
Leader Election
CMPS 4760/6760: Distributed Systems

1

Acknowledgement: slides adapted from Indranil Gupta’s lecture notes: 
https://courses.engr.illinois.edu/cs425/fa2019/index.html



Why Election?

§ Ex. 1: Your Bank account details are replicated at a few servers, but one of 
these servers is responsible for receiving all reads and writes, i.e., it is the 
leader among the replicas

• What if there are two leaders per customer?

• What if servers disagree about who the leader is?

• What if the leader crashes?

Each of the above scenarios leads to Inconsistency

2



Why Election?

§ Ex. 2: Electing a Coordinator

• E.g., centralized mutual exclusion

§ Ex. 3: Breaking symmetry 

• E.g., remove one of the nodes in the cycle to remove the deadlock 

3



Leader Election Problem

§ In a group of processes, elect a Leader to undertake special tasks
• And let everyone know in the group about this Leader 

§What happens when a leader fails (crashes)
• Some process detects this (using a Failure Detector, see 15.1)

• Then what?

§Focus of this lecture: Election algorithm. Its goal:
1. Elect one leader only among the non-faulty processes

2. All non-faulty processes agree on who is the leader

4



System Model

§N processes
§Each process has a unique identifier
• the ‘identifier’ may be any useful value, as long as they are unique and 

totally ordered, e.g., IP address, <1/load, i>

§Messages are eventually delivered
• the network may be partitioned in any particular interval of time, but
• a reliable communication protocol masks channel failures 

§Failures may occur during the election protocol 
• Processes fail only by crashing

5



Problem Specification
§ Any process can call for an election 

• E.g., when it detects the leader has failed

• a process can call for at most one election at a time

§ Multiple processes can call for elections concurrently 
• All of them together must yield only a single leader

• The result of an election should not depend on which process calls for it

§ Without loss of generality, we require that the elected process be chosen as the 
one with the largest identifier

6



Correctness

§ At any time, a process is either engaged in some run of the election algorithm (a 
participant) or not currently engaged in any election (a non-participant)

§ Each process has a local variable 𝑒𝑙𝑒𝑐𝑡𝑒𝑑 that defines the leader. When a 
process first becomes a participant, 𝑒𝑙𝑒𝑐𝑡𝑒𝑑 = ⊥ (null) 

§ Safety: for all non-faulty and participant processes, 𝑒𝑙𝑒𝑐𝑡𝑒𝑑 = (𝑃: a particular 
non-faulty process with the largest id) or ⊥

§ Liveness: all non-faulty processes eventually participate and 𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ≠⊥

7



Performance

§ Network bandwidth utilization: total number messages sent

§ Turnaround time: number of serialized message transmission 
times between the initiation and termination of a single run

8



Lead Election vs. Mutual Exclusion

§ Similarity: whichever process enters the critical section becomes the leader

§ Differences

• Starvation/fairness is irrelevant in leader election

• Exit from CS is unnecessary for leader election. 

• Leader needs to inform every active process about its identity

9



Ring Election (Chang-Roberts Algorithm)

§ Assumptions
• Processes arranged in a logical ring: 𝑖-th process 𝑃!

has a communication channel to 𝑃(!#$)&'()
• All messages are sent clockwise around the ring
• No failures (during election)
• Asynchronous systems

§ Main idea: the process with the maximum id gets 
elected as the leader

10

initiator



Chang-Roberts Algorithm

11

𝑷𝒊:: 

var
𝑚𝑦𝑖𝑑: integer;
𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡: boolean initially 𝑓𝑎𝑙𝑠𝑒;
𝑒𝑙𝑒𝑐𝑡𝑒𝑑: integer initially 𝑛𝑢𝑙𝑙;

To initiate election:
send (Election,𝑚𝑦𝑖𝑑) to 𝑃!#$; 
𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡 = 𝑡𝑟𝑢𝑒;

initiator



Chang-Roberts Algorithm

12

Upon receiving a messae (Election, 𝑗):
if (𝑗 > 𝑚𝑦𝑖𝑑)

send Election, 𝑗 to 𝑃!"#;
𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡 = 𝑡𝑟𝑢𝑒;

else if ((𝑗 < 𝑚𝑦𝑖𝑑) ∧ ¬𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡)
send Election,𝑚𝑦𝑖𝑑 to 𝑃!"#;
𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡 = 𝑡𝑟𝑢𝑒;

else if (𝑗 == 𝑚𝑦𝑖𝑑)
send Elected,𝑚𝑦𝑖𝑑 to 𝑃!"#;

