manual
Registra�on

Fig. 13. Schematic overview of the panorama work-
flow. We distinguish between global and local pro-
cesses where local processing means that only a sub-
set of the solution must be re-computed. Furthermore,
some stages are parallel and marked with a double
border. Finally, we indicate the different user interac-
tions and which stage of the workflow they manipulate.

An overview of the entire workflow is shown in
Fig. 13. The underlying philosophy is to arrange all
computations in a streaming manner to take advan-
tage of parallel resources and provide fast previews
followed by successive updates until the final solution
is reached. Fig. 13 shows the different compute stages
as boxes where white indicates a standard processing
node acting on the entire panorama and yellow shows
nodes requiring only local computation, e.g. for a re-
cently added image or newly formed seams. Possible
user-interactions are shown in red and a split in the
workflow indicates asynchronous processing loops
typically producing a fast initial approximation while
simultaneously working on a more costly optimal
solution. An annotated screen capture of our user
interface is provided in Fig. 14 (left).

Acquisition and Registration: The workflow starts
with the user loading (an) image(s) which could
either be files in Drag-and-Drop Editing mode or an
acquisition coming from a camera in a wired [52] or
wireless [53] Live Capture session. First, feature points
are computed and matched against those of existing
images. As indicated by the double border, this step
is parallel. As discussed in Sec. 2 we typically do an
all-to-all matching for editing but use a more localized
approach in live mode. The next step is triggered by

Color Correction Preview

Registration Manipulation Widget

Seams

Context-based MenuImage Drawer

Used Image Un-registerable Image Available Image

Fig. 14. (left) Annotated screenshot of our interac-
tive system. (right) When a user selects an image, a
preview of the registration is provided based on the
highest confidence pairwise homography.

the user adding (or removing) (an) image(s) from the
panorama. This can be an automatic addition in a live
session. This causes new pairwise matches to appear,
potentially changing the set of images considered
to be part of the panorama. For the new image(s),
we then find the pairwise homography to the best
matching existing image which we use to display a
ghost image previewing its most likely position (see
Fig. 14 (right)). Subsequently, we start our registration
preview where coupled images are indicated with a
”lock” icon in the pairwise correspondence graph.

In this manner, we provide users with immediate and
intuitive feedback on which images can be usefully
added to a scene and also which might cause the
registration to break, see Fig. 3. Users can also guide
the registration by manually scaling, rotating, or shift-
ing an image similar to what systems like PTGui [5]
and Autopano [6] provide. However, unlike existing
approaches we allow the integration of these con-
straints into the pipeline rather than forcing a switch
to an entirely manual registration. Once a perceived
problem has been corrected the user can either: restart
the bundle adjustment using the current deformation
parameters as the initialization; restart the bundle ad-
justment but re-evaluate the pairwise matches’ inliers
based on the user’s edits; or manually couple images
to preserve their pairwise correspondence.

Bundle adjustment is based on a non-linear optimiza-
tion, well known for being susceptible to local min-
ima. Changing the initialization is useful to guide the
solution out of an undesirable state producing a better
overall registration. Re-evaluating the inliers allows
users to drive which feature matches will be used in
the global optimization. For example, the influence of
smaller features, e.g. street poles, are often trumped
by larger features, e.g. houses, causing obvious arti-
facts. Explicitly creating new inliers can address this
issue and correct such artifacts. Basing these new
inliers on the user’s registration deformation is more
intuitive than the common practice of a user editing
each feature match directly. Finally, manually aligning
and subsequently locking two images is useful where
the proper matches are apparent to an observer but



12

Fig. 15. This work avoids traditional batch thinking and provides new approaches to enable seamless interactive
editing in panorama creation. Here is a challenging collection of images (43.8 megapixel, 18 images) with large
depth variations. (a) There exist few high confidence matches between the second and third row leading to a
poorly registered initial solution. (b) While some artifacts can be hidden via seam editing others remain, such as
the unusual distortion of the bench. (c and d) A facet of our approach enables the user to interactively constrain
the solution by aligning the rock at the upper right corner of the last row to create a realistic panorama. A user can
edit any stage of the panorama pipeline interactively while receiving meaningful feedback on the final solution.

