Recursion in circuit description languages

Bert Lindenhovius, Michael Mislove and Vladimir Zamdzhiiev

Department of Computer Science
Tulane University

March 8, 2019
Proto-Quipper-M

- We will consider several variants of a functional programming language called Proto-Quipper-M (renamed to ECLNL in our LICS paper).
 - We wanted to emphasize its dependence on enrichment in the name.
Proto-Quipper-M

- We will consider several variants of a functional programming language called *Proto-Quipper-M* (renamed to ECLNL in our LICS paper).
 - We wanted to emphasize its dependence on enrichment in the name.

- Original language developed by Francisco Rios and Peter Selinger.

- Language is equipped with formal denotational and operational semantics.

- Primary application is in quantum computing, its purpose is to generate quantum circuits, but the language can describe arbitrary string diagrams.

- Original model does not support general recursion.
Overview of this talk

Part 1 Extending the language with general recursion.
 • Soundness result;
 • Adequacy result for the fragment of the language without circuits;

Part 2 Extending the fragment without circuits with recursive types;
 • The resulting language can be regarded as a linear/non-linear extension of FPC;
 • Soundness and adequacy results.

Part 3 The quest for a suitable concrete category for quantum computing.
PQM/ECLNL is used to describe families of morphisms of an arbitrary, but fixed, symmetric monoidal category, which we denote M.

Example
If $M = \text{FdCStar}$, the category of finite-dimensional C^*-algebras and completely positive maps, then a program in our language is a family of quantum circuits.

Example
M could also be a category of string diagrams which is freely generated.
Circuit Model

Example

Shor’s algorithm for integer factorization may be seen as an infinite family of quantum circuits – each circuit is a procedure for factorizing an n-bit integer, for a fixed n.

Figure: Quantum Fourier Transform on n qubits (subroutine in Shor’s algorithm).1

1Figure source: https://commons.wikimedia.org/w/index.php?curid=14545612
Syntax of ECLNL calculus

The types of the language:

Types

\[A, B ::= \alpha | 0 | A + B | I | A \otimes B | A \rightarrow B | !A | \text{Circ}(T, U) \]

Intuitionistic types

\[P, R ::= 0 | P + R | I | P \otimes R | !A | \text{Circ}(T, U) \]

M-types

\[T, U ::= \alpha | I | T \otimes U \]

The term language:

Terms

\[M, N ::= x | I | c | \text{let } x = M \text{ in } N \]

\[| \square_A M | \text{left}_{A,B} M | \text{right}_{A,B} M | \text{case } M \text{ of } \{\text{left } x \rightarrow N | \text{right } y \rightarrow P\} \]

\[| * | M; N | \langle M, N \rangle | \text{let } \langle x, y \rangle = M \text{ in } N | \lambda x^A.M | MN \]

\[| \text{lift } M | \text{force } M | \text{box}_T M | \text{apply}(M, N) | (\bar{I}, C, \bar{V}) \]
Our approach

- Describe an *abstract* categorical model for the same language.
- Describe an abstract categorical model for the language extended with recursion.

Related work: Rennela and Staton describe a different circuit description language, called EWire (based on QWire), where they also use enriched category theory.
Linear/Non-Linear models

A Linear/Non-Linear (LNL) model as described by Benton is given by the following data:

- A cartesian closed category V.
- A symmetric monoidal closed category C.
- A symmetric monoidal adjunction:

$$V \dashv C$$

Remark

An LNL model is a model of Intuitionistic Linear Logic.

Nick Benton. A mixed linear and non-linear logic: Proofs, terms and models. CSL’94
Models of the Enriched Effect Calculus

A model of the Enriched Effect Calculus (EEC) is given by the following data:

- A cartesian closed category \mathcal{V}, enriched over itself.

- A \mathcal{V}-enriched category \mathcal{C} with powers, copowers, finite products and finite coproducts.

- A \mathcal{V}-enriched adjunction:

$$
\begin{array}{ccc}
\mathcal{V} & \xrightarrow{F} & \mathcal{C} \\
\downarrow & & \downarrow \\
\downarrow & & \downarrow \\
\mathcal{C} & \xleftarrow{G} & \mathcal{V}
\end{array}
$$

Theorem

Every LNL model with additives determines an EEC model.

An abstract model for ECLNL

A model of ECLNL is given by the following data:

1. A cartesian closed category \mathbf{V} together with its self-enrichment \mathbf{V}, such that \mathbf{V} has finite \mathbf{V}-coproducts.

2. A \mathbf{V}-symmetric monoidal closed category \mathbf{C} with underlying category \mathbf{C} such that \mathbf{C} has finite \mathbf{V}-coproducts.

3. A \mathbf{V}-symmetric monoidal adjunction: $\mathbf{V} \xrightarrow{\perp} \mathbf{C}$, where $(- \odot I)$ denotes the \mathbf{V}-copower of the tensor unit in \mathbf{C}.

4. A symmetric monoidal category \mathbf{M} and a strong symmetric monoidal functor $E : \mathbf{M} \to \mathbf{C}$.

Theorem: Ignoring condition 4, an LNL model canonically induces a model of ECLNL.
Copying and discarding of intuitionistic types

\[\vdash C \leftarrow \neg \otimes I \]
\[C(\neg, -) \]

In PQM, any type \(A \) is interpreted as an object \([A]\) in the underlying category \(C \). Terms are interpreted as morphisms in \(C \).

Theorem

For any intuitionistic type \(P \), there exists a canonical isomorphism \(\alpha_P : [P] \to F(P) \).

Next, define copy and discard morphisms for each intuitionistic type \(P \):

\[\diamond_P := [P] \xrightarrow{\alpha_P} F(P) \xrightarrow{F1} F1 \xrightarrow{\cong} I \]

\[\Delta_P := [P] \xrightarrow{\alpha_P} F(P) \xrightarrow{F(id,id)} F((P) \times (P)) \xrightarrow{\cong} F(P) \otimes F(P) \xrightarrow{\alpha_P^{-1} \otimes \alpha_P^{-1}} [P] \otimes [P] \]
Soundness

Theorem (Soundness)

Every abstract model of ECLNL is computationally sound.
Concrete models of ECLNL

The original Proto-Quipper-M model is given by the LNL model: ²

²Thanks to Sam Staton for asking why do we need the Fam construction for this.
Concrete models of ECLNL

The original Proto-Quipper-M model is given by the LNL model: \(^2\) A simpler model for the same language is given by: where in both cases \(\mathcal{C} = [\mathcal{M}^{\text{op}}, \mathsf{Set}]\).

\(^2\)Thanks to Sam Staton for asking why do we need the \textbf{Fam} construction for this.
Concrete models of the base language (contd.)

