
Transactions and Concurrency Control
CMPS 4760/6760: Distributed Systems

1

Overview

§ Transactions (16.1-16.2)

§ Concurrency control (16.4-16.5)

§ Distributed transactions (17.3.1)

2

Simple synchronization

§ Consider a single server that manages multiple remote objects

§ The server uses multiple threads to allow the objects to be accessed by
multiple clients concurrently

3

A Banking Example

4

deposit(amount)
deposit amount in the account

withdraw(amount)
withdraw amount from the account

getBalance() -> amount
return the balance of the account

setBalance(amount)
set the balance of the account to amount

create(name) -> account
create a new account with a given name

lookUp(name) -> account
return a reference to the account with the given name

branchTotal() -> amount
return the total of all the balances at the branch

Operations of the Account interface Operations of the Branch interface

Atomic operations

§ A possible implementation of deposit(amount)
1. read the current balance
2. increase the balance by amount

§ Two separate invocations can be interleaved arbitrarily and have strange effects

§ Atomic operations: operations that are free from interference from concurrent
operations

• e.g., synchronized methods in Java + wait/notify methods to enhance
communication among threads

5

Transactions

§ Series of operations executed by client

§ Each operation is an RPC to a server

§ They are free from interference operations from other concurrent clients

§ Transaction either
• completes and commits all its operations at server
• Commit = reflect updates on server-side objects

• Or aborts and has no effect on server

6

Example: Transaction

7

Client code:

int transaction_id = openTransaction();

balance = b.getBalance();

b.setBalance(balance*1.1);

a.withdraw (balance/10);

// commit entire transaction or abort

closeTransaction(transaction_id);

RPCs

// read(b)

// write(b)
// write(a)

Operations in Coordinator interface

8

openTransaction() -> trans;
starts a new transaction and delivers a unique TID trans. This
identifier will be used in the other operations in the transaction.

closeTransaction(trans) -> (commit, abort);
ends a transaction: a commit return value indicates that the
transaction has committed; an abort return value indicates that it
has aborted.

abortTransaction(trans);
aborts the transaction.

Transaction life histories

9

Successful Aborted by client Aborted by server

openTransaction openTransaction openTransaction
operation operation operation
operation operation operation

server aborts
transaction

operation operation operation ERROR
reported to client

closeTransaction abortTransaction

Transaction life histories

10

Successful Aborted by client Aborted by server

openTransaction openTransaction openTransaction
operation operation operation
operation operation operation

server aborts
transaction

operation operation operation ERROR
reported to client

closeTransaction abortTransaction

Transaction life histories

11

Successful Aborted by client Aborted by server

openTransaction openTransaction openTransaction
operation operation operation
operation operation operation

server aborts
transaction

operation operation operation ERROR
reported to client

closeTransaction abortTransaction

The lost update problem

12

Transaction T :
balance = b.getBalance();
b.setBalance(balance*1.1);
a.withdraw(balance/10)

Transaction U:

balance = b.getBalance();
b.setBalance(balance*1.1);
c.withdraw(balance/10)

Initial balance
A: 100
B: 200
C: 300

If T and U are run sequentially, then the closing balances would be:

Case 1: (T, U)

A: 100-200/10 = 80
B: 200*1.1*1.1 = 242
C: 300-(200*1.1)/10 = 278

Case 2: (U, T)

A: 100-(200*1.1)/10 = 78
B: 200*1.1*1.1 = 242
C: 300-200/10 = 280

The lost update problem

13

Transaction T :
balance = b.getBalance();
b.setBalance(balance*1.1);
a.withdraw(balance/10)

Transaction U:

balance = b.getBalance();
b.setBalance(balance*1.1);
c.withdraw(balance/10)

balance = b.getBalance(); $200

balance = b.getBalance(); $200

b.setBalance(balance*1.1); $220

b.setBalance(balance*1.1); $220

a.withdraw(balance/10) $80

c.withdraw(balance/10) $280

Initial balance
A: 100
B: 200
C: 300

The inconsistent retrievals problem

14

Transaction V :
a.withdraw(100)
b.deposit(100)

Transaction W:

aBranch.branchTotal()

a.withdraw(100); $100
total = a.getBalance() $100

total = total+b.getBalance() $300

b.deposit(100) $300

Initial balance
A: 200
B: 200

ACID Properties of Transactions

§ Atomicity: All or nothing: a transaction should either i) complete successfully, so its
effects are recorded in the server objects; or ii) the transaction has no effect at all.

§ Consistency: if the server starts in a consistent state, the transaction ends the server in a
consistent state.

§ Isolation: Each transaction must be performed without interference from other
transactions, i.e., non-final effects of a transaction must not be visible to other
transactions.

§ Durability: After a transaction has completed successfully, all its effects are saved in
permanent storage.