are missed by the automatic match detection, e.g. the
example of Fig. 15. Of course simple transformations
are unlikely to create a perfect alignment between
the two images and thus the lock will also preserve
some error. However, in some cases these artifacts can
be addressed in the subsequent seam computation.
The registration preview is refined by a background
unconstrained bundle adjustment. We avoid the ex-
pensive warping of each image by presenting the user
with an on-the-fly warping via shaders. The boundary
of each image is warped for fragment mesh con-
struction. Although GPU acceleration is available for
some phases of the registration pipeline (e.g. feature
point extraction) for portability the only GPU specific
codes used in our prototype system are simple GLSL
shaders.

Blending: The seam computation starts with the cre-
ation or update of the fragment mesh. As discussed
in [2] users can manipulate the mesh by splitting
branching points, which is equivalent to subdividing
faces of the mesh, or forcing images to appear, which
is equivalent to adding a node to the mesh, see
Fig. 10. The mesh drives the seam calculation using
the Panorama Weaving technique, where users are
given a deformed seam preview if possible. Due to
avoiding a warp of all images after registration, each
image overlap must be deformed ad-hoc as required
by the seam calculation. Although this leads to re-
dundant computation, it avoids the expensive initial
global warping delay. We compute warp and seam en-
ergy via shaders which are interleaved between frame
buffer draws, allowing for quick calculations without
any loss of interactivity to the user. Calculated seams
are streamed to the user as they are ready and the
display is updated. Users can manipulate these seams
as desired. Finally, for every seam update the coarse
Poisson preview is computed and presented to the
user.

External Algorithms: Due to our new workflow, we
can easily integrate an external algorithm into any
stage of the pipeline. For example, there may be
cases where the rotational model is not expressive
enough to provide an artifact-free registration, e.g.
for perspective shifts, and seam placement is not
sufficient to hide the error. With our approach, we can
easily integrate an external algorithm, content-aware
seam carving [54], [55], to help fix these artifacts. The
carving operates on the original, pre-warped pixel
data and is instantly presented inside the panorama,
see Fig. 16.

5 DISCUSSION

The figures and companion video provide real world
examples of datasets produced with our new interac-
tive and versatile approach. All videos and examples
were made on commodity desktop, laptop, and/or
tablet devices and runtimes were measured on our
test system (2.93 GHz i7 CPU with 16 GB of RAM
and a GeForce GTS 240 GPU). The video contains
real-time captures of interactive Drag-and-Drop Editing
sessions on a wide variety of panorama datasets along
with footage of an in-the-field Live Capture session.
The simplicity of our approach appeals to novices,
whereas its expressiveness and flexibility empowers
advanced users. We have presented our prototype
system to both novice and professional photographers
with very positive feedback. The simple interactions
with instant response encouraged users to freely ex-
plore design alternatives.

In this work we have shown how a change in thinking
can lead to a powerful new approach for creating and
editing panoramas. Moreover, we have shown how
to provide high quality registration previews without
constraints on the input data or use of specialized



13

Fig. 16. Our new active workflow can easily integrate
external techniques. (a) Seam carving can be used
to fix localized registration artifacts. (middle) A user
defines a target window on a selected image as input
for carving. (b) Adjusting the height (alternatively the
width) of the target window allows the user to re-align
the rope while maintaining a good registration. (top left)
original panorama (top right) edited panorama (33.6
megapixel, 9 images)

hardware. In addition, we have provided a new, gen-
eral data structure to encode the image and boundary
relations in panoramas along with how to stream a
panorama’s seam computation with meaningful pre-
views in the interim. This new approach can give
users complete control to tailor the final panorama im-
age to their exact preferences. The approach outlined
in this work is still limited by the computationally
expensive image boundaries. Even though Panorama
Weaving provides the best algorithm in this respect,
future work should involve alleviating some of its
overhead. Despite panoramas being the primary ap-
plication for this new approach and techniques, we
feel the lessons and algorithms detailed in this paper
have wide applications in the creation of mosaics. For
example, the new fragment mesh opens avenues of
exploration in interactive editing of photomontages
and the active workflow has future extensions into
areas such as interactive texture synthesis.

