
Chapter 2
Proactive Network Defense with Game
Theory

Sinong Wang and Ness Shroff

Abstract Traditional proactive network defenses deploy security resources in the
network based on probabilistic policies to confuse potential attackers. However, this
strategy can be exploited by stealthy attackers, leading to reduced efficiency and
higher vulnerability. Game theory has been shown to provide a sound mathematical
approach to overcome these deficiencies and determine an optimal defense strategy.
However, existing game theoretic models typically either assume additive utility
functions, or that the attacker can attack only one target. While such assumptions
lead to tractable analyses, they miss key inherent dependencies that exist among
different targets in current complex networks. In this chapter, we generalize the
traditional security game model to the network scenario. We examine such a general
security game from a theoretical perspective and provide a unified theoretical
framework. In particular, we show that each security game is equivalent to a
combinatorial optimization problem over a set system, which consists of defender’s
pure strategy space. The key technique we use is based on projection of a polytope
based transformation, and the ellipsoid method. We also provide several important
applications of our developed framework, and show that for several problem classes,
optimal defense strategies can be developed in polynomial time. Our approach paves
the way for a deeper investigation into using game theoretic techniques for solving
designing security mechanisms in networks, and we conclude by outlining a number
of important future directions that need to be investigated.

2.1 Introduction

Most critical systems use some type of proactive defense through firewalls, rein-
forcing systems through regular software updates, providing police protection of
important locations, etc. However, one of the key problems in proactive network
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defense is how to efficiently allocate limited resources to protect targets in a network
against potential threats. For example, the government may have a limited police
force to operate checkpoints and conduct random patrols over some city blocks, or
have a limited number of coders that restricts how often and for what functionality
new software updates are generated. However, the adversarial aspect in security
domain poses a unique challenge for allocating resources. An intelligent attacker can
observe the defender’s strategy and gather information to schedule more effective
attacks. Therefore, the simple random strategy of “rolling the dice” may be exploited
by the attacker, which greatly reduces the effectiveness of the strategy. This is where
game theory can help devise strategies that are optimal even under intelligent and
stealthy attackers.

2.1.1 Why Game Theory?

Before we describe the importance of applying game theory to the proactive network
defense, let us first look at the following example.

Example 2.1 As shown in Fig. 2.1, there exists a network with multiple nodes
and links. The goal of defender or infrastructure service provider is to transmit
the packets from the node s to node d along different paths. In practice, there
might exists some hackers attempting to intercept the packet and subtract the
confidential contents. To avoid interception from attackers, the defender can
probabilistically choose a different routing path. For example, in the above
network, we have four routing paths that has the possibility to confuse the
attacker. However, the question is is probabilistically mixing the strategy a
secured policy in proactive network defense? In practice, the stealthy attacker
can observe the defender’s probabilistic strategy and predict the defender’s
next move, which may lead to disastrous consequences.

With the development of computational game theory, such resource allocation
problems can be cast in game-theoretic contexts, which provides a sounder math-
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Fig. 2.1 A network with four possible routing paths. The yellow nodes are source and destination
nodes. The grey nodes are intermediate nodes in the routing path
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ematical approach to determine the optimal defense strategy. It allows the analyst
to factor differential risks and values into the model, incorporate game-theoretic
predictions of how the attacker would respond to the security policy, and finally
determine an equilibrium strategy that cannot be exploited by adversaries to obtain a
higher payoff. In the past decade, there has been an explosion of research attempting
to address this approach, which has led to the development of well-known models
of security games.

Moreover, it has become increasingly apparent that security failures in network
and information systems are often caused by a misunderstanding of the incentives of
the entities involved in the system instead of a lack of proper technical mechanisms
[1, 2]. To this end, there exists game theoretical models trying to understanding
this phenomenon using analytical approaches [3–6]. Some other recent works [7–9]
also consider Advanced Persistent Threats (APT) in cyber security. APT attacks
have several distinguishing properties that render traditional defense mechanism
less effective. First, they are often launched by incentive driven entities with specific
targets. Second, they are persistent in achieving the goals, and may involve multiple
stages or continuous operations over a long period of time. Third, they are highly
adaptive and stealthy, which requires the game model capturing the persistent and
stealthy behavior of advanced attacks.

The classic security game is a two-player game played between a defender
and an attacker. The attacker chooses one target to attack; The defender allocates
(randomly) limited resources, subject to various domain constraints, to protect a
set of targets. The attacker (defender) will obtain the benefits (losses) for those
successfully attacked targets and losses (benefits) for those defended targets. The
goal of the defender is to choose a random strategy so as to play optimally
under some solution concepts such as Nash equilibrium and strong Stackelberg
equilibrium. This security game model and its game-theoretic solution is currently
being used by many security agencies including US Coast Guard and Federal Air
Marshals Service(FAMS) [10], Transportation System Administration [11] and even
in the wildlife protection [12]; see book by Tambe [13] for an overview.

2.1.2 Challenges in the Classical Security Game Model

Before we discuss the challenges in the classical security game model, let us first
consider the following example.