Upon receiving a messae (Elected, 𝑗):
𝑒𝑙𝑒𝑐𝑡𝑒𝑑 = 𝑗;
if 𝑗 ≠ 𝑚𝑦𝑖𝑑 send Elected, 𝑗 to 𝑃!"#;

initiator



Ring Election: Example

13

Initiates the election

Election: 3

Goal: Elect highest id process as leader

N80

N32

N5

N12

N6

N3



Initiates the election

Election: 32

Goal: Elect highest id process as leader

N80

N32

N5

N12

N6

N3

14



Initiates the election

Election: 32Goal: Elect highest id process as leader

N80

N32

N5

N12

N6

N3

15



Initiates the election

Election: 80

Goal: Elect highest id process as leader

N80

N32

N5

N12

N6

N3

16



Initiates the election

Election: 80

Goal: Elect highest id process as leader

N80

N32

N5

N12

N6

N3

17



Initiates the election

Election: 80

Goal: Elect highest id process as leader

N80

N32

N5

N12

N6

N3

18



Initiates the election

Election: 80
Goal: Elect highest id process as leader

N80

N32

N5

N12

N6

N3

19



Initiates the election

Elected: 80

Goal: Elect highest id process as leader

N80

N32

N5

N12

N6

N3

20



Initiates the election

Elected: 80

Goal: Elect highest id process as leader

N80

N32

N5

N12

N6

N3

elected = 80

21



Initiates the election

Elected: 80
Goal: Elect highest id process as leader

N80

N32

N5

N12

N6

N3

elected = 80

elected = 80

elected = 80

elected = 80

elected = 80

22



Initiates the election

Goal: Elect highest id process as leader

N80

N32

N5

N12

N6

N3

elected = 80

elected = 80

elected = 80

elected = 80

elected = 80elected = 80

23



Analysis

§ Safety and liveness satisfied 

§ Performance (single initiator)
• Worst case 

• The anti-clockwise neighbor of the initiator has the highest id

• 𝑁 − 1 Election messages to reach this neighbor

• Another 𝑁 Election messages before it announces its election

• 𝑁 Elected message

• Message complexity: 3𝑁 − 1 messages

• Turnaround time: 3𝑁 − 1 message transmission times

24

1
2

3

4

5
6

7

8

initiator



Analysis (2)

§ Safety and liveness satisfied 

§ Performance (single initiator)

• Best case 

• Initiator is the would-be leader 

• 𝑁 Election messages 

• 𝑁 Elected message

• Message complexity: 2𝑁 messages

• Turnaround time: 2𝑁 message transmission times

25

1
2

3

4

5
6

7

8

initiator



Multiple Initiators? 

§ Include initiator’s id with all messages

§ Each process remembers in cache the initiator of each Election/Elected message 
it receives

§ (All the time) Each process suppresses Election/Elected messages of any lower-id 
initiators

§ Updates cache if receives higher-id initiator’s Election/Elected message

§ Result is that only the highest-id initiator’s election run completes

26



Effect of Failures

27

Initiates the election

Elected: 80

Crash
N80

N32

N5

N12

N6

N3

elected = 80

Elected: 80 will
circulate around 
the ring forever
=> 
Liveness violated



Fixing for failures

§ One option: have predecessor (or successor) of would-be 
leader N80 detect failure and start a new election run
• May re-initiate election if

• Receives an Election message but times out waiting for an 
Elected message
• Or after receiving the Elected:80 message

• But what if predecessor also fails?
• And its predecessor also fails? (and so on)

28



Fixing for failures (2)

§ Second option: any process, after receiving Election:80 message, can 
detect failure of N80 via its own local failure detector 

• If so, start a new run of leader election

§ But failure detectors may not be both complete and accurate

• Completeness = each failure is detected

• Accuracy = there is no mistaken detection

• Incompleteness in FD => N80’s failure might be missed

• Inaccuracy in FD => N80 mistakenly detected as failed => new election runs 
initiated forever 

29



§ Because it is related to the consensus problem! 

§ If we could solve election, then we could solve consensus!
• Elect a process, use its id’s last bit as the consensus decision

§ But since consensus is impossible in asynchronous systems 
with failures, so is election!

§ Consensus-like protocols used in industry for leader election

Why is Election so Hard?

30



Bully Algorithm

§ Assumptions

• Processes can crash, channels are reliable

• Synchronized systems: can detect process failures via timeouts

• Timeout: 𝑇 = 2𝑇"#$%& + 𝑇'#()*&&

• A completely connected graph

• Each process knows other processes and their identifiers.