REFERENCES

[1] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Soft-
ware Tools, 2000.

[2] B. Summa, J. Tierny, and V. Pascucci, “Panorama weaving:
fast and flexible seam processing,” ACM Trans. Graph., vol. 31,
no. 4, pp. 83:1–83:11, Jul. 2012.

[3] A. K. Agrawal, R. Chellappa, and R. Raskar, “An algebraic
approach to surface reconstruction from gradient fields,” in
ICCV, 2005, pp. I: 174–181.

[4] A. K. Agrawal, R. Raskar, and R. Chellappa, “What is the
range of surface reconstructions from a gradient field?” in
ECCV, 2006, pp. I: 578–591.

[5] PTGui. http://http://www.ptgui.com//.

[6] Kolor. Autopano http://www.kolor.com/.

[7] R. Szeliski, “Image alignment and stitching: a tutorial,” Found.
Trends. Comput. Graph. Vis., vol. 2, no. 1, pp. 1–104, Jan. 2006.

[8] ——, Computer Vision: Algorithms and Applications, 1st ed. New
York, NY, USA: Springer-Verlag New York, Inc., 2010.

[9] M. Brown and D. G. Lowe, “Automatic panoramic image
stitching using invariant features,” Int. J. Comput. Vision,
vol. 74, no. 1, pp. 59–73, Aug. 2007.

[10] D. G. Lowe, “Object recognition from local scale-invariant fea-
tures,” in Proceedings of the International Conference on Computer
Vision-Volume 2 - Volume 2, ser. ICCV ’99, 1999, pp. 1150–.

[11] M. A. Fischler and R. C. Bolles, “Random sample consensus: a
paradigm for model fitting with applications to image analysis
and automated cartography,” Commun. ACM, vol. 24, no. 6, pp.
381–395, Jun. 1981.

[12] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon,
“Bundle adjustment - a modern synthesis,” in Proceedings of the
IWVA: Theory and Practice, ser. ICCV ’99, 2000, pp. 298–372.

[13] H. Y. Shum and R. S. Szeliski, “Construction of panoramic
image mosaics with global and local alignment,” IJCV, vol. 36,
no. 2, pp. 101–130, Feb. 2000.

[14] H. Sawhney and R. Kumar, “True multi-image alignment and
its application to mosaicing and lens distortion correction,” in
Proceedings of the 1997 CVPR, ser. CVPR ’97, 1997, pp. 450–.

[15] S. Coorg and S. Teller, “Spherical mosaics with quaternions
and dense correlation,” IJCV, vol. 37, no. 3, pp. 259–273, Jun.
2000.

[16] S. Agarwal, N. Snavely, S. M. Seitz, and R. Szeliski, “Bundle
adjustment in the large,” in Proceedings of the 11th European
conference on Computer vision: Part II, ser. ECCV’10, 2010, pp.
29–42.

[17] K. Ni, D. Steedly, and F. Dellaert, “Out-of-core bundle adjust-
ment for large-scale 3D reconstruction,” in ICCV, 2007, pp.
1–8.

[18] N. Snavely, S. M. Seitz, and R. S. Szeliski, “Skeletal graphs for
efficient structure from motion,” in CVPR, 2008, pp. 1–8.

[19] D. Steedly, I. A. Essa, and F. Dellaert, “Spectral partitioning
for structure from motion,” in ICCV, 2003, pp. 996–1003.