Example 2.2 As shown in Fig. 2.2, we have a 20-node network. It is clear that nodes
1, 2, 3 and 4 are the critical battlefields in this network. Suppose that the attacker’s
and defender’s strategies are {1}, {2}, {3}, {1, 2} or {3, 4}, where {v} denotes the
index of the nodes. We adopt the network value proposed by Gueye et al. [14] as
the security measure for different nodes, which calculates the importance of a group
of nodes by subtracting the value of the network by removing these nodes from
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Additive Utility Function
Strategy 1 2 3 4 1,2 3,4
Benefit 39 39 75 75 78 150

Non-additive Utility Function
Strategy 1 2 3 4 1,2 3,4
Benefit 39 39 75 75 238 142
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Additive strategy Non-additive strategy

Fig. 2.2 Example of security game in a 20-nodes network with independent targets assumption
(additive) or dependent target assumption (non-additive)

the value of the original network.1 For example, if we adopt the network value as
a function f ({ni}) = ∑

i n2
i , where ni is number of nodes in the ith component,

the value of the original network is 202= 400. After removing node 3, the network
will be divided into two components: one 18-node network and one isolated node,
the network value is reduced to 182+ 12= 325. Thus the benefit of node 3 is equal
to the decrement 400− 325= 75. Similarly, we can get the benefits of other nodes
as illustrated in the bottom table of Fig. 2.2. In traditional security game models,
they assume that the benefit of strategy {1, 2} and {3, 4} is equal to 39+ 39= 78
and 75+ 75= 150. The mixed strategy equilibrium2 under this case is that defender
choose nodes 1, 2 with probability 0.34 and nodes 3, 4 with probability 0.66. Instead,
if we adopt the true value of nodes {1, 2} and {3, 4} (as illustrated in red of bottom
table), the equilibria is that the defender chooses nodes 1, 2 with probability 0.63
and nodes 3, 4 with probability 0.37. From the point view of the network, the second
one provides a more reliable strategy.

Based on the above example, we have the following observations: first, the
traditional security game models do not consider dependency among the different
targets; second, the attacker can attack at most one target. In particular, the payoff
functions for both players are additive, i.e., the payoff of a group of targets is the
sum of the payoffs of each target separately. This assumption means that the security
agency measures the importance of several targets without considering the synergy
among them. In practice, the attacker can simultaneously attack multiple targets and
there exists some linkage structure among those targets such that attacking one target
will influence the other targets. For example, an attacker attempts to destroy the

1Compared with traditional measures such as degree and betweenness centrality, the network value
provides a more accurate description of the importance of different nodes.
2In this example, we adopt the zero-sum game model and assume the defender can protect the
nodes with probability 1.
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connectivity of a network and the defender aims to protect it. The strategy for each
players is to choose the nodes of the network (to defend or to attack). If there are two
nodes (node 1 and 2 in previous example) that constitute a bridge of this network,
successfully attacking both of them will split the network into two parts and incur
a huge damage, while attacking any one of them will have no significant impact.
These observations show that proactive network defense introduces new challenges
in computational game theory, and calls for the new theoretical development. The
rest of this chapter mainly focus on how to develop a general game-theoretical path
and algorithmic framework in proactive network defense.

2.2 Non-additive Security Game: A General Formulation
of Network Security Game

Motivated by the previous example, we are now ready to define the non-additive
security game (NASG) [15, 16].

Players and Targets The NASG contains two players (a defender and an attacker),
and n targets. We use [n] � {1, 2, . . . , n} to denote the set of these targets. The
attacker and defender need not be individuals, but could also be the organizations
and groups who adopt a joint strategy. The target can be quite general and
dependent on the application in mind. For example, they could represent links in
the communication networks, roads in the urban networks or cities in the whole
country.

Strategies and Index Function The pure strategy for each player is the subset of
targets and all the pure strategies for each player constitute a collection of subsets
of [n]. We assume that the attacker can attack at most c targets, where c > 1 is a
constant. The attacker’s pure strategy space is a uniform matroid A = {A ⊆
[n]||A| ≤ c} and the number of attacker’s pure strategies is Na � |A |. Similarly, we
use D ∈ 2[n] to denote the defender’s pure strategy space and Nd � |D |. Note that
there exists some resource allocation constraints in practice and such that D is not
always a uniform matroid. For example, if the defender has a budget and its resource
are obtained at some costs, in which the costs are heterogeneous. In this case, the
defender’s feasible pure strategy corresponds to all the possible combinations of the
targets with total cost less than the budget.

Suppose that the order of the pure strategy of the attacker is given by index
function σ (·), which is a one-one mapping: 2[n]→{1, 2, · · · , 2n}. Then, we
define the following index function μ(·) for the pure strategy of the defender as:
μ(U)= σ (Uc) for any U ∈ 2[n]. For simplicity, the index function σ (·) and μ(·) are
defined over all subsets of [n]. The reason behind this definition of the index function
is to simplify the representation of most of the theoretical results. For example, if
n= 2, A = D = 2{1,2}, and the order of the attacker’s pure strategy is σ ({1, 2})= 1,
σ ({2})= 2, σ ({1})= 3 and σ (∅)= 4, then the order for defender’s pure strategy is
μ(∅)= 1, μ({1})= 2, μ({2})= 3 and μ({1, 2})= 4.
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Select multiple
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Fig. 2.3 Network security game with non-additive utility functions and multiple attacker resources

The mixed strategy is the probability distribution over the pure strategy space,
which is employed when the player determines its strategy based on some random
experiment. For example, if the attacker chooses p as its mixed strategy, the
probability that strategy A is chosen is pσ (A). The set of all the mixed strategies
of the attacker and defender can be represented as the simplex ΔNa and ΔNd

, where

ΔNa = {p ∈ R
Na+ |

∑
A∈A

pσ(A) = 1}. (2.1)

A similar definition holds for ΔNd
.

Payoff Structure The benefits and losses are represented by utility functions as
follows. Let set function B(·) : A → R and L(·) : A → R be the attacker’s
benefit and loss functions, respectively. The standard assumption is that the benefit
is always larger than the loss: B(A) > L(A) for all A ∈ A . If the attacker and
defender choose strategy A ∈ A and D ∈ D , the attacker’s and defender’s payoff
is given by B(A\D)+L(A∩D) and −L(A∩D)−B(A\D), respectively.3 In this
payoff structure, one can see that the game is zero-sum such that one player’s benefit
is indeed the loss of the other players. For more complex non-zero sum games,
please refer to [16].