Fix an arbitrary symmetric monoidal category \mathcal{M}. Equipping \mathcal{M} with the free CPO-enrichment yields another concrete (order-enriched) ECLNL model: where $\mathcal{C} = [\mathcal{M}^{\text{op}}, \text{CPO}]$.
Recursion

Extend the syntax:

\[
\frac{\Phi, x : !A; \emptyset \vdash m : A}{\Phi; \emptyset \vdash \text{rec } x^{!A} m : A} \quad (\text{rec})
\]

Extend the operational semantics:

\[
(C, m[y \leftarrow \text{lift rec } x^{!A} m/x]) \downarrow (C', v) \\
(C, \text{rec } x^{!A} m) \downarrow (C', v)
\]
Abstract model with recursion?

Definition
An endofunctor $T : \mathbf{C} \to \mathbf{C}$ is parametrically algebraically compact, if for every $A \in \text{Ob}(\mathbf{C})$, the endofunctor $A \otimes T(\cdot)$ has an initial algebra and a final coalgebra whose carriers coincide.

Theorem
A categorical model of a linear/non-linear lambda calculus extended with recursion is given by an LNL model:

$$
\begin{array}{c}
\text{V} \\
\downarrow \quad F \\
\text{C}
\end{array}
\quad
\begin{array}{c}
\quad C \\
\downarrow G \\
\text{V}
\end{array}
$$

where FG (or equivalently GF) is parametrically algebraically compact 3.

3Benton & Wadler. Linear logic, monads and the lambda calculus. LiCS’96.
ECLNL extended with general recursion

Definition
A categorical model of ECLNL extended with general recursion is given by a model of ECLNL, where in addition:

5. The comonad endofunctor:

\[\mathcal{V} \xrightarrow{\perp} C, \]

is parametrically algebraically compact.
Soundness

Theorem (Soundess)

Every model of ECLNL extended with recursion is computationally sound.
Concrete model of ECLNL extended with recursion

Let M_* be the free $\text{CPO}_\bot !$-enrichment of M and $\overline{M}_* = [M_*^\text{op}, \text{CPO}_\bot !]$ be the associated enriched functor category.

Remark

If $M = 1$, then the above model degenerates to the left vertical adjunction, which is a model of a LNL lambda calculus with general recursion.
Computational adequacy

Theorem
The following LNL model:

\[
\begin{array}{c}
\bot & \cdots & CPO \\
\downarrow & \cdots & \downarrow \\
\bot & \cdots & CPO_\bot!
\end{array}
\]

is computationally adequate at intuitionistic types for the circuit-free fragment of ECLNL.
Recursive types

- The models for Proto-Quipper-M in the previous part seem to support recursive types.
- Main difficulty is on the denotational side.
- How can we copy/discard intuitionistic recursive types?
 - A list of qubits should be linear – cannot copy/discard.
 - A list of natural numbers should be intuitionistic – can implicitly copy/discard.
- For the rest of the talk we focus on the linear/non-linear type structure.
- Recall FPC, a language with coproducts, products, exponentials, and recursive types. How do we design a linear/non-linear FPC?
Adding Recursive Types

Type Variables

Types

Intuitionistic types

Remark

• These types are accompanied by some formation rules, which we omit.
• We use the same type variable for both intuitionistic and general (both linear and intuitionistic) types.
Some useful recursive types

Example
Nat ≡ µX.l + X (intuitionistic)

Example
List Nat ≡ µX.l + X ⊗ Nat (intuitionistic)

Example
List Qubit ≡ µX.l + X ⊗ Qubit (linear)

Example
Stream Qubit ≡ µX.l ⊸ (X ⊗ Qubit) (linear)

Example
Stream Nat ≡ µX.!(X ⊗ Nat) (intuitionistic)
We previously extended PQM with a recursion operator:

\[
\Phi, x : !A; \emptyset \vdash m : A \\
\Phi; \emptyset \vdash \text{rec } x^{!A} m : A
\]

(rec)

Moreover, we extended the operational semantics:

\[
(C, m[\text{lift rec } x^{!A} m/x]) \Downarrow (C', \nu) \\
(C, \text{rec } x^{!A} m) \Downarrow (C', \nu)
\]
Term level recursion

In FPC, a term-level recursion operator may be defined using fold/unfold maps. The same is true for our language.

Theorem

The term-level recursion operator for PQM4 is now a derived rule. For a given term $\Phi, z :!A \vdash m : A$, define:

$$\alpha_m^z \equiv \text{lift fold } \lambda x^{!\mu X.(!X \rightarrow A)}.(\lambda z^{!A}.m)(\text{lift (unfold force } x) x)$$

$$\text{rec } z^{!A}.m \equiv (\text{unfold force } \alpha_m^z)\alpha_m^z$$

4Bert Lindenhovius, Michael Mislove, Vladimir Zamdzhiev: Enriching a Linear/Non-linear Lambda Calculus: A Programming Language for String Diagrams. LICS 2018
Embedding-projection pairs

Problem: How do we interpret recursive types which also contain ! and \(\circ\)?

Textbook Solution: CPO-enrichment and embedding-projection pairs.

Definition
Given a CPO-enriched category \(\mathcal{C} \), an *embedding-projection* pair is a pair of morphisms \(e : A \to B \) and \(p : B \to A \), such that \(p \circ e = \text{id} \) and \(e \circ p \leq \text{id} \).

Theorem
If \(e \) is an embedding, then it has a unique projection, which we denote \(e^ \).*

Definition
The subcategory of \(\mathcal{C} \) with the same objects, but whose morphisms are embeddings is denoted \(\mathcal{C}_e \).
Interpretation of recursive types

In PQM, any type A is interpreted as an object $\llbracket A \rrbracket \in C$. If we equip the language with recursive types, expressions as $\Theta \vdash A$ will be interpreted as functors $\llbracket \Theta \vdash A \rrbracket : C^n \to C$ for some suitable category C. Interpreting (closed) recursive types amounts to finding initial (final) (co)algebras of endofunctors induced by these functors.

Lemma (Adámek)

Let C be a category with an initial object \emptyset and let $T : C \to C$ be an endofunctor. Assume further that the following ω-diagram

$$
\emptyset \overset{\iota}{\to} T\emptyset \overset{T\iota}{\to} T^2\emptyset \overset{T^2\iota}{\to} \cdots
$$

has a colimit and T preserves it. Then, the induced isomorphism is the initial T-algebra.

Corollary

In a symmetric monoidal closed category with finite coproducts and ω-colimits, any endofunctor composed from constants, \otimes and $+$ has an initial algebra.
Interpretation of recursive types (contd.)

Theorem (Smyth and Plotkin)

If \(T : \mathbf{C} \to \mathbf{D} \) is a \(\mathbf{CPO} \)-enriched functor and \(\mathbf{C} \) has \(\omega \)-colimits, then \(T \) preserves \(\omega \)-colimits of embeddings. In other words, the restriction \(T_e : \mathbf{C}_e \to \mathbf{D}_e \) is \(\omega \)-continuous.