15

Concurrent Transactions

§ To prevent transactions from affecting each other

• Could execute them one at a time at server

• But reduces number of concurrent transactions

• Transactions per second directly related to revenue of companies

§ Goal: increase concurrency while maintaining correctness (ACID)

16

Serial Equivalence

§ An interleaving (say O) of transaction operations is serially equivalent if:
• There is some ordering (O’) of those transactions, one at a time,

• Where the operations of each transaction occur consecutively (in a batch),

• Which gives the same end-result (for all objects and transactions) as the
interleaving O

17

A serially equivalent interleaving of T and U

18

Transaction T:

balance = b.getBalance()
b.setBalance(balance*1.1)
a.withdraw(balance/10)

Transaction U:

balance = b.getBalance()
b.setBalance(balance*1.1)
c.withdraw(balance/10)

balance = b.getBalance() $200

b.setBalance(balance*1.1) $220
balance = b.getBalance() $220

b.setBalance(balance*1.1) $242
a.withdraw(balance/10) $80

c.withdraw(balance/10) $278

A serially equivalent interleaving of V and W

19

Transaction V :

a.withdraw(100);
b.deposit(100)

Transaction W:

aBranch.branchTotal()

a.withdraw(100); $100

b.deposit(100) $300

total = a.getBalance() $100

total = total+b.getBalance() $400

...

A non-serially equivalent interleaving of operations

§ End-result:
• The interleaving above: i=10, j=20, x=5, y=5, z=10
• (T, U): i=10, j=30, x=5, y=20, z=10
• (U, T): i=10, j=20, x=5, y=5, z=5 20

Transaction T : Transaction U:

x = read(i)
write(i, 10)

y = read(j)
write(j, 30)

write(j, 20)
z = read (i)

Initial balance
i: 5
j: 5

Checking for Serial Equivalence

§ An operation has an effect on
• The server object if it is a write
• The client (returned value) if it is a read

§ Two operations are said to be conflicting
operations, if their combined effect
depends on the order they are executed

21

Operations of different
transactions

Conflict

read read No Because the effect of a pair of
does not depend on the order in which they are
executed

read write Yes Because the effect of a
depends on the order of their execution

write write Yes Because the effect of a pair of
depends on the order of their execution

Checking for Serial Equivalence

§ Take all pairs of conflict operations, one from T1 and one from T2

§ If the T1 operation was reflected first on the server, mark the pair as “(T1,
T2)”, otherwise mark it as “(T2, T1)”

§All pairs should be marked as either “(T1, T2)” or all pairs should be marked
as “(T2, T1)”.

22

A non-serially equivalent interleaving of operations

23

Transaction T : Transaction U:

x = read(i)
write(i, 10)

y = read(j)
write(j, 30)

write(j, 20)
z = read (i)

Initial balance
i: 5
j: 5

Recovery from aborts

§ Server must record the effects of all committed transactions and none of
the effects of aborted transactions.

§ Problems due to aborted transactions:

• dirty reads

• premature writes.

§ Both can occur in serially equivalent executions of transactions.

24

A dirty read when transaction T aborts

25

Transaction T :

a.getBalance()
a.setBalance(balance + 10)

Transaction U:

a.getBalance()
a.setBalance(balance + 20)

balance = a.getBalance() $100

a.setBalance(balance + 10) $110
balance = a.getBalance() $110

a.setBalance(balance + 20) $130

commit transaction
abort transaction

§ Can lead to cascading aborts

Overwriting uncommitted values

§ Some database systems implement the action of abort by restoring ‘before images’
of all the writes of a transaction.

§ If U aborts and T commits, the balance should be $105

§ If U commits and then T aborts, what is the balance?

§ To ensure correct results in a recovery scheme that uses before images, write
operations must be delayed until earlier transactions that updated the same
objects have either committed or aborted. 26

Transaction T :

a.setBalance(105)

Transaction U:

a.setBalance(110)

$100
a.setBalance(105) $105

a.setBalance(110) $110

$110$100

Strict executions of transactions

§ The executions of transactions are called strict if the service delays
both read and write operations on an object until all transactions
that previously wrote that object have either committed or aborted

§ Avoids dirty reads and premature writes

§ Enforces the desired property of isolation

§ But reduces concurrency

27

Overview

§ Transactions (16.1-16.2)

§ Concurrency control (16.4-16.5)

§ Distributed transactions (17.3.1)

28

Concurrency control

§ Pessimistic: assume the worst, prevent transactions from accessing the
same object
• E.g., Locking (16.4)

§ Optimistic: assume the best, allow transactions to write, but check later
• E.g., Check at commit time (16.5)

§ Timestamp ordering (16.6)

29

Exclusive Locking

§ Each object has a lock

§ At most one transaction can be inside lock

§ Before reading or writing object O, transaction T must call lock(O)
• Blocks if another transaction already inside lock

§ After entering lock T can read and write O multiple times

§ When done (or at commit point), T calls unlock(O)
• If other transactions waiting at lock(O), allows one of them in

§ Sound familiar? (This is Mutual Exclusion!)