Bilinear-Form Based on the above payoff structure, we can define the benefit
matrices of attacker B : ∀A ∈ A ,D ∈ D ,

Bσ(A),μ(D) = Ba(A\D), (2.2)

3A\D is the standard set difference, defined by A\D={x|x∈A, x �∈D} and is equal to A∩Dc,
where Dc is the complementary set of subset D. An example of NASG is illustrated in (Fig. 2.3).
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and the loss matrices: L: ∀A ∈ A ,D ∈ D ,

Lσ(A),μ(D) = La(A ∩D). (2.3)

Let Ma and Md be the attacker’s and defender’s payoff matrices. It is clear that
Ma=B+L and Md =−B−L. Then the expected payoffs for the attacker and
defender are given by following bilinear form, when they play the mixed strategy
p ∈ ΔNa and q ∈ ΔNd

, by

Ua(p, q) = pT Maq and Ud(p, q) = pT Mdq. (2.4)

Solution Concepts If both players move simultaneously, the standard solution
concept is the Nash equilibrium (NE), in which no single player can obtain a higher
payoff by deviating unilaterally from this strategy. A pair of mixed strategies (p∗ ,
q∗ ) forms a NE if and only if they satisfy the following: ∀p ∈ ΔNa , q ∈ ΔNd

,

Ud(p∗, q∗) ≥ Ud(p∗, q) and Ua(p∗, q∗) ≥ Ua(p, q∗). (2.5)

In some application domain, the defender can build fortifications before the
attack and is thus in the leader’s position from the point view of the game, and
able to move first. In this case, the strong Stackelberg equilibrium (SSE) serves as a
more appropriate solution concept [17, 18], where the defender commits to a mixed
strategy; the attacker observes this strategy and comes up with its best response(s).
Formally, let C(q) = arg maxp∈ΔNa

Ua(p, q) denote the attacker’s best response to
defender’s mixed strategy q. A pair of mixed strategies (p∗ , q∗ ) is a SSE, if and only
if,

q∗ = arg max
q∈ΔNd

Ud(C(q), q) and p∗ = C(q∗). (2.6)

Our goal is to compute the defender’s Nash equilibrium strategies and strong
Stackelberg equilibrium strategies, and we call it the equilibrium computation
problem.

2.3 Curse of Dimensionality and Compact Representation
Technique

The Nash equilibrium is equivalent to the strong Stackelberg equilibrium in the
zero-sum game. Therefore, we only need to focus on the computation of Nash
equilibrium. Invoking the result in the von Neumann’s minimax theorem, computing
the NE of zero-sum game can be formulated as the following minimax problem,

min
q∈ΔNd

max
p∈ΔNa

Ua(p, q) = pT
(
Ba + La

)
q. (2.7)
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One standard solution path is transforming the above problem into the following
linear programming problem.

min
q,u

u

s.t. vT (Ba + La) q ≤ u,∀v ∈ ΔNa ,

q ∈ ΔNd
.

(2.8)

Curse of Dimensionality It is well known that the linear programming problem
can be solved in polynomial time of number of variables and constraints by using
the interior point method. However, the above linear programming problem contains
Nd + 1 number of variables and Na+Nd constraints, which is at least the size of
defender’s pure strategy space. In the worst case, i.e., the defender can protect any
subsets of targets and Na=Θ(2n). Moreover, unlike the traditional security game
[10] that assumes that attacker only attack one target, there exists poly(n) number
of variables and exponential number of constraints. One can use the cutting plane
(ellipsoid method) to get a polynomial time reduction. However, in this problem,
due to multiple attacker resources, it becomes a much more complicated issue, and
calls for the development of a new theoretical path.

The goal of the rest of this subsection is to develop a technique to compactly
and equivalently represent the zero-sum and non-additive security game with only
poly(n) variables. To convey our idea more easily, we begin with an example.

We first use gauss elimination on matrices Ba and La to transform them into
row canonical form, which is to left and right multiply such matrices by elementary
matrices E1, E2 ∈ R

Na×Na and F1, F2 ∈ RNd×Nd .

min
q∈ΔNd

max
p∈ΔNa

pT
(
Ba + La

)
q = min

q∈ΔNd

max
p∈ΔNa

pT E1E−1
1 BaF−1

1 F1q

+ pT E2E−1
2 LaF−1

2 F2q

= min
q∈ΔNd

max
p∈ΔNa

pT E1

[
Ba

r 0
0 0

]
F1q

+ pT E2

[
La

s 0
0 0

]
F2q.

where r and s are the rank of matrices Ba, La, and Ba
r , La

s are the corresponding
non-zero blocks of their row canonical form. If we define the affine transformation:
f1(p) = (pT E1

)T
, f2(p) = (pT E2

)T
, g1(q)= F1q and g2(q)= F2q. Let4

Δa
Na
= {(f1(p), f2(p))|p ∈ ΔNa },

Δd
Nd
= {(g1(q), g2(q))|q ∈ ΔNd

}.

we can obtain the following equivalent optimization problem,
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min
(q̄1,q̄2)∈Δd

Nd

max
(p̄1,p̄2)∈Δa

Na

p̄T
1

[
Ba

r 0
0 0

]
q̄1 + p̄T

2

[
La

s 0
0 0

]
q̄2.

Moreover, considering the fact that only the first r elements in vector p̄1 and
q̄1, and the first s elements in p̄2 and q̄2 have non-zero coefficients in the above
optimization model, we can further simplify the above optimization problem as

min
(q̄1,q̄2)∈Hd

max
(p̄1,p̄2)∈Ha

p̄T
1 Ba

r q̄1 + p̄T
2 La

s q̄2, (2.9)

where the Ha and Hd is obtained by projecting the polytope Δa
Na

and Δd
Nd

to those
coordinates belonging to the non-zero blocks.

The basic observation in the above example is that the number of variables in
the optimization model (2.9) is equal to the sum of rank r+ s of payoff matrices.
Based on the rank inequality that the rank of a matrix is less than its dimension,
we have that r, s ≤ min{Na,Nd}. Since the number of attacker’s pure strategies
is Na=O(nc)= poly(n). Therefore, there exists at most poly(n) variables in the
optimization model (2.9).