31



Bully Algorithm

§ Any process 𝑃 can initiate an election (when it notices the leader has failed)

§ 𝑃 sends election messages to all processes with higher IDs and awaits answers
• If no answer messages arrives within 𝑇, 𝑃 becomes leader and sends coordinator

messages to all processes with lower IDs
• If it receives an answer, it drops out and waits for a coordinator message (if no 
coordinator message with 𝑇’, restart election)

§ If 𝑃 receives an election message
• Immediately broadcast a coordinator message if it is the process with highest ID
• Otherwise, returns an answer message and starts an election (unless it has begun one)

§ If 𝑃 receives a coordinator message, it treats sender as the leader

32



Bully Algorithm

33



Bully Algorithm: Example

34

N12

N5

N6

N80

N32

N3

Detects failure
of N80



35

N12

N5

N6

N80

N32

N3

Detects failure
of N80

Election



36

N12

N5

N6

N80

N32

N3

Waiting…

Election

OK

Election



37

N12

N5

N6

N80

N32

N3

OK

Waiting…Waiting…



38

N12

N5

N6

N80

N32

N3

Coordinator: N32

Times out 
waiting for N80’s 

response

Election is completed



Failures During Election Run

39

N12

N5

N6

N80

N32

N3

Waiting…Waiting…



40

N12

N5

N6

N80

N32

N3

Times out, starts
new election run

Waiting…

Election

OK



41

N12

N5

N6

N80

N32

N3

Times out, starts
another new election run

Election



Bully Algorithm

42

§ Meets the liveness requirement (in synchronous systems)

§ Meets the safety requirement if no process is replaced

§ Performance – best case
• the process with the second highest id notices the failure of the 

coordinator and elects itself. 
• 𝑁 − 2 coordinator messages sent. 
• Turnaround time is one message transmission time.



Bully Algorithm

§ Performance – worst case
• the process with the lowest id detects the failure. 
• 𝑁 − 1 processes altogether begin elections
• Message complexity is 𝑂 𝑁*

• Turnaround time: see Homework 2

§ 5 message transmission times if there are no failures during the run: 
1. Election from lowest id process in group
2. Answer to lowest id process from 2nd highest id process
3. Election from 2nd highest id process to highest id process
4. Timeout for answers @ 2nd highest id process 
5. Leader from 2nd highest id process 

43



Can use Consensus to solve Election

§ One approach 
• Each process proposes a value 
• Everyone in group reaches consensus on some process 𝑃!’s 

value 
• That lucky 𝑃! is the new leader!

44



Election in Industry 

§ Several systems in industry use Paxos-like approaches for election
• Paxos is a consensus protocol (safe, but eventually live): later in this course
• Safety: Consensus is not violated 
• Eventual Liveness: If things go well sometime in the future (messages, 

failures, etc.), there is a good chance consensus will be reached. But there is 
no guarantee.

§ Google’s Chubby system

§ Apache Zookeeper

45



Election in Google Chubby

§A system for locking

§Essential part of Google’s stack
• Many of Google’s internal systems rely 

on Chubby
• BigTable, Megastore, etc.

§Group of replicas
• Need to have a master server elected at 

all times

Server A

Server B

Server C

Server D

Server EReference: http://research.google.com/archive/chubby.html

46



§ Group of replicas
• Need to have a master (i.e., leader)

§ Election protocol
• Potential leader tries to get votes from 

other servers
• Each server votes for at most one leader
• Server with majority of votes becomes 

new leader, informs everyone

Server A

Server B

Server C

Server D

Server E

Master

Election in Google Chubby (2)

47



§ Why safe? 
• Essentially, each potential leader tries to reach a 
quorum

• Since any two quorums intersect, and each 
server votes at most once, cannot have two 
leaders elected simultaneously

§ Why live? 
• Only eventually live! Failures may keep 

happening so that no leader is ever elected

• In practice: elections take a few seconds. Worst-
case noticed by Google: 30s

Server A

Server B

Server C

Server D

Server E

Master

Quorum

Election in Google Chubby (3)

48



§ After election finishes, other servers promise 
not to run election again for “a while”
• “While” = time duration called “Master lease”

• Set to a few seconds

§ Master lease can be renewed by the master as 
long as it continues to win a majority each 
time

§ Lease technique ensures automatic re-election 
on master failure

Server A

Server B

Server C

Server D

Server E

Master

Quorum

Election in Google Chubby (4)

49