30

Transactions T and U with exclusive locks

31

Transaction T:
balance = b.getBalance()
b.setBalance(bal*1.1)
a.withdraw(bal/10)

Transaction U:

balance = b.getBalance()
b.setBalance(bal*1.1)
c.withdraw(bal/10)

Operations Locks Operations Locks

openTransaction
bal = b.getBalance() lock B

b.setBalance(bal*1.1) openTransaction

a.withdraw(bal/10) lock A bal = b.getBalance() waits for T ’s lock on B

closeTransaction unlock A, B

lock B

b.setBalance(bal*1.1)
c.withdraw(bal/10) lock C

closeTransaction unlock B, C

Can we improve concurrency

§ More concurrency => more transactions per second => more revenue ($$$)

§ Real-life workloads have a lot of read-only or read-mostly transactions
• Exclusive locking reduces concurrency
• Ok to allow two transactions to concurrently read an object, since read-read is

not a conflicting pair

32

Read-Write Locks

§ Each object has a lock that can be held in one of two modes
• Read mode: multiple transactions allowed in (shared lock)
• Write mode: exclusive lock

§ Before first reading O, transaction T calls read_lock(O)
• T allowed in only if all transactions inside lock for O all entered via read mode
• Not allowed if any transaction inside lock for O entered via write mode

33

Read-Write Locks

§ Before first writing O, call write_lock(O)

• Allowed in only if no other transaction inside lock

§ If T already holds read_lock(O), and wants to write, call write_lock(O) to promote
lock from read to write mode

• Succeeds only if no other transactions in write mode or read mode

• Otherwise, T blocks

§ Unlock(O) called by transaction T releases any lock on O by T

§ It is not safe to demote a lock held by a transaction before it commits as this may
allow executions by other transactions that are inconsistent with serial equivalence

34

Lock compatibility

For one object Lock requested
read write

Lock already set none OK OK

read OK wait

write wait wait

Two-phase locking

§ A transaction cannot acquire (or promote) any locks after it has started
releasing locks

§ Transaction has two phases

1. Growing phase: only acquires or promotes locks

2. Shrinking phase: only releases locks

§ Strict two-phase locking: releases locks only at commit point

• => strict execution

36

=> serial equivalence

Two-phase Locking => Serial Equivalence

§ Proof by contradiction

§ Assume serial equivalence is violated for some two transactions T1, T2
§ Two facts must then be true:

(A) For some object O1, there were conflicting operations in T1 and T2 such that the
time ordering pair is (T1, T2)
(B) For some object O2, the conflicting operation pair is (T2, T1)

• (A) => T1 released O1’s lock and T2 acquired it after that
=> T1’s shrinking phase is before or overlaps with T2’s growing phase

§ Similarly, (B) => T2’s shrinking phase is before or overlaps with T1’s growing phase

§ A contradiction!!

37

Deadlock with write locks

38

Transaction T Transaction U

Operations Locks Operations Locks

a.deposit(100); write lock A

b.deposit(200) write lock B
b.withdraw(100)

waits for U’s a.withdraw(200); waits for T’slock on B lock on A

T U

B

A

Waits for

Held by

Held by

UT

Waits for

When do Deadlocks Occur

§ 3 necessary conditions for a deadlock to occur

1. Some objects are accessed in exclusive lock modes

2. Transactions holding locks cannot be preempted

3. There is a circular wait (cycle) in the Wait-for graph

§ Can be used to prevent and detect deadlocks

39

Timeout

Transaction T Transaction U

Operations Locks Operations Locks

a.deposit(100); write lock A

b.deposit(200) write lock B

b.withdraw(100)
waits for U’s a.withdraw(200); waits for T’s
lock on B lock on A

(timeout elapses)

T’s lock on A becomes vulnerable,
unlock A, abort T

a.withdraw(200); write locks A
unlock A, B

Downside of Locking

§ Overhead: lock may be necessary only in the worst case
• consider two client processes that are concurrently incrementing the values

of n objects. The chances that the two programs will attempt to access the
same object at the same time are just 1 in n on average

§ To avoid dirty reads and premature writes, locks cannot be released
until end of the transaction

§ Deadlock

41

Concurrency control

§ Pessimistic: assume the worst, prevent transactions from accessing the
same object
• E.g., Locking (16.4)

§ Optimistic: assume the best, allow transactions to write, but check later
• E.g., Check at commit time (16.5)

§ Timestamp ordering (16.6)

42

Beyond Pessimistic Concurrency Control

§ Increases concurrency more than pessimistic concurrency control

§ Increases transactions per second

§ For non-transaction systems, increases operations per second and lowers latency

§ Used in Dropbox, Google apps, Wikipedia, key-value stores like Cassandra, Riak,
and Amazon’s Dynamo

§ Preferable than pessimistic when conflicts are expected to be rare
• But still need to ensure conflicts are caught!

43

Opportunistic Concurrency control

§ Most basic approach
• Write and read objects at will
• Check for serial equivalence at commit time
• If abort, roll back updates made
• An abort may result in other transactions that read dirty data, also being

aborted

44

Timestamp Ordering

§ Assign each transaction an id

§ Transaction id determines its position in serialization order

§ Ensure that for a transaction T, both are true:
1. T’s write to object O allowed only if transactions that have read or written O

had lower ids than T.
2. T’s read to object O is allowed only if O was last written by a transaction

with a lower id than T.

§ Implemented by maintaining read and write timestamps for the object

§ If rule violated, abort!

45

Multi-version Concurrency Control

§ For each object
• A per-transaction version of the object is maintained

• Marked as tentative versions
• And a committed version

§ Each tentative version has a timestamp
• Some systems maintain both a read timestamp and a write timestamp

§ On a read or write, find the “correct” tentative version to read or write from
• “Correct” based on transaction id, and tries to make transactions only read from

“immediately previous” transactions

46

Overview

§ Transactions (16.1-16.2)

§ Concurrency control (16.4-16.5)

§ Distributed transactions (17.3.1)

47

Distributed Transactions

48

(a) Flat transaction (b) Nested transactions

Atomic Commit Protocols

§ The initiator of a transaction is
called the coordinator, and the
remaining servers are participants

§ When a distributed transaction
comes to an end, either all of its
operations are carried out or
none of them

§ All the servers involved need to
reach an agreement

§ A consensus problem

49

server

coordinator

client

server

server

server

participant

participant

participant

Atomic Commit Protocols

§ Designed for an asynchronous
system where servers may crash
and messages may be lost

§ A crashed process is eventually
replaced with a new process
whose state is set from
information saved in permanent
storage and information held by
other processes

§ No Byzantine faults

50

server

coordinator

client

server

server

server

participant

participant

participant

One-phase Commit

server

coordinator

client

server

server

server

participant

participant

participant

Commit

Commit

Commit

One-phase Commit

52

server

coordinator

client

server

server

server

participant

participant

participant

Ack

Ack

Ack

• If a participant deadlocks
or faces a local problem
then the coordinator may
never be able to find it.

Two-phase commit (2PC)

53

server

coordinator

client

server

server

server

participant

participant

participant

canCommit?

canCommit?

canCommit?

Phase 1: Voting Phase

Two-phase commit (2PC)

54

server

coordinator

client

server

server

server

participant

participant

participant

Yes

Yes

Yes

Phase 1: Voting Phase

Two-phase commit (2PC)

55

server

coordinator

client

server

server

server

participant

participant

participant

doCommit

doCommit

doCommit

Phase 2: Commit Phase

Two-phase commit (2PC)

56

server

coordinator

client

server

server

server

participant

participant

participant

haveCommitted

haveCommitted

haveCommitted

Phase 2: Commit Phase

Two-phase commit protocol

Coordinator

§ Write prepare to commit to log

§ Send canCommit? message

§ Wait for all participants to respond

57

Phase 1: Voting Phase

Participant

§ Work on transaction

§ Wait for message from coordinator

§ Receive the canCommit? message

§ When ready, write agree to commit or
abort to the log

§ Send Yes or No to the coordinator. If voting
No, abort immediately

Two-phase commit protocol

Coordinator

§ Write commit or abort to log

§ Send doCommit or doAbort

§ Wait for all participants to
respond

§ Clean up all state. Done!
58

Phase 2: Commit Phase

Participant

§ Wait for commit/abort message

§ Receive doCommit or doAbort

§ If a doCommit was received, write “commit”
to the log, release all locks, update databases,
call haveComitted (a method implemented by
the coordinator)

§ If a doAbort was received, undo all changes

Failure scenarios in 2PC

(Phase 1)

Fault: Coordinator did not receive YES / NO:

OR

Participant did not receive VOTE:

Solution: Broadcast ABORT after certain timeout;

Abort local transactions after certain timeout

Failure scenarios in 2PC

(Phase 2)

Fault: A participant does not receive COMMIT or ABORT from the coordinator
• E.g., coordinator crashed after sending ABORT or COMIT to a fraction of the

participants.
• Such a participant is uncertain of the outcome and cannot decide unilaterally

what to do next, and meanwhile the objects used by its transaction cannot be
released for use by other transactions
• The participants may query the coordinator or obtain a decision cooperatively.
• In the worst-case when all the active participants are uncertain, they remain

undecided, until the coordinator is repaired and reinstalled.

A known weakness of 2PC => 3PC (see Homework 4)

60