Theorem

In our categorical model, any \(\mathbf{CPO} \)-endofunctor \(T : \mathbf{C} \to \mathbf{C} \) has an initial \(T \)-algebra, whose inverse is a final \(T \)-coalgebra.

Remark

The above theorem follows directly from results in Fiore’s PhD thesis.
A **CPO**-enriched model

1. A **CPO**-symmetric monoidal closed category \mathcal{C} such that \mathcal{C} has finite **CPO**-coproducts.
2. A **CPO**-symmetric monoidal adjunction:

\[
\begin{array}{ccc}
\mathcal{CPO} & \xrightarrow{\perp} & \mathcal{C}, \\
\downarrow & & \downarrow \\
\mathcal{C}(I, -) & &
\end{array}
\]

3. The category \mathcal{C} is **CPO**$_{\perp I}$-enriched and has ω-colimits.

Remark

1. and 3. imply \mathcal{C} has a zero object and we can solve recursive domain equations.
Recursive types for PQM

Using the data from our categorical model:

Using the data from our categorical model:

\[\text{CPO} \xrightarrow{F} \text{C} \xleftarrow{G} \]

we may solve all required recursive domain equations and interpret all required type expressions \(\Theta \vdash A \) as functors \(\llbracket \Theta \vdash A \rrbracket : \text{C}_e^n \rightarrow \text{C}_e \).

Remark

This follows easily using well-known results from the literature.

Problem: How do we copy/discard the (recursive) intuitionistic types?
Pre-embeddings

Definition
Given two CPO-enriched categories \mathcal{C} and \mathcal{D} and a CPO-functor $T : \mathcal{C} \to \mathcal{D}$, a \textit{pre-embedding} in \mathcal{C} w.r.t T is a morphism $f \in \mathcal{C}$, s.t. Tf is an embedding in \mathcal{D}.

Definition
Let CPO_{pe} be the subcategory of CPO with the same objects, but whose morphisms are pre-embeddings w.r.t F in our model.

Example
Every embedding in CPO is a pre-embedding, but not vice versa. The empty map $\iota : \emptyset \to X$ is a pre-embedding (w.r.t to F in our model), but not an embedding.
Copying and discarding?

Recall that in PQM with basic types, the basis for copying and discarding is given by the canonical iso (for P intuitionistic):

$$\alpha_P : [[P]] \cong F(P)$$

Problem: How do we generalise this to work with recursive types, where the interpretation of a type is now a functor?
Interpreting intuitionistic types

Theorem

For any intuitionistic type $\Theta \vdash P$ with $n = |\Theta|$, we can find an ω-continuous functor $(\Theta \vdash P) : \text{CPO}^n_{pe} \to \text{CPO}_{pe}$, and moreover a natural isomorphism

$$\alpha_{\Theta \vdash P} : [\Theta \vdash P] \circ F^\times n \Rightarrow F \circ (\Theta \vdash P)$$

diagrammatically (with upper left corner C^n_{ne}, and upper right corner C_e):
Concrete model

Let M_* be the free $\text{CPO}_{\bot!}$-enrichment of M and $\overline{M}_* = [M_*^{\text{op}}, \text{CPO}_{\bot!}]$ be the associated enriched functor category.

![Diagram]

Remark

If $M = 1$, then the above model degenerates to the left vertical adjunction, which is a model of FPC.
Computational soundness and adequacy

Theorem
The proposed model is computationally sound.

Theorem
The proposed model is computationally adequate at intuitionistic types.
Issues/future work

- Is it possible to work abstractly instead of enriching over cpo’s?
- Dependent types?
- No recursive types yet for the language with circuits;
 - Soundness is likely not a problem, but adequacy is;
 - Issue lies in that the tensor product does not reflect the order;
 - Fundamental issue that our method does not work if M has more than one scalar;
 - Working with the Day tensor does not make life easier.
A category of quantum computing

Consider the framework of a model for PQM with M the category of finite-dimensional algebras:

$$
\begin{aligned}
V & \vdash C \cdot - \otimes I \\
& \downarrow \quad \downarrow \\
V & \quad C(I,-)
\end{aligned}
$$

We aim to find a concrete category C of quantum computing in terms of operators on a Hilbert space for the following reasons:

- Operators on Hilbert spaces are used by physicists to interpret quantum physics;
A category of quantum computing

Consider the framework of a model for PQM with \mathbf{M} the category of finite-dimensional algebras:

\[
\begin{array}{ccc}
\text{V} & \xrightarrow{\mathbf{C}(I, -)} & \text{C} \\
\downarrow & \circ & \downarrow \\
\bot & \circ & \bot \\
\end{array}
\]

We aim to find a concrete category \mathbf{C} of quantum computing in terms of operators on a Hilbert space for the following reasons:

- Operators on Hilbert spaces are used by physicists to interpret quantum physics;
- No longer dealing with the Day tensor, which is complicated;
A category of quantum computing

Consider the framework of a model for PQM with \mathbf{M} the category of finite-dimensional algebras:

$$
\begin{array}{ccc}
\mathcal{V} & \xrightarrow{\perp} & \mathcal{C} \\
\downarrow \quad \downarrow \quad \downarrow \\
\mathcal{C}(I,-) & \quad & \\
\end{array}
$$

We aim to find a concrete category \mathbf{C} of quantum computing in terms of operators on a Hilbert space for the following reasons:

- Operators on Hilbert spaces are used by physicists to interpret quantum physics;
- No longer dealing with the Day tensor, which is complicated;
- A concrete category might allow us to adding dynamic lifting, i.e., including the execution of the quantum circuits;
A category of quantum computing

Consider the framework of a model for PQM with M the category of finite-dimensional algebras:

\[V \quad \bot \quad C \]

\[\text{C}(I, -) \]

We aim to find a concrete category C of quantum computing in terms of operators on a Hilbert space for the following reasons:

- Operators on Hilbert spaces are used by physicists to interpret quantum physics;
- No longer dealing with the Day tensor, which is complicated;
- A concrete category might allow us to adding dynamic lifting, i.e., including the execution of the quantum circuits;
- Which might allow us to use a different concept of adequacy, namely a probabilistic version for the language with circuits;
A category of quantum computing

Consider the framework of a model for PQM with \mathbf{M} the category of finite-dimensional algebras:

We aim to find a concrete category \mathbf{C} of quantum computing in terms of operators on a Hilbert space for the following reasons:

- Operators on Hilbert spaces are used by physicists to interpret quantum physics;
- No longer dealing with the Day tensor, which is complicated;
- A concrete category might allow us to adding dynamic lifting, i.e., including the execution of the quantum circuits;
- Which might allow us to use a different concept of adequacy, namely a probabilistic version for the language with circuits;
- Such a concrete category might also support subtyping.
The type of a qubit