The above illustrative derivation provides a possible path to compactly represent
the game. However, there exists a significant technical challenge: the elementary
matrices F1, F2 and their inverse matrices may have an exponential size due to
the exponentially large defender’s pure strategy space. Hence, the key question is
whether we can find both these elementary matrices efficiently? To tackle this
problem, we first show that payoff matrices Ba and La can be decomposed as the
product of the several simple matrices.

Theorem 2.1 (Decomposition of the Payoff Matrix)
The payoff matrix Ma= Ba+ La can be decomposed as

Ma = E(DbJ+ DlK), (2.10)

where Db, Dl ∈ R
Na×Na are the diagonal matrices with

Db
σ(A),σ (A) = Bc(A), Dl

σ (A),σ (A) = Lc(A),∀A ∈ A .

The E ∈ R
Na×Na and J, K ∈ R

Na×Nd are binary matrices:

(continued)

4The notation (·, ·) denotes the concatenation operator of vector.



42 S. Wang and N. Shroff

Eσ(A),σ (U) = 1{U ⊆ A},∀A,U ∈ A

Jσ(A),μ(D) = 1{A ⊆ Dc},
Kσ(A),μ(D) = 1{A ⊆ D},∀A ∈ A ,D ∈ D .

The common utility is defined as the Möbius transformation [19, 20] of the
benefit and loss function B(U) and L(U) for all U∈ 2[n],

Bc(U) =
∑
V⊆U

(−1)|U\V |Ba(V )

Lc(U) =
∑
V⊆U

(−1)|U\V |La(V ).

(2.11)

As can be seen in Theorem 2.1, we decompose the original exponentially large
payoff matrix Ma into the summation and the product of several simple matrices
including binary matrices E, J, K and two polynomial-sized diagonal matrices
Db and Dl. Moreover, such a decomposition has a closed-form expression and the
elements in those simple matrices can be implicitly represented.

Based on the above decomposition results, we can let the elementary matrices
E1= E2=E, F1= J and F2=K, and the corresponding affine transformation
f (p)= ETp and g1(q)= Jq, g2(q)=Kq to yield two polytopes: Δa

Na
= {f (p)|p ∈

ΔNa } and Δd
Nd
= {(g1(q), g2(q))|q ∈ ΔNd

}. Then we can represent the minimax
problem (2.7) as

min
(q̄1,q̄2)∈Δd

Nd

max
p̄∈Δa

Na

p̄T (Dbq̄1 + Dl q̄2), (2.12)

The following definitions are often used in our next step theoretical development.

Definition 2.1 (Support Set) The support set of the non-additive security game is
defined as

S = {A ∈ A |Bc(A) �= 0 or Lc(A) �= 0}. (2.13)

and the support index set σ (S)={σ (A)|A∈ S}.
Definition 2.2 (Projection Operator) The projection operator πS : RN → R

|S| is

πS((x1, x2, . . . , xN)) = (. . . , xi , . . .)i∈σ(S), (2.14)

and projection of polytope: ΠS(ΔN) � {πS(x)|x ∈ ΔN }.
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Based on the definition of our support set S and matrices Db, Dl, only the
variables with indices belonging to σ (S) have non-zero coefficients. Therefore,
we can eliminate those variables with zero coefficients in (2.12) and project the
polytopes Δa

Na
and Δd

Nd
into the coordinates with indices belonging to σ (S). The

further simplified model can be expressed as

Compact Minimax Problem

min
(q̄1,q̄2)∈Hd

max
p̄∈Ha

p̄T (D̃bq̄1 + D̃l q̄2),
(2.15)

where5 Ha = ΠS(Δa
Na

), Hd = ΠS(Δd
Nd

), matrix D̃b and D̃l is obtained by

extracting the non-zero columns and rows of matrix Db and Dl.
Since the size of the support set |S|≤Na, and Na= poly(n), we arrive at a compact

representation of the non-additive security game with only poly(n) variables. Note
that in the above compact representation framework, the affine transformation f1 and
f2 are the same as in our compact representation. The following theorem guarantees
the correctness of our compact representation.

Theorem 2.2 (Compact Representation) (p∗ , q∗ ) is a Nash equilibrium of zero-
sum non-additive security game if and only if (πS(f (p∗)), (πS(g1(q∗)), πS(g2(q∗ )))
is the optimal solution of compact minimax problem (2.15).

2.4 Oracle-Based Algorithmic Framework

In the previous section, we develop a compact representation technique such that
one can equivalently represent the original NASG by a minimax problem with a
polynomial number of variables, which can be further solved by the following linear
programming model,

Compact Linear Programming

min u

s.t. vT (D̃bq̄1 + D̃l q̄2) ≤ u,∀v ∈ Ia,

(q̄1, q̄2) ∈ Hd,

(2.16)

where Ia denotes the set of vertices of the convex polytope Ha. The above linear
programming problem has poly(n) number of variables and potentially exponential
number of constraints (due to the membership constraint (q̄1, q̄2) ∈ Hd ). This
motivates us to utilize the ellipsoid method to solve the problem.

5Note that each vector in Δd
Nd

is consists of two parts g1(q) and g2(q). Here the corresponding
low-dimensional point is (πS(g1(q), πS(g2(q)).
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2.4.1 Preliminaries

Let H be a non-empty convex polytope in R
n. Given a vector w ∈ R

n, one wants to
find a solution to maxx ∈HwTx. By “linear optimization over H”, we mean solving
the problem maxx ∈HwTx for any w ∈ R

n. A separation problem for H is that, given
a vector x ∈ R

n, decide if x∈H, and if not, find a hyperplane which separates x
from H. The following results are due to Grötschel et al. [21].

Theorem 2.3 (Separation and Optimization) Let H ∈ R
n be a convex polytope.

There is a poly (n) time algorithm to solve the linear optimization problem over H
if and only of there is a poly (n) time algorithm to solve the separation problem for
H.