[20] E. Mouragnon, M. Lhuillier, M. Dhome, F. Dekeyser, and
P. Sayd, “Generic and real-time structure from motion using
local bundle adjustment,” Image and Vision Computing, vol. 27,
no. 8, pp. 1178–1193, Jul. 2009.

[21] ——, “Real time localization and 3d reconstruction,” in Pro-
ceedings of the 2006 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition - Volume 1, ser. CVPR ’06,
2006, pp. 363–370.

[22] C. Engels, H. Stewénius, and D. Nistér, “Bundle adjustment
rules,” in Photogrammetric Computer Vision (PCV), Sep. 2006.

[23] Z. Zhang and Y. Shan, “Incremental motion estimation
through modified bundle adjustment,” in Image Processing,
2003. ICIP 2003. Proceedings. 2003 International Conference on,
vol. 2, sept. 2003, pp. II – 343–6 vol.3.

[24] K. Konolige, “Sparse sparse bundle adjustment,” in British
Machine Vision Conference, Aberystwyth, Wales, 08/2010 2010.

[25] H. S. Sawhney, S. Hsu, and R. Kumar, “Robust video mosaic-
ing through topology inference and local to global alignment,”
in Proceedings of the 5th European Conference on Computer Vision-
Volume II - Volume II, ser. ECCV ’98, 1998, pp. 103–119.

[26] H. S. Sawhney and R. Kumar, “True multi-image alignment
and its application to mosaicing and lens distortion correc-
tion,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 21, no. 3, pp.
235–243, Mar. 1999.



14

[27] M. Brown and D. G. Lowe, “Recognising panoramas,” in Pro-
ceedings of the Ninth IEEE International Conference on Computer
Vision - Volume 2, ser. ICCV ’03, 2003, pp. 1218–.

[28] C. Zach, M. Klopschitz, and M. Pollefeys, “Disambiguating
visual relations using loop constraints,” in CVPR, 2010, pp.
1426–1433.

[29] M. Kourogi, T. Kurata, and K. Sakaue., “A panorama-based
method of personal positioning and orientation and its real-
time applications for wearable computers,” in Proceedings of
the 5th IEEE International Symposium on Wearable Computers,
ser. ISWC ’01, 2001, pp. 107–.

[30] H. S. Sawhney, A. Arpa, R. Kumar, S. Samarasekera, M. Ag-
garwal, S. Hsu, D. Nister, and K. Hanna, “Video flashlights:
real time rendering of multiple videos for immersive model
visualization,” in Proceedings of the 13th Eurographics workshop
on Rendering, ser. EGRW ’02, 2002, pp. 157–168.

[31] A. Agarwala, K. C. Zheng, C. Pal, M. Agrawala, M. Cohen,
B. Curless, D. Salesin, and R. Szeliski, “Panoramic video
textures,” ACM Trans. Graph., vol. 24, no. 3, pp. 821–827, Jul.
2005.

[32] A. Rav-Acha, Y. Pritch, D. Lischinski, and S. Peleg, “Dy-
namosaics: Video mosaics with non-chronological time,” in
Proceedings of the 2005 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR’05) - Volume 1
- Volume 01, ser. CVPR ’05, 2005, pp. 58–65.

[33] A. Adams, N. Gelfand, and K. Pulli, “Viewfinder alignment,”
Comput. Graph. Forum, vol. 27, no. 2, pp. 597–606, 2008.

[34] G. Klein and D. W. Murray, “Parallel tracking and mapping
on a camera phone,” in ISMAR, G. Klinker, H. Saito, and
T. Höllerer, Eds. IEEE Computer Society, 2009, pp. 83–86.

[35] J. Jia and C.-K. Tang, “Eliminating structure and intensity
misalignment in image stitching,” in Proceedings of the Tenth
IEEE International Conference on Computer Vision - Volume 2,
ser. ICCV ’05, 2005, pp. 1651–1658.

[36] ——, “Image stitching using structure deformation,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 30, no. 4, pp. 617–631,
Apr. 2008.