- Pure states: $\alpha|0\rangle + \beta|1\rangle$ with $\alpha, \beta \in \mathbb{C}$ and where $\{|0\rangle, |1\rangle\}$ is an orthonormal basis for \mathbb{C}^2;
The type of a qubit

• Pure states: \(\alpha |0\rangle + \beta |1\rangle \) with \(\alpha, \beta \in \mathbb{C} \) and where \(\{|0\rangle, |1\rangle\} \) is an orthonormal basis for \(\mathbb{C}^2 \);

• (Mixed) states of qubits correspond to density matrices in \(M_2(\mathbb{C}) \);
The type of a qubit

- Pure states: \(\alpha|0\rangle + \beta|1\rangle \) with \(\alpha, \beta \in \mathbb{C} \) and where \(\{|0\rangle, |1\rangle\} \) is an orthonormal basis for \(\mathbb{C}^2 \);
- (Mixed) states of qubits correspond to density matrices in \(\mathbb{M}_2(\mathbb{C}) \);
- Observables correspond to hermitian matrices in \(\mathbb{M}_2(\mathbb{C}) \);
The type of a qubit

- Pure states: $\alpha|0\rangle + \beta|1\rangle$ with $\alpha, \beta \in \mathbb{C}$ and where $\{|0\rangle, |1\rangle\}$ is an orthonormal basis for \mathbb{C}^2;
- (Mixed) states of qubits correspond to density matrices in $M_2(\mathbb{C})$;
- Observables correspond to hermitian matrices in $M_2(\mathbb{C})$;
The type of a qubit

- Pure states: $\alpha |0\rangle + \beta |1\rangle$ with $\alpha, \beta \in \mathbb{C}$ and where $\{|0\rangle, |1\rangle\}$ is an orthonormal basis for \mathbb{C}^2;
- (Mixed) states of qubits correspond to density matrices in $\mathbb{M}_2(\mathbb{C})$;
- Observables correspond to hermitian matrices in $\mathbb{M}_2(\mathbb{C})$;

This suggest to assign $\mathbb{M}_2(\mathbb{C})$ to the type of a qubit.
Finite-dimensional complex algebras

- The type of a combined system of n qubits is $\bigotimes_{i=1}^{n} M_2(\mathbb{C}) \cong M_{2^n}(\mathbb{C})$;
Finite-dimensional complex algebras

- The type of a combined system of n qubits is $\bigotimes_{i=1}^{n} M_2(\mathbb{C}) \cong M_{2^n}(\mathbb{C})$;
- Hence a category \mathcal{M} whose objects are the quantum types should contain the complex matrix algebras;
Finite-dimensional complex algebras

- The type of a combined system of n qubits is $\bigotimes_{i=1}^{n} M_2(\mathbb{C}) \cong M_{2^n}(\mathbb{C})$;
- Hence a category \mathcal{M} whose objects are the quantum types should contain the complex matrix algebras;
- Type of conditional branching of systems with types A and B: the direct sum $A \oplus B$.
Finite-dimensional complex algebras

• The type of a combined system of n qubits is $\bigotimes_{i=1}^{n} M_2(\mathbb{C}) \cong M_{2^n}(\mathbb{C})$;
• Hence a category \mathcal{M} whose objects are the quantum types should contain the complex matrix algebras;
• Type of conditional branching of systems with types A and B: the direct sum $A \oplus B$.
• Hence it is reasonable to take \mathcal{M} to be the category of finite-dimensional complex algebras.
Finite-dimensional complex algebras

- The type of a combined system of n qubits is $\bigotimes_{i=1}^{n} M_2(C) \cong M_{2^n}(C)$;
- Hence a category \mathcal{M} whose objects are the quantum types should contain the complex matrix algebras;
- Type of conditional branching of systems with types A and B: the direct sum $A \oplus B$.
- Hence it is reasonable to take \mathcal{M} to be the category of finite-dimensional complex algebras.
Finite-dimensional complex algebras

- The type of a combined system of n qubits is $\bigotimes_{i=1}^{n} M_2(\mathbb{C}) \cong M_{2^n}(\mathbb{C})$;
- Hence a category \mathcal{M} whose objects are the quantum types should contain the complex matrix algebras;
- Type of conditional branching of systems with types A and B: the direct sum $A \oplus B$.
- Hence it is reasonable to take \mathcal{M} to be the category of finite-dimensional complex algebras.

\mathcal{M} is monoidal closed. Yet we do not want to take $\mathcal{C} = \mathcal{M}$, because \mathcal{M} has no infinite types such as
- natural number type;
- streams.
Finite-dimensional complex algebras

- The type of a combined system of n qubits is $\bigotimes_{i=1}^{n} M_2(\mathbb{C}) \cong M_{2^n}(\mathbb{C})$;
- Hence a category \mathcal{M} whose objects are the quantum types should contain the complex matrix algebras;
- Type of conditional branching of systems with types A and B: the direct sum $A \oplus B$.
- Hence it is reasonable to take \mathcal{M} to be the category of finite-dimensional complex algebras.

\mathcal{M} is monoidal closed. Yet we do not want to take $\mathcal{C} = \mathcal{M}$, because \mathcal{M} has no infinite types such as
 - natural number type;
 - streams.
Moreover, there does not seem to be an adjunction between Set and \mathcal{M}.
A quantum system can be represented by a Hilbert space H, where
- observables are represented by hermitian operators $a : H \to H$;
The Hilbert space framework

A quantum system can be represented by a Hilbert space H, where

- observables are represented by hermitian operators $a : H \rightarrow H$;
- states are represented by density operators $d : H \rightarrow H$;
The Hilbert space framework

A quantum system can be represented by a Hilbert space H, where

- observables are represented by hermitian operators $a : H \to H$;
- states are represented by density operators $d : H \to H$;
- the expectation value of measuring the observable a when the system is in the state d equals $\text{Tr}(ad)$.
A quantum system can be represented by a Hilbert space H, where

- observables are represented by hermitian operators $a : H \to H$;
- states are represented by density operators $d : H \to H$;
- the expectation value of measuring the observable a when the system is in the state d equals $\text{Tr}(ad)$.
The Hilbert space framework

A quantum system can be represented by a Hilbert space H, where

- observables are represented by hermitian operators $a : H \to H$;
- states are represented by density operators $d : H \to H$;
- the expectation value of measuring the observable a when the system is in the state d equals $\text{Tr}(ad)$.

This suggests that a proper generalization of finite-dimensional algebras are algebras of operators on a Hilbert space.
Given a Hilbert space H, the set $B(H)$ of continuous linear operators $H \to H$ is:

- equal to $M_n(\mathbb{C})$ if $H = \mathbb{C}^n$;
Given a Hilbert space H, the set $B(H)$ of continuous linear operators $H \to H$ is:

- equal to $M_n(\mathbb{C})$ if $H = \mathbb{C}^n$;
- an algebra over \mathbb{C} where addition and scalar multiplication are defined pointwise, multiplication is defined by composition;
Given a Hilbert space H, the set $B(H)$ of continuous linear operators $H \rightarrow H$ is:

- equal to $M_n(\mathbb{C})$ if $H = \mathbb{C}^n$;
- an algebra over \mathbb{C} where addition and scalar multiplication are defined pointwise, multiplication is defined by composition;
- complete in the norm induced by the norm on H:
 $$\|a\| = \sup\{\|ah\| : h \in H, \|h\| = 1\}.$$
Given a Hilbert space H, the set $B(H)$ of continuous linear operators $H \to H$ is:

- equal to $M_n(\mathbb{C})$ if $H = \mathbb{C}^n$;
- an algebra over \mathbb{C} where addition and scalar multiplication are defined pointwise, multiplication is defined by composition;
- complete in the norm induced by the norm on H:
 \[
 \|a\| = \sup \{ \|ah\| : h \in H, \|h\| = 1 \}.
 \]
- equipped with an involution $a \mapsto a^*$ via the inner product on H: $\langle k, ak \rangle = \langle a^*k, h \rangle$ for each $h, k \in H$;
Operator algebras

An operator algebra is a subalgebra of $B(H)$, usually closed under the involution and closed with respect to some topology:

- C^*-algebras are closed with respect to the topology of uniform convergence;
Operator algebras

An operator algebra is a subalgebra of $B(H)$, usually closed under the involution and closed with respect to some topology:

- C^*-algebras are closed with respect to the topology of uniform convergence;
- W^*-algebras are closed with respect to the topology of pointwise convergence.
Operator algebras

An *operator algebra* is a subalgebra of $\mathcal{B}(H)$, usually closed under the involution and closed with respect to some topology:

- C^*-algebras are closed with respect to the topology of uniform convergence;
- W^*-algebras are closed with respect to the topology of pointwise convergence.
Operator algebras

An operator algebra is a subalgebra of $B(H)$, usually closed under the involution and closed with respect to some topology:

- C^*-algebras are closed with respect to the topology of uniform convergence;
- W^*-algebras are closed with respect to the topology of pointwise convergence.

Example

- Every finite-dimensional operator algebra is isomorphic to some finite direct sums of matrix algebras
Operator algebras

An *operator algebra* is a subalgebra of $B(H)$, usually closed under the involution and closed with respect to some topology:

- C^*-algebras are closed with respect to the topology of uniform convergence;
- W^*-algebras are closed with respect to the topology of pointwise convergence.

Example

- Every finite-dimensional operator algebra is isomorphic to some finite direct sums of matrix algebras
- Every commutative C^*-algebra is isomorphic to $C(X)$ for some compact Hausdorff space X;
Operator algebras

An *operator algebra* is a subalgebra of $B(H)$, usually closed under the involution and closed with respect to some topology:

- C*-algebras are closed with respect to the topology of uniform convergence;
- W*-algebras are closed with respect to the topology of pointwise convergence.

Example

- Every finite-dimensional operator algebra is isomorphic to some finite direct sums of matrix algebras
- Every commutative C*-algebra is isomorphic to $C(X)$ for some compact Hausdorff space X;
- Every commutative W*-algebra is isomorphic to $L^\infty(X, \mu)$ for some measure space (X, μ).
Tensor products and direct sums

Let A and B be two operator algebras representing some quantum systems.

- Conditional branching is represented by the direct sum $A \oplus B$.
Tensor products and direct sums

Let A and B be two operator algebras representing some quantum systems.

- Conditional branching is represented by the direct sum $A \oplus B$.
- The tensor product $A \otimes B$ represents the composite system;
Tensor products and direct sums

Let A and B be two operator algebras representing some quantum systems.

- Conditional branching is represented by the direct sum $A \oplus B$.
- The tensor product $A \otimes B$ represents the composite system;
- Obtained by taking some completion of the algebraic tensor product of A and B;
Tensor products and direct sums

Let A and B be two operator algebras representing some quantum systems.

- Conditional branching is represented by the direct sum $A \oplus B$.
- The tensor product $A \otimes B$ represents the composite system;
- Obtained by taking some completion of the algebraic tensor product of A and B;
- Several choices of completions possible.
Tensor products and direct sums

Let A and B be two operator algebras representing some quantum systems.

- Conditional branching is represented by the direct sum $A \oplus B$.
- The tensor product $A \otimes B$ represents the composite system;
- Obtained by taking some completion of the algebraic tensor product of A and B;
- Several choices of completions possible.
- For matrix algebras, there is only one unique choice.
Tensor products and direct sums

Let A and B be two operator algebras representing some quantum systems.

- Conditional branching is represented by the direct sum $A \oplus B$.
- The tensor product $A \otimes B$ represents the composite system;
- Obtained by taking some completion of the algebraic tensor product of A and B;
- Several choices of completions possible.
- For matrix algebras, there is only one unique choice.
- The spatial tensor product on W^*-algebras, denoted by $\overline{\otimes}$, is regarded as the standard W^*-algebra tensor product.
States

Definition

Let $A \subseteq B(H)$ be a unital operator algebra. Then we define an order \leq be the order on $A_{sa} = \{a \in A : a^* = a\}$ by $a \leq b$ if and only if $\langle h, ah \rangle \leq \langle h, bh \rangle$ for each $h \in H$.

Let A be a unital operator algebra. Then a state is a functional $\omega : A \to \mathbb{C}$ such that

1. $\omega(1_A) = 1$
2. $a \leq b$ implies $\omega(a) \leq \omega(b)$ for each $a, b \in A$.

The states of a C*-algebra A form a convex space; points in its extreme boundary are called pure states. For $A = B(H)$, given a density operator d, the map $a \mapsto \text{Tr}(ad)$ defines a state, and the pure states are precisely the functionals $a \mapsto \langle h, ah \rangle$ for unit vectors $h \in H$.

States

Definition
Let $A \subseteq B(H)$ be a unital operator algebra. Then we define an order \leq be the order on $A_{sa} = \{ a \in A : a^* = a \}$ by $a \leq b$ if and only if $\langle h, ah \rangle \leq \langle h, bh \rangle$ for each $h \in H$.

Definition
Let A be a unital operator algebra. Then a state is a functional $\omega : A \to \mathbb{C}$ such that

1. $\omega(1_A) = 1$;
2. $a \leq b$ implies $\omega(a) \leq \omega(b)$ for each $a, b \in A_{sa}$.
States

Definition
Let $A \subseteq B(H)$ be a unital operator algebra. Then we define an order \leq be the order on $A_{sa} = \{a \in A : a^* = a\}$ by $a \leq b$ if and only if $\langle h, ah \rangle \leq \langle h, bh \rangle$ for each $h \in H$.

Definition
Let A be a unital operator algebra. Then a state is a functional $\omega : A \to \mathbb{C}$ such that

1. $\omega(1_A) = 1$;
2. $a \leq b$ implies $\omega(a) \leq \omega(b)$ for each $a, b \in A_{sa}$.

The states of a C^*-algebra A form a convex space; points in its extreme boundary are called pure states. For $A = B(H)$, given a density operator d, the map $a \mapsto \text{Tr}(ad)$ defines a state, and the pure states are precisely the functionals $a \mapsto \langle h, ah \rangle$ for unit vectors $h \in H$.

43 / 55
-*homomorphisms*

Definition

A *-*homomorphism* $\varphi : A \rightarrow B$ between unital operator algebras A and B is a linear map preserving the multiplication, involution and identity element.
-homomorphisms

Definition
A ***-homomorphism** $\varphi : A \rightarrow B$ between unital operator algebras A and B is a linear map preserving the multiplication, involution and identity element.

- ***-homomorphisms** between C*-algebras are automatically continuous.
*-homomorphisms

Definition
A *-homomorphism $\varphi : A \rightarrow B$ between unital operator algebras A and B is a linear map preserving the multiplication, involution and identity element.

- *-homomorphisms between C*-algebras are automatically continuous.
- *-homomorphisms preserve the order, hence they preserve states, but are not the most general maps preserving states.
*-homomorphisms

Definition
A \(\varphi : A \rightarrow B \) between unital operator algebras \(A \) and \(B \) is a linear map preserving the multiplication, involution and identity element.

- \(\varphi \) is a \(* \)-homomorphism.
- \(* \)-homomorphisms between \(C^* \)-algebras are automatically continuous.
- \(* \)-homomorphisms preserve the order, hence they preserve states, but are not the most general maps preserving states.
- In particular, states themselves are not \(* \)-homomorphisms.
Definition

A positive map $\varphi : A \rightarrow B$ between unital operator algebras A and B is a linear map that preserves the order.

(Completely) positive maps
(Completely) positive maps

Definition
A positive map $\varphi : A \rightarrow B$ between unital operator algebras A and B is a linear map that preserves the order.

Problem: positive maps might no longer be positive after the process of adding ancillas.
(Completely) positive maps

Definition

A *positive* map $\varphi : A \to B$ between unital operator algebras A and B is a linear map that preserves the order.

Problem: positive maps might no longer be positive after the process of adding ancillas.

I.e., $\varphi : A \to B$ positive does not necessarily imply that $M_n(\mathbb{C}) \otimes \varphi : M_n(\mathbb{C}) \otimes A \to M_n(\mathbb{C}) \otimes B$ is positive.
(Completely) positive maps

Definition
A *positive* map $\varphi : A \rightarrow B$ between unital operator algebras A and B is a linear map that preserves the order.

Problem: positive maps might no longer be positive after the process of adding ancillas. I.e., $\varphi : A \rightarrow B$ positive does not necessarily imply that $M_n(\mathbb{C}) \otimes \varphi : M_n(\mathbb{C}) \otimes A \rightarrow M_n(\mathbb{C}) \otimes B$ is positive.

Definition
A *completely positive* map $\varphi : A \rightarrow B$ between unital operator algebras A and B is a linear map such that $M_n(\mathbb{C}) \otimes \varphi : M_n(\mathbb{C}) \otimes A \rightarrow M_n(\mathbb{C}) \otimes B$ is positive for each $n \in \mathbb{N}$.
The operator algebraic vs the Hilbert space framework

Theorem (Stinespring)

Let A be a unital C^*-algebra. For every completely positive map $\varphi : A \to B(H)$ there is a Hilbert space K, a unital $*$-homomorphism $\pi : A \to B(K)$, and a bounded operator $u : H \to K$ such that $\varphi(a) = u^* \pi(a)u$.
The operator algebraic vs the Hilbert space framework

Theorem (Stinespring)

Let A be a unital C^*-algebra. For every completely positive map $\varphi : A \rightarrow B(H)$ there is a Hilbert space K, a unital \ast-homomorphism $\pi : A \rightarrow B(K)$, and a bounded operator $u : H \rightarrow K$ such that $\varphi(a) = u^* \pi(a) u$.

- The description of (mixed) states is easier in the operator algebraic framework.
The operator algebraic vs the Hilbert space framework

Theorem (Stinespring)

Let A be a unital C^*-algebra. For every completely positive map $\varphi : A \to B(H)$ there is a Hilbert space K, a unital $*$-homomorphism $\pi : A \to B(K)$, and a bounded operator $u : H \to K$ such that $\varphi(a) = u^* \pi(a) u$.

- The description of (mixed) states is easier in the operator algebraic framework.
- Classical systems can also be described by operator algebras, via the functors $C : \text{CptHd}^{\text{op}} \to \text{CStar}$ and $l^{\infty} : \text{Set}^{\text{op}} \to \text{WStar}$, hence the interaction between classical and quantum can be described in one framework;
The operator algebraic vs the Hilbert space framework

Theorem (Stinespring)

Let A be a unital C^*-algebra. For every completely positive map $\varphi : A \to B(H)$ there is a Hilbert space K, a unital $*$-homomorphism $\pi : A \to B(K)$, and a bounded operator $u : H \to K$ such that $\varphi(a) = u^*\pi(a)u$.

- The description of (mixed) states is easier in the operator algebraic framework.
- Classical systems can also be described by operator algebras, via the functors $C : \text{CptHd}^{\text{op}} \to \text{CStar}$ and $l^\infty : \text{Set}^{\text{op}} \to \text{WStar}$, hence the interaction between classical and quantum can be described in one framework;
- A Hilbert space representation can be regarded as a concrete representation of an operator algebra on a Hilbert space. The possibility to discuss several representations instead of just one gives sometimes a more complete description of the system.
A category of quantum computation

We require the ideal category \mathbf{C} to be a category of collections of operators on a Hilbert space satisfying the properties of the linear category in a PQM model:

(1) containing the finite-dimensional algebras \mathbf{M} as a (monoidal) subcategory;
A category of quantum computation

We require the ideal category \mathbf{C} to be a category of collections of operators on a Hilbert space satisfying the properties of the linear category in a PQM model:

1. containing the finite-dimensional algebras \mathbf{M} as a (monoidal) subcategory;
2. having coproducts and being monoidal closed;
3. being enriched over a cartesian closed category \mathbf{V} (i.e., \mathbf{Set} or \mathbf{DCPO}) such that there is a linear/non-linear adjunction $\mathbf{V} \vdash \mathbf{C}$;
4. to support recursion, we would require \mathbf{C} to be enriched over $\mathbf{DCPO} \bot \mathbf{!}$;
5. have all ω-colimits;
6. the comonad induced by the linear/non-linear adjunction is parametrically algebraically compact.
A category of quantum computation

We require the ideal category \mathcal{C} to be a category of collections of operators on a Hilbert space satisfying the properties of the linear category in a PQM model:

(1) containing the finite-dimensional algebras \mathcal{M} as a (monoidal) subcategory;
(2) having coproducts and being monoidal closed;
(3) being enriched over a cartesian closed category \mathcal{V} (i.e., Set or DCPO) such that there is a linear/non-linear adjunction $\mathcal{V} \dashv \mathcal{C}$,
A category of quantum computation

We require the ideal category \(\mathcal{C} \) to be a category of collections of operators on a Hilbert space satisfying the properties of the linear category in a PQM model:

1. containing the finite-dimensional algebras \(\mathcal{M} \) as a (monoidal) subcategory;
2. having coproducts and being monoidal closed;
3. being enriched over a cartesian closed category \(\mathcal{V} \) (i.e., \(\text{Set} \) or \(\text{DCPO} \)) such that there is a linear/non-linear adjunction
 \[
 \mathcal{V} \dashv \mathcal{C},
 \]
4. to support recursion, we would require \(\mathcal{C} \) to be enriched over \(\text{DCPO} \);
A category of quantum computation

We require the ideal category \mathbf{C} to be a category of collections of operators on a Hilbert space satisfying the properties of the linear category in a PQM model:

1. containing the finite-dimensional algebras \mathbf{M} as a (monoidal) subcategory;
2. having coproducts and being monoidal closed;
3. being enriched over a cartesian closed category \mathbf{V} (i.e., Set or DCPO) such that there is a linear/non-linear adjunction $\mathbf{V} \dashv \mathbf{C}$;

To support recursion, we would require \mathbf{C} to

4. be enriched over $\text{DCPO}_{\bot!}$;
A category of quantum computation

We require the ideal category \mathbf{C} to be a category of collections of operators on a Hilbert space satisfying the properties of the linear category in a PQM model:

1. containing the finite-dimensional algebras \mathbf{M} as a (monoidal) subcategory;
2. having coproducts and being monoidal closed;
3. being enriched over a cartesian closed category \mathbf{V} (i.e., \mathbf{Set} or \mathbf{DCPO}) such that there is a linear/non-linear adjunction $\mathbf{V} \downarrow \mathbf{C}$;

To support recursion, we would require \mathbf{C} to

4. be enriched over \mathbf{DCPO}_\bot;
5. have all ω-colimits.
A category of quantum computation

We require the ideal category \mathbf{C} to be a category of collections of operators on a Hilbert space satisfying the properties of the linear category in a PQM model:

1. containing the finite-dimensional algebras \mathbf{M} as a (monoidal) subcategory;
2. having coproducts and being monoidal closed;
3. being enriched over a cartesian closed category \mathbf{V} (i.e., \mathbf{Set} or \mathbf{DCPO}) such that there is a linear/non-linear adjunction $\mathbf{V} \dashv \mathbf{C}$,

To support recursion, we would require \mathbf{C} to

4. be enriched over $\mathbf{DCPO}_{\perp!}$;
5. have all ω-colimits.
6. the comonad induced by the linear/non-linear adjunction is parametrically algebraically compact.
For categories of operator algebras with *-homomorphisms:

- ω-colimits of finite-dimensional algebras in the category of C*-algebras are the approximately finite-dimensional C*-algebras, or AF-algebras.
ω-colimits

For categories of operator algebras with *-homomorphisms:

- ω-colimits of finite-dimensional algebras in the category of C*-algebras are the \emph{approximately finite-dimensional} C*-algebras, or \emph{AF}-algebras.
- No category containing the AF-algebras will be \textbf{DCPO}_{⊥1}-enriched.
For categories of operator algebras with \(\ast\)-homomorphisms:

- \(\omega\)-colimits of finite-dimensional algebras in the category of C*-algebras are the *approximately finite-dimensional* C*-algebras, or AF-algebras.
- No category containing the AF-algebras will be DCPO\(_{-1}\)-enriched.
- This suggests working with W*-algebras instead of C*-algebras;
W*-algebras with unital normal *-homomorphisms

Let \(\mathcal{WStar} \) be the category of W*-algebras and unital normal *-homomorphism.

Theorem

The (monoidal) functor \(l^\infty : \mathbf{Set} \to \mathcal{WStar}^{\text{op}} \) *has a right adjoint.*
W*-algebras with unital normal *-homomorphisms

Let WStar be the category of W*-algebras and unital normal *-homomorphism.

Theorem

The (monoidal) functor $I^\infty : \text{Set} \rightarrow \text{WStar}^{\text{op}}$ *has a right adjoint.*

Theorem (Kornell5)

WStar^{op} *is complete and cocomplete, and monoidal closed.*

W*-algebras with unital normal *-homomorphisms

Let \(\text{WStar} \) be the category of \(W^* \)-algebras and unital normal \(* \)-homomorphism.

Theorem

The (monoidal) functor \(l^\infty : \text{Set} \to \text{WStar}^{\text{op}} \) has a right adjoint.

Theorem (Kornell\(^5\))

\(\text{WStar}^{\text{op}} \) is complete and cocomplete, and monoidal closed.

- Hence we have a LNL-model;
- Enriched over \(\text{Set} \), but what about \(\text{DCPO} \)?
- Problem: the states are not represented by morphisms in \(\text{WStar}^{\text{op}} \).

W*-algebras with unital normal *-homomorphisms

Let \(\text{WStar} \) be the category of \(W^* \)-algebras and unital normal \(* \)-homomorphism.

Theorem

The (monoidal) functor \(l^\infty : \text{Set} \rightarrow \text{WStar}^{\text{op}} \) has a right adjoint.

Theorem (Kornell\(^5\))

\(\text{WStar}^{\text{op}} \) is complete and cocomplete, and monoidal closed.

- Hence we have a LNL-model;
- Enriched over \(\text{Set} \), but what about \(\text{DCPO} \)?
- Problem: the states are not represented by morphisms in \(\text{WStar}^{\text{op}} \).

What about \(W^* \)-algebras with normal completely positive maps?