Theorem 2.4 (Separation and Convex Decomposition) Let H ∈ R
n be a convex

polytope. If there is a poly (n) time algorithm to solve the separation problem for H,
then there is a poly (n) time algorithm that, given any x∈H, yields (n+ 1) vertices
v1, . . . , vn+1 ∈H and convex coefficients λ1, . . . , λn+1 such that x =∑n+1

i=1 λivi .

2.4.2 Reduction Between NASG and Combinatorial
Optimization

The main result in this subsection is captured in the following theorem.

Theorem 2.5 (NE Computation and Defender Oracle Problem)
There is a poly (n) time algorithm to compute the defender’s Nash equilibrium
(strong Stackelberg equilibrium), if and only if there is a poly (n) time
algorithm to compute the defender oracle problem: for any given vector
w ∈ R

2|S|, determine,

x∗ = arg min
x∈Id

wT x. (2.17)

To obtain above reduction, we adopt the following path: we first show how
the compact problem and the defender oracle problem can be reduced to each
other in poly(n) time; then we exploit the geometric structure of polytope Ha

and Hd to construct two poly(n) time vertex mapping algorithms to obtain the
reduction between the equilibrium computation and the compact problem. This
whole procedure also produces an algorithmic framework to the solve the NASG.

The polynomial time reduction between the defender oracle problem and the
compact linear programming problem can be easily obtained by the ellipsoid
method. The key lies in how to obtain the reduction between the equilibrium
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computation (2.7) and the compact linear programming problem. Actually, there
exist two issues: first, how to transform the input instance of each problem to the
other one in poly(n) time; second, how to map the optimal solution of each problem
to the other in poly(n) time. Since the input of the equilibrium computation problem
are the utility functions {B(U)} and {L(U)} and the input of compact problem are the
common utilities {Bc(U)} and {Lc(U)} (all the elements of matrices Db and Dl are
the common utilities), such transformation can be completed in O(2cnc)= poly(n)
time based on the definition of common utilities.

To resolve the second issue, we first consider how to map the optimal solution
of compact problem to the defender’s optimal mixed strategies. Based on Theorem
2.4, we obtain that if the separation problem of LP (2.16) can be solved in poly(n)
time, we can decompose any feasible point x into a convex combination of at most
(2|S| + 1) vertices of the polytope defined by those constraints. Note that this is
precisely the DOP required for above reduction. Applying this result to the optimal
solution (q∗1, q∗2) of the LP (2.16), we can get a convex decomposition that

(q∗1, q∗2) =
2|S|+1∑
i=1

λi(vi
1, vi

2), (2.18)

where (vi
1, vi

2) ∈ Id . The basic fact is that the defender’s mixed strategy can be
regarded as a convex combination of its pure strategies, each of which corresponds
to a vertex of simplex ΔNd

. If we can map the vertices (vi
1, vi

2) back to the vertices
(pure strategy) of the original game, denoted by h((vi

1, vi
2)), the mixed strategies of

the defender can be expressed as

q∗ =
2|S|+1∑
i=1

λih((vi
1, vi

2)). (2.19)

Thus, the key lies in how to compute h((vi
1, vi

2)) in poly(n) time.
To tackle this problem, we need to investigate the geometric structure of

polytope Hd. First, considering an arbitrary defender’s pure strategy D ∈ D , the
corresponding vertex in ΔNd

is a unit vector eD ∈ R
Nd with only one non-zero

element eD
μ(D) = 1. Based on the definition of the transformation g1(q) and g2(q),

the corresponding point of polytope Hd is

(g1(eD), g2(eD)) = (JeD, KeD) = (Jμ(D), Kμ(D)), (2.20)

where Jμ(D) and Kμ(D)is the μ(D)th column of matrix J and K. Then the corre-
sponding point vD of the projected polytope Hd is

vD = (πS(Jμ(D)), πS(Kμ(D))
)
, (2.21)
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which is the sub-vector of Jμ(D) and Kμ(D). The problem is that the vertex in the
high-dimensional polytope may not project to a vertex of its low-dimensional image.
However, the following lemma will provide a positive result.

Lemma 2.1 (Geometric Structure of Hd)
For any support set [n] ∈ S ∈ A , the vertices of the polytope Hd are the

columns of the sub-matrix of

[
J
K

]
, which is formed by extracting the row

whose index belongs to σ (S).

Since we have a closed-form expression of the matrix J and K, we can construct
a vertex mapping algorithm from low-dimensional vertex to the defender’s pure
strategy. The efficiency and the correctness of Algorithm 1 is justified by following
lemma.

Algorithm 1: Vertex mapping from vertex to pure strategy

input : Vertex (v1, v2) ∈ I d .
output: Defender’s pure strategy D.

T = ∅;
for each i ∈ [n] do

Examine each coordinate of vertex:
if v1,σ ({i}) �= 0 then

T = T ∪ {i};
end

end
D = T c;

Lemma 2.2 (Correctness of Vertex Mapping Algorithm) The vertex mapping
Algorithm 1 runs in O(n) time and maps each vertex of Hd to a unique pure strategy.

Note that our vertex mapping algorithm only examines n instead of all the
coordinates of each vertex of Hd to recover a defender’s pure strategy. The reason
behind this result is that there exists a one-to-one correspondence between each pure
strategy and those n coordinates of each vertex of polytope Hd. Intuitively, those n
coordinates of each vertex of Hd is binary and therefore there exists possibly 2n

possibilities, each of which corresponds to a pure strategy.
The other direction follows from the following argument. Suppose that the

problem of equilibrium computation is solved in poly (n) time and the optimal
defender’s mixed strategy is denoted by q∗ . Invoking a known result in game
theory (Theorem 4 in [22]), the support size, i.e., number of strategies with nonzero
probability, of the Nash equilibrium is less than the rank of the payoff matrix. Since
the rank of payoff matrix Ma is O(nc), the number of non-zero coordinates in q∗ is
at most O(nc)= poly(n) and q∗ can be expressed as
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q∗ =
poly(n)∑

i=1

λiei . (2.22)

Therefore, we can determine the optimal solution of the compact problem in
poly(n) time by constructing the following poly(n) time vertex mapping algorithm
from a pure strategy ei to a vertex of Hd.

Algorithm 2: Vertex mapping from pure strategy to vertex

input : Defender’s Pure Strategy D.
output: Vertex vD ∈ Id

T = ∅;
for each V ∈ A do

if V ⊆ Dc then vD
1,σ (V ) = 1;

else vD
2,σ (V ) = 0;

end
Output vertex vD = (vD

1 , vD
2 );

The intuition behind this result is similar to the previous vertex mapping
algorithm and the correctness of Algorithm 2 is guaranteed by the following lemma.

Lemma 2.3 (Correctness of Vertex Mapping Algorithm)
Vertex mapping Algorithm 2 runs in O(nc) time and maps each defender’s
pure strategy D to a unique vertex of Hd.

Combining all the above results together, we provide a general algorithmic
framework shown next.

Algorithm 3: General algorithmic framework for non-additive security game

1. Utility transformations: Transform the original utility functions {B(U)} and {L(U)} to the
corresponding common utilities {Bc(U)} and {Lc(U)} based on Möbius transformation;

2. Solve the compact problem: Solve the linear program (2.16) to obtain the optimal
compact strategy t∗ by ellipsoid method;

3. Convex decomposition: Decompose optimal compact strategy t∗ into the convex

combination: t∗ =
n+1∑
i=1

λivi by exactly solving the defender oracle problem;

4. Vertex mapping: Map each vertex vi to a defender pure strategy Di by Algorithm 1,
output the defender’s NE strategy:

play pure strategy Di with probability λi , 1 ≤ i ≤ n+ 1;
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2.4.3 Applications

In this subsection, we will discuss the applications of our developed algorithmic
framework to several security domain problems.

2.4.3.1 Network Security Game

The network security game [14, 23] is given by the following definitions.

Definition 2.3 A network security game is given by the tuple (G, T, Fa, c), where
G= (V, E) with node set V , edge set E, T is the network value function, Fa is the
failure operator, c is the maximum number of nodes the attacker can choose, while
the defender can protect any target.

The network value function T : G → R is a security measure assessing the
utility of a network, and failure operator Fa : 2G→ 2G is to generate a new network
via a specific failure mode after removing some nodes. For example, Shakarian et
al. [23] adopt the number of connected load nodes as T, and edge cascading failure
model as Fa. We next discuss several classical network security games that can be
solved in polynomial time.

Example 2.3 (Security Game in a Tree Network) In cybersecurity, the sensor
network often exhibits a tree topology. The game is such that the attacker attempts to
invade some nodes to destroy the connectedness of the network and the IT manager
is required to deploy anti-virus software in some nodes. Suppose that the network
G consists of m connected components: V1, V2, . . . , Vm and both players adopt the
following network value functions

T (G) = max
1≤i≤m

|Vi |. (2.23)

In practice, we assume that the attacker can simultaneously invade at most two
nodes, i.e., c= 2. Then, if node i is attacked, the tree G is divided into 2 sub-trees:
Gi1 and Gi2, and the benefit is given by

B({i}) = n−max{|Gi1|, |Gi2|} = min{n− |Gi1|, n− |Gi2|}.

Similarly, if node j is attacked, the tree G is divided into 2 sub-trees: Gj1 and Gj2,
and the benefit is given by

B({j}) = n−max{|Gj1|, |Gj2|} = min{n− |Gj1|, n− |Gj2|}.

Without loss of generality, suppose j∈Gi2, then if nodes i, j are simultaneously
attacked, the tree G is divided into 3 subtrees: Gi1, Gi21 and Gi22, where the latter
two are obtained by dividing Gi2. The corresponding benefit is given by
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B({i,j})= n−max{|Gi1|, |Gi21|, |Gi22|} =min{n− |Gi1|, n− |Gi21|, n− |Gi22|}.

Then one can easily show that the following holds true for any i, j∈ [n],

B({i, j}) ≤ B({i})+ B({j})

and Bc({i, j})≤ 0. Combining this result with Theorem 2.5, one can easily show
that the defender oracle problem is a submodular minimization problem, which can
be solved in polynomial time. Further, we can use Algorithm 1 to determine an
equilibrium strategy in polynomial time.

Example 2.4 (Security Game in a Sparse Network) As can be seen in (Fig. 2.4), the
real world network is extremely sparse and the largest connect component is always
small compared to the network scale, i.e, O(log(n)). In this case, we have the
following result.

Lemma 2.4 A network security game (G, T, Fa, c) can be solved in poly (n) time if
the largest connected component of G is Θ(log(n)).

The basic intuition is that, when the network is extremely sparse such that the
largest connected component of G is Θ(log(n)), the common utility functions
defined in (2.11) will satisfy a separable condition

U =
m⋃

i=1

Ui,∀Ui ⊂ Vi, Ui �= ∅

=⇒ Bc(U) = Cc
a(U) = Cc

d(Uc) = 0.

Then, one can easily show that the defender oracle problem can be separated into
O(n) subproblems, each of which can be solved in polynomial time. Combining this
result with Theorem 2.5, we can solve this network security game in polynomial
time.

Fig. 2.4 Security game in a sparse network and tree network
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2.4.3.2 Security Game with Multiple Attacker Resources

There exists several other important applications of our developed algorithmic
framework.

