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Research 

The word research is derived from the Middle French "recherche", 
which means "to go about seeking", the term itself being derived from 
the Old French term "recerchier" a compound word from "re-" + 
"cerchier", or "sercher", meaning 'search'

-- Wikipedia

• Basic research advances the fundamental knowledge about the world.

• Applied research is the practical application of science.

https://en.wikipedia.org/wiki/Old_French


The Problem

• A good problem is the heart of any high-quality research

• Focus on fundamentals
• Refine your problem to remove trivialities
• Ex: throughput vs. delay vs. complexity

• If you cannot solve a problem immediately
• Save the partial result and revisit it when you have a new attack
• It may help to think of two problems intermittently



Solution

• Sharp you skills
• Taking a variety of courses: your last chance 

• Self-learning 

• Develop your taste 
• Ask your advisor for examples of high-quality research

• Read broadly and strategically

• Search for elegance and insights



Solution –
"PhD Research: Elements of Excellence"
• Do not be satisfied with a superficial result
• Push the problem as far as you can

• There are no Gods in Academia
• Learn to read papers written by good people

• Read strategically & don’t become a clone of others’

• Don’t be afraid of solving problems that other top researchers have looked at 
and failed or only partially succeeded. 

• Never fall in love with the tool (or methodology)

• Always remember: The problem is King

http://newslab.ece.ohio-state.edu/for%20students/resources/HighQualityPhDResearch.ppt


Strategies to attack a hard problem

• Exploit the unique structure of the problem
• Ex: convexity,  submodularity, ergodicity. 
• A solution that is independent of the problem structure is likely to be 

suboptimal

• Simplify the problem 
• Start with a special case or a toy example to get insights
• The problem should still be non-trivial, and you have an attack



Strategies to attack a hard problem

• Find a "nearly optimal" solution
• It is crucial to quantify "nearly”
• Ex: approximation algorithms for NP-hard problem 

• Settle for a less aggressive objective
• Ex: regret in reinforcement learning, resource augmentation in online 

algorithms

• Alter the problem
• You don’t have to work on the problem you are given - a key difference 

between math and engineering disciplines



Case Study: Stochastic Multi-Armed Bandit



Case Study: Stochastic Multi-Armed Bandit

Given: 𝐾 arms, 𝑇 rounds. In each round 𝑡 ∈ 𝑇: 
1. Algorithm picks arm 𝑎&. 
2. Algorithm observes reward 𝑟& ∈ [0, 1] for the chosen arm

• The reward for arm 𝑎 is 𝑖. 𝑖. 𝑑. sampled from a 
distribution 𝒟, that is initially unknown. 

• Applications: news, ad selection, medical trial, etc. 

• A fundamental tradeoff: exploration vs. exploitation

Chapter 1, “Introduction to Multi-Armed Bandits” by Aleksandrs Slivkins, 2019



Case Study: Stochastic Multi-Armed Bandit

Given: 𝐾 arms, 𝑇 rounds. In each round 𝑡 ∈ 𝑇: 
1. Algorithm picks arm 𝑎&. 
2. Algorithm observes reward 𝑟& ∈ [0, 1] for the chosen arm.

• Reward for arm 𝑎 is 𝑖. 𝑖. 𝑑. sampled from a distribution 𝒟, that is initially unknown
• Let  𝜇 𝑎 = 𝔼 𝒟, , 𝜇∗ = 𝑚𝑎𝑥

,∈4
𝜇(𝑎)

Regret: 𝑅 𝑇 = 𝜇∗ ⋅ 𝑇 − ∑&;<= 𝜇(𝑎&)
Objective: min𝔼[𝑅 𝑇 ]



Algorithm 1: Explore-First

1. Exploration phase: try each arm 𝑁 times;
2. Select the arm 𝑎 with the highest average reward (break ties arbitrarily);
3. Exploitation phase: play arm 𝑎 in all remaining rounds.

Analysis for the 2-arm case: 

• The regret in the exploration phase is trivially bounded by 𝑁

• The regret in the exploitation phase is determined by the probability that 𝑎 is suboptimal. 
This can happen only if 
• (1) the mean rewards of the two arms are very close OR
• (2) after 2N rounds, average reward is not close to mean reward for at least one arm



Algorithm 1: Explore-First

1. Exploration phase: try each arm 𝑁 times;
2. Select the arm 𝑎 with the highest average reward (break ties arbitrarily);
3. Exploitation phase: play arm 𝑎 in all remaining rounds.

By taking 𝑁 = 𝑇D/F, 𝔼 𝑅 𝑇 ≤ 𝑇D/F× 𝑂 𝐾 log 𝑇 </F

• Poor performance in the exploration stage



Algorithm 2: Epsilon-Greedy

for each round 𝑡 = 1,2, … do
Toss a coin with success probability 𝜖&;
if success then

explore: choose an arm uniformly at random
else

exploit: choose the arm with the highest average reward so far
end

By taking 𝜖& = 𝑡Q</F 𝐾log𝑡 </F, 𝔼 𝑅 𝑡 ≤ 𝑡D/F× 𝑂 𝐾 log 𝑡 </F for each round 𝑡



Adaptive Algorithms:

• A big flaw of Algorithms 1 and 2: exploration schedule does not depend 
on the observed rewards 
• Adaptive algorithms
• Successive Elimination
• Optimism under uncertainty: UCB
• Posterior sampling: Thompson sampling
• ..

• Can we do better?
• Lower bound:  fix 𝑇 and 𝐾, there is a problem instance such that 𝔼 𝑅 𝑇 ≥
Ω( 𝐾𝑇)

𝔼 𝑅 𝑇 ≤ 𝑂 𝐾𝑇log𝑇