Order structure on operator algebras

Let \(A \subseteq B(H) \) be a unital operator algebra. Recall the order on \(A_{sa} = \{ a \in A : a^* = a \} \) defined by

\[
a \leq b \iff \langle h, ah \rangle \leq \langle h, bh \rangle \text{ for each } h \in H.
\]

Furthermore, we define \([0, 1]_A = \{ a \in A_{sa} : 0 \leq a \leq 1. \} \).
Order structure on operator algebras

Let $A \subseteq B(H)$ be a unital operator algebra. Recall the order on $A_{sa} = \{ a \in A : a^* = a \}$ defined by

$$a \leq b \iff \langle h, ah \rangle \leq \langle h, bh \rangle \text{ for each } h \in H.$$

Furthermore, we define $[0, 1]_A = \{ a \in A_{sa} : 0 \leq a \leq 1. \}.$

Theorem

Let M be a W^-algebra. Then $[0, 1]_M$ is a dcpo.*
Order structure on operator algebras

Let $A \subseteq B(H)$ be a unital operator algebra. Recall the order on $A_{sa} = \{ a \in A : a^* = a \}$ defined by

$$a \leq b \iff \langle h, ah \rangle \leq \langle h, bh \rangle \text{ for each } h \in H.$$

Furthermore, we define $[0,1]_A = \{ a \in A_{sa} : 0 \leq a \leq 1 \}$.

Theorem

Let M be a W^*-algebra. Then $[0,1]_M$ is a dcpo.

Note: C^*-algebras A for which $[0,1]_A$ is a dcpo are called monotone complete.
Normal morphisms and DCPO-enrichment

Fact: W^*-algebras have an intrinsic topology, called the σ-weak, ultra-weak or weak* topology. A linear map between W^*-algebras that is continuous with respect to this topology is called normal.

Normal morphisms and DCPO-enrichment

Fact: W^*-algebras have an intrinsic topology, called the σ-weak, ultra-weak or weak* topology. A linear map between W^*-algebras that is continuous with respect to this topology is called normal.

Theorem

Let $\varphi : M \to N$ be a positive map between W^*-algebras that is subunital, i.e., $\varphi(1_M) \leq 1_N$. Then φ is normal if and only if its restriction to a map $[0,1]^\varphi \to [0,1]^\varphi$ is Scott continuous.

Normal morphisms and DCPO-enrichment

Fact: W^*-algebras have an intrinsic topology, called the σ-weak, ultra-weak or weak* topology. A linear map between W^*-algebras that is continuous with respect to this topology is called normal.

Theorem

Let $\varphi : M \to N$ be a positive map between W^*-algebras that is subunital, i.e., $\varphi(1_M) \leq 1_N$. Then φ is normal if and only if its restriction to a map $[0,1]^\times M \to [0,1]^\times N$ is Scott continuous.

Theorem (Cho6, Rennela7)

The category of W^*-algebras and completely positive subunital maps is DCPO$_{\perp!}$-enriched.

W*-algebras with completely positive maps

Problem: opposite of the category of W*-algebras with completely positive maps is not monoidal closed with respect to the spatial tensor product (Kornell)
W*-algebras with completely positive maps

Problem: opposite of the category of W*-algebras with completely positive maps is not monoidal closed with respect to the spatial tensor product (Kornell)

Possible solutions:

• Working with monotone complete C*-algebras instead (problem: what is the tensor product?);
W*-algebras with completely positive maps

Problem: opposite of the category of W*-algebras with completely positive maps is not monoidal closed with respect to the spatial tensor product (Kornell)

Possible solutions:

- Working with monotone complete C*-algebras instead (problem: what is the tensor product?);
- Using a different W*-tensor product.
W*-algebras with completely positive maps

Problem: opposite of the category of W*-algebras with completely positive maps is not monoidal closed with respect to the spatial tensor product (Kornell)

Possible solutions:
- Working with monotone complete C*-algebras instead (problem: what is the tensor product?);
- Using a different W*-tensor product.
- Issue: the proof of Kornell makes use of the fact that *-homomorphisms preserve the complete algebraic structure, whereas completely positive maps do not preserve the multiplication.
Operator systems

Definition
Let H be a Hilbert space. Then any *-closed subspace S of $B(H)$ containing 1_H is called an operator system.
Operator systems

Definition
Let H be a Hilbert space. Then any *-closed subspace S of $B(H)$ containing 1_H is called an operator system.

Let \mathcal{C} be the opposite of the category of weakly closed operator systems with normal completely positive maps. Then we expect \mathcal{C} to be:

- monoidal closed;
Operator systems

Definition
Let H be a Hilbert space. Then any $*$-closed subspace S of $B(H)$ containing 1_H is called an operator system.

Let \mathbf{C} be the opposite of the category of weakly closed operator systems with normal completely positive maps. Then we expect \mathbf{C} to be:

- monoidal closed;
- DCPO_\bot-enriched;
Operator systems

Definition
Let H be a Hilbert space. Then any $*$-closed subspace S of $B(H)$ containing 1_H is called an operator system.

Let \mathbf{C} be the opposite of the category of weakly closed operator systems with normal completely positive maps. Then we expect \mathbf{C} to be:

- monoidal closed;
- DCPO_\bot-enriched;
- the monoidal functor $I^\infty : \textbf{Set} \to \mathbf{C}$ has a right adjoint;
Operator systems

Definition
Let H be a Hilbert space. Then any \ast-closed subspace S of $B(H)$ containing 1_H is called an operator system.

Let \mathbf{C} be the opposite of the category of weakly closed operator systems with normal completely positive maps. Then we expect \mathbf{C} to be:

- monoidal closed;
- DCPO_\bot-enriched;
- the monoidal functor $I^\infty : \text{Set} \to \mathbf{C}$ has a right adjoint;
Operator systems

Definition
Let H be a Hilbert space. Then any $*$-closed subspace S of $B(H)$ containing 1_H is called an operator system.

Let \mathcal{C} be the opposite of the category of weakly closed operator systems with normal completely positive maps. Then we expect \mathcal{C} to be:

- monoidal closed;
- $\text{DCPO}_{\bot!}$-enriched;
- the monoidal functor $I^\infty : \text{Set} \to \mathcal{C}$ has a right adjoint;

However, we do not see (yet?) whether there exists a monoidal adjunction between DCPO and \mathcal{C}.
Summary

• Formulation of abstract models for PQM;
Summary

- Formulation of abstract models for PQM;
- Adding recursion;
Summary

• Formulation of abstract models for PQM;
• Adding recursion;
• Adding recursive types;
Summary

- Formulation of abstract models for PQM;
- Adding recursion;
- Adding recursive types;
- No general adequacy result;
Summary

- Formulation of abstract models for PQM;
- Adding recursion;
- Adding recursive types;
- No general adequacy result;
- In case of quantum circuits, finding a concrete category of quantum computation might help;
Summary

- Formulation of abstract models for PQM;
- Adding recursion;
- Adding recursive types;
- No general adequacy result;
- In case of quantum circuits, finding a concrete category of quantum computation might help;
- Operator systems might form a promising candidate.
Props to the audience

Thank you for your attention.