LAX Airport Checkpoint Placement Problem [24] This problem is one of the
earliest applications of security games. In this setting, the security force has k police
officers that are to be deployed across n (where k < n) checkpoints. Each police
officer can be deployed at any given check point. Therefore, any subset of [n] of
size at most k is a defender pure strategy. Korzhyk et al. [25] extends this game
model into the multiple attacker resources and shows that this problem can still be
solved in poly(n) time by a state transition algorithm [25]. In our framework, the
DOP is the linear optimization over a uniform matroid.

max wT x

s.t.
∑n

i=1 xi ≤ k, x ∈ {0, 1}n.
(2.24)

The above problem can be solved in polynomial time by summing the k largest
elements of vector w. Thus, it verifies previous results.

In the following three cases, the defender’s resources are heterogeneous such that
there exists some practical constrains in the set system ε.

Geographic Constrained Patrolling Problem In the patrolling problem, due to
geographic constraints, the police officer can only patrol the area around the station.
In this case, the resources of different defenders (police) can defend different groups
of targets. In our framework, we can construct a weighted bipartite graph as follows:
(1) two disjoint sets U, V , where U represents all the nodes, and V represents all the
resources; (2) there exists an edge between the node u in U and node v in V if the
resource v can cover node u; (3) associate each edge (u,v) with a weight wu (w is the
vector in the DOP). Then the DOP is a weighted bipartite matching problem, which
can be solved in polynomial time by Hungarian algorithm.

Federal Air Marshal Scheduling Problem [10] In such applications, one air
marshal is assigned to protect several sequential flights with the constraint that any
destination of the previous flight is the departure of the next flight. The objective
is to cover all current flights. In [26], the authors investigate this problem under
single attacker resources and shows the polynomial solvability in some cases and
NP-hardness in other cases. However, attackers may initiate simultaneous attacks
(e.g., the flights of 911) and there still does not exist any efficient algorithm. In
our framework, we can construct the following weighted set cover problem: let the
node set [n] be the universe and all the air marshals constitute the collection S of
subsets of [n]; then associate the weight w to each element of the universe. Then,
the DOP is a weighted set cover problem and our results show that when the attacker
has multiple resources, the problem is generally NP-hard but we can still solve this
problem in some cases. For example, if each air marshal can protect at most two
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flights (a pair of round trip flights), the set system ε indeed encodes the weighted
2-cover, which can be solved in poly(n) time.

Spatio-Temporal Security Game [12,27] In many applications of security games,
an important class is the spatio-temporal security game. This kind of game is used to
model the games played in the spatio-temporal spaces such as planning patrol boats
of the US Coast Guard [12], wildlife protection [27]. The current solution technique
of this game is to discretize the space and time and build 2-D gird, in which the
security force patrol the points. Combining the results in [28], we can show that
spatio-temporal security game with multiple attacker resources are indeed a min-
cost flow problem, which can be solved in poly(n) time.

There exist other applications that can be cast in our framework such as passenger
screening for the Transportation Security Administration [11]. Indeed, based on our
general framework in Algorithm 3, all the results under the single attacker resources
can be directly extended to the scenario of multiple attacker resources.

2.5 Approximated Equilibrium Computation by Low Rank
Decomposition

In the previous section, we have developed a compact representation technique and
algorithmic framework such that one can reduce the problem of determining the
equilibrium point of NASG to a combinatorial optimization problem. However, one
pessimistic result is that the defender oracle problem in general is NP-hard, which
is high-complexity to be solved in practice. A natural question is the following: in
practical network security games, can we still efficiently solve an equilibrium point.
Actually, one crucial observation is that the common utility in realistic networks is
concentrated around zero.

In Fig. 2.5, we examine the distributions of the benefit function and its common
utility function in the following two kinds of network: Erdös-Renyi network G(n, p)
and scale-free network G(n, α), where n is the number of nodes, p is the probability
that any two nodes are connected, α is the parameter of degree distribution of
the scale-free network. Suppose that the network G consists of m connected
components: V1, V2, . . . , Vm and we adopt the following two kinds of network
value functions,

T1(G) = max
1≤i≤m

|Vi |, T2(G) =
m∑

i=1

|Vi |2.

The different form of network value functions have different assessment of the
network. The detailed comparison can be found in [14]. As can be seen in Fig. 2.5,
in both Erdös-Renyi and scale-free networks, although the distribution of the benefit
function is random, the distribution of the common utility function is concentrated
around zero and 90% of them are less than 0.05. In particular, when the number of
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Fig. 2.5 The distributions of common utility function and benefit function. All their value are
absolute value and normalized in [0, 1]

nodes increases, this phenomenon is amplified such that almost 99% of the common
utility functions are less than 0.05.

Based on the above observation, we can let most of the common utility functions
equal to 0 according to a given threshold εc. Formally, let B̃c(·) denote the
new common utility function generated by Algorithm 2, then the corresponding
approximate benefit function satisfies

|B̃(U)− B(U)| =
∣∣∣∣∣∣
∑

W⊆U

B̃c(W)−
∑

W⊆U

Bc(W)

∣∣∣∣∣∣
≤
∑

W⊆U

∣∣∣B̃c(W)− Bc(W)

∣∣∣ ≤ 2|U |εc.

Since |U|≤ c, the maximum error between the original benefit functions and new
generated benefit functions is less than 2cεc. A classic result of game theory is that,
if the maximum difference between the elements of two payoff matrices is bounded
by ε, the difference of the optimal game values yielded by these two payoff matrices
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Fig. 2.6 Top: the size of support set |S| versus approximation error ε; Bottom: the complexity
term maxi|Ui| versus approximation error ε. Remark that the ε represents the approximation error
of the game value. Note that SF denotes the scale-free network

are bounded by 2ε [22]. Therefore, the approximation error of our game value is
bounded by 2c+1εc.

As shown at the top of Fig. 2.6, for the Erdös Renyi, scale-free and Italian
communication network, the size of support set will be reduced 90% by an
extremely small approximation error 0.05. Moreover, this process also leads to
a separable structure of S, and the resulting complexity of solving the NASG is
poly(n)O(2maxi |Ui |). For example, in the bottom of Fig. 2.6, the complexity term
maxi|Ui| can be greatly reduced to the order of Θ(log(n)) with an approximation
error of 1%, regardless of the size and density of the network, and how many targets
the attacker can choose. More comprehensive numerical results can be found in
[15]. In summary, our approximation framework can reduce the complexity term
maxi|Ui| to order Θ(log(n)) by only 10% approximation error in most networks
including Erdös-Renyi, scale-free network and a 39-nodes Italian communication
network. Therefore, using our theoretical framework, we can approximately and
compactly represent a realistic network security game and solve it in poly(n)
time with high accuracy.
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2.6 Future Research Directions

In this section, we outline several future research directions.

2.6.1 Learning-Based Proactive Network Defense

In our proposed NASG, we suppose that probability distribution of attacker type is
known to the defender and regarded as a prior belief of defense group, and can be
formed by the Bayesian rule. However, in practical settings, some of the information
might be unknown to the defense group. This problem can be investigated by
incorporating a learning framework into our Non-additive Security Game based on
the following two scenarios: (1) full information setting: both the attacker type and
action is known in each time slot t. We need to construct an online learning algorithm
to form the belief of attacker type distribution; (2) partial information setting: only
the attacker action is known in each time slot t. This kind of problem can be cast into
a multi-arm bandits setting. The key challenge here will be in designing algorithms
that provide a small (sublinear) regret.

2.6.2 Game-Theoretical Network Defense with Boundedly
Rational Players

In our proposed NASG, we suppose that all the players are fully rational. However,
in real situations, the players such as civilians will have bounded rationality. To
model this behavior, the quantal response equilibrium is a more appropriate solution
concept. The challenge is that, due to the introduction of the quantal response model,
such an optimization problem has a non-convex fractional objective function, which
is generally hard to solve. The goal lies in how to transform such an problem into a
sequence of convex optimization problem and solve each sub-problem efficiently.

2.6.3 Multi-Scale Proactive Network Defense

In the previous sections, we have already discussed the general model and algo-
rithmic framework of game-theoretical proactive network defense. However, in the
future battlefields, there exists multiple factors that will greatly change the current
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game structure. For example, internet of things make the network structure highly
dynamic. Other key factors includes:

Multi-Party Games In this game there exist multiple players in both the defense
and adversarial groups. In addition, in practice, there may also exist “neutral
players” that could potentially be influenced by the strategies of the attackers
and defenders. These kinds of dependency are sometimes characterized by the
underlying social networks formed among all the players. For example, in the battle
with adversarial group Lashkar-e-Taiba, the players in the defense group would
include the US and Indian Governments, as well as other peaceful nationals. They
share the defense resources and cooperate with each other. In contrast, the players
in the opposing groups include training camps, military bases, and get political
supports from diaspora and foreign states. The players in the neutral group can be
regarded as civilians or the weak peaceful groups in Pakistan.

Multi-Genre Networks In real scenarios, there exists some linkage structure
among different infrastructures due to the effect of the underlying multi-genre
networks. One well-known example is the interdependence network formed by
power grid and communication systems [29]. Due to the dependencies among
different targets, attacking one target will influence other targets. For instance, an
attacker attempts to destroy the connectivity of a network and the defender aims
to protect it. The strategy for both players is to choose the nodes of the network
to either protect or attack. If there are two nodes that constitute a bridge in this
network or inter-dependent network, successfully attacking both of them will split
the network into two parts and incur a huge damage, while attacking any one of
them may have limited impact.

Actually, as shown in Fig. 2.7, we can generalize NASG to Multi-Stage Multi-
Party Bayesian Security Game with considering the interaction between multi-genre
networks, multi-parties and uncertain attacker behavior. It contains a time horizon
T ={1, 2, . . . , t} and runs Multi-Party Bayesian Security Games in each time slot t,
which contains three kinds of players: defenders, attackers and neutrals. Social links
could exist among some of the players in different groups such that the decision
making of different players are dependent on each other. Each player i in the
adversarial group is from a set of possible types θ i (multiple adversary types trying
to infiltrate security). The defender has a belief p[t] of the attacker’s uncertainty,
which is a probability distribution over all the adversarial players’ types. The belief
p[t] is a prior of defender before playing the game in time slot t, and can be formed
by a Bayesian rule and learning the actions of all the agents in the previous time
slots. The objective of the MMBSG is to calculate the mixed strategy (a probability
distribution over each pure strategies) Nash Equilibrium (NE) in each time slot t, and
the key lies in how the solve this game efficiently based on our previously developed
technique.



56 S. Wang and N. Shroff

Communication network

Power grid

Communication network

Defender (Bayesian
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Fig. 2.7 Overview of our proposed compositional game theory framework consisting of an
interdependent network between power grid and communication network. The attacker has
multiple attacking types. The defender needs a learning-based belief formation regarding attacking
types, and then determine an equilibrium strategy

2.7 Conclusion

In this Chapter, we have aimed to illustrate that game theory can provide a sound
mathematical approach to combat attacks across a wide range of applications.
However, to do this one most go beyond the existing game theoretic models that
typically assume additive utility functions, or that the attacker can attack only
one target. While such assumptions have lead to tractable analyses, they miss
key inherent dependencies that exist among different targets in current complex
networks. In this chapter, we generalize the traditional security game model to
the network scenario capturing network dependencies and the possibilities of a
coordinated multi-resource attacks. We show that each security game is equivalent
to a combinatorial optimization problem over a set system, which consists of
defender’s pure strategy space. The key technique we use is based on projection
of a polytope based transformation, and the ellipsoid method. While in its most
generality, capturing the equilibria under such an intricate model, is computationally
hard, we provide several important classes of real-life problems for which our
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techniques can be used to develop optimal defense mechanisms. Based on our new
mathematical framework, we outline a number of important future directions that
can be investigated. The area of game theory coupled with reinforcement learning
is fertile ground for solving many important security related problems.
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