Group Communication

CMPS 4760/6760: Distributed Systems

Acknowledgement: slides adapted from Indranil Gupta’s lecture notes:
https://courses.engt.illinois.edu/cs425/fa2019/index.html

Coordination in Distribution Systems

= Distributed Mutual Exclusion (15.2)
= | eader Election (15.3)
" Group communication (15.4)

= Consensus (15.5)

Communication Forms

* Multicast: message sent to a group of processes

* By issuing a single multicast operation

" Broadcast: message sent to to all processes

= Unicast: message sent to a single process

Who Uses Multicast?

= A widely-used abstraction by almost all cloud systems

= Storage systems like Cassandra or a database

» Replica servers for a key: Writes/reads to the key are multicast within the replica group
* All servers: membership information (e.g., heartbeats) is multicast across all servers in cluster

* Online scoreboards (ESPN, French Open, FIFA World Cup)

e Multicast to group of clients interested in the scores

= Stock Exchanges

* Group is the set of broker computers

* Groups of computers for High frequency Trading
= Air traffic control system

* All controllers need to receive the same updates in the same order

Multicast vs. Unicast

= Much than a convenience for the programmer

= More efficient use of bandwidth, minimizing the delay
e Each message sent no more than once over any communication link

e adistribution tree and hardware multicast support

= Delivery guarantees

* If the sender fails halfway through sending, then some members of the group may
receive the message while others do not.

* The relative ordering of two messages delivered to any two group members is
undefined

Multicast vs. Unicast

= Example: sending the same message from a computer in London to two
computers on the same Ethernet in Palo Alto

(a) by two separate UDP sends

(b) by a single IP multicast operation: a single copy sent from London to a router
in Palo Alto, followed by a hardware multicast via the Ethernet to destinations

Multicast Trees

Source

Source tree Shared tree

Rendezvous

point
" Ashortest path tree rooted at source B = All routers forward traffic to RP, which forwards
» The tree will be different for a difference source them to the appropriate destinations via a
= Routers replicate a packet and forward it to each common shortest path tree rooted at the RP

of their neighbors in the tree

Group Communication

= |P Multicast

 Unreliable multicast

* Weak membