Midterm

- When: Mar 16 (Tu) 2:05-3:15pm
- Where: Zoom meeting
 - Meeting link same as the class meeting link
 - camera on during the entire exam period
 - your exam will not be graded if you do not join the Zoom meeting
- Open-book and open-notes
 - You are NOT allowed to communicate with each other or search solutions online
- Office hours: Mar 15 (M) 2-3pm

Topics

- Overview (chapters 1-2)
- Interprocess communication (chapters 3-5)
- Time and global states (chapter 14)
- Coordination (chapter 15)

Overview

- What Is a Distributed System?
 - A network of processes: the processes interact with one other to achieve a goal
 - no global clock, fail independently, collective objective, ...
- Examples of distributed Systems: Internet, P2P, Cloud, ...
- Challenges: heterogeneity, scalability, transparency, ...

Overview

- Architectural models
 - Communication entities: processes, objects, components, ...
 - Communication paradigms: message passing, multicast, RPC, RMI, ...
 - Client-Server vs. P2P
- Fundamental models
 - Synchronous vs. asynchronous systems
 - Common failure types: crash, omission, byzantine

Interprocess Communication

Interprocess Communication

- Internet protocols
 - packet switching, four types of delays
 - IP: routing and forwarding, addressing
 - TCP/UDP: sockets, (de)multiplexing, reliable data transfer
- Socket programming and IP multicast
- RPC and RMI
 - marshalling and unmarshalling
 - call semantics of request-reply communication
 - Implementation of RPC and RMI

Time and global states

- Physical time
 - clock drift and skew
 - synchronization: Cristian's algorithm, Berkeley algorithm (byzantine clocks)
- Logical time
 - modeling distributed systems, global states, happened-before model
 - Lamport logical clocks, vector clocks
- Global state
 - cuts, consistent cuts
 - Chandy and Lamport's snapshot algorithm (FIFO channels, safety & liveness)

Mutual Exclusion

- Correctness: safety, liveness, fairness
- Performance: message complexity, client delay, synchronization delay
- A simple centralized solution, a ring-based solution
- Ricart-Agrawala algorithm, Maekawa's algorithm

Leader Election

- Correctness: safety, liveness
- Performance: message complexity, turnaround time
- Chang-Roberts algorithm (asynchronous & no failure)
- Bully algorithm (synchronous & crash)

Group Communication

- Why multicast?
- Programming model
- Reliable multicast: integrality, validity, agreement
- Ordered multicast: FIFO ordering, causal ordering, total ordering