[37] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller,
L. Pereira, M. Ginzton, S. E. Anderson, J. Davis, J. Ginsberg,
J. Shade, and D. Fulk, “The digital michelangelo project: 3D
scanning of large statues,” in SIGGRAPH, 2000, pp. 131–144.

[38] Y. Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate
energy minimization via graph cuts,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 23, no. 11, pp. 1222–1239,
Nov. 2001.

[39] Y. Boykov and V. Kolmogorov, “An experimental comparison
of min-cut/max-flow algorithms for energy minimization in
vision,” IEEE Trans. Pattern Anal. Mach. Intell, vol. 26, no. 9,
pp. 1124–1137, 2004.

[40] V. Kwatra, A. Schödl, I. Essa, G. Turk, and A. Bobick, “Graph-
cut textures: Image and video synthesis using graph cuts,”
ACM Trans. Graph, vol. 22, no. 3, pp. 277–286, July 2003.

[41] A. Agarwala, M. Dontcheva, M. Agrawala, S. M. Drucker,
A. Colburn, B. Curless, D. Salesin, and M. F. Cohen, “Interac-
tive digital photomontage,” ACM Trans. Graph, vol. 23, no. 3,
pp. 294–302, 2004.

[42] P. Pérez, M. Gangnet, and A. Blake, “Poisson image editing,”
ACM Trans. Graph, vol. 22, no. 3, pp. 313–318, 2003.

[43] A. Levin, A. Zomet, S. Peleg, and Y. Weiss, “Seamless image
stitching in the gradient domain,” in ECCV, 2004, pp. Vol IV:
377–389.

[44] B. Summa, G. Scorzelli, M. Jiang, P.-T. Bremer, and V. Pascucci,
“Interactive editing of massive imagery made simple: Turning
atlanta into atlantis,” ACM Trans. Graph., vol. 30, no. 2, pp. 7:1–
7:13, Apr. 2011.

[45] P. Baudisch, D. S. Tan, D. Steedly, E. Rudolph, M. Uyttendaele,
C. Pal, and R. Szeliski, “Panoramic viewfinder: providing a
real-time preview to help users avoid flaws in panoramic
pictures,” in OZCHI, 2005.

[46] ——, “An exploration of user interface designs for real-time
panoramic,” Australasian J. of Inf. Systems, vol. 13, no. 2, 2006.

[47] A. Boukerche and R. W. N. Pazzi, “Remote rendering and
streaming of progressive panoramas for mobile devices,” in
Proceedings of the 14th annual ACM international conference on
Multimedia, ser. MULTIMEDIA ’06, 2006, pp. 691–694.

[48] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: speeded up
robust features,” in Proceedings of the 9th European conference
on Computer Vision - Volume Part I, ser. ECCV’06, 2006, pp.
404–417.

[49] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: An
efficient alternative to sift or surf,” in Proceedings of the 2011
International Conference on Computer Vision, ser. ICCV ’11, 2011,
pp. 2564–2571.

[50] R. Hartley and A. Zisserman, Multiple view geometry in com-
puter vision. New York, NY, USA: Cambridge University
Press, 2000.

[51] S. Philip, B. Summa, J. Tierny, P.-T. Bremer, and V. Pascucci,
“Scalable seams for gigapixel panoramas,” in Proceedings of the
2013 Eurographics Symposium on Parallel Graphics and Visualiza-
tion, May 2013, pp. 25–32.

[52] libgphoto2. http://gphoto.sourceforge.net/.

[53] Eye-fi. http://www.kolor.com/.

[54] S. Avidan and A. Shamir, “Seam carving for content-aware
image resizing,” ACM Transactions on Graphics, (Proceedings
SIGGRAPH 2007), vol. 26, no. 3, 2007.

[55] M. Rubinstein, A. Shamir, and S. Avidan, “Improved seam
carving for video retargeting,” ACM Transactions on Graphics,
(Proceedings SIGGRAPH 2008), vol. 27, no. 3, 2008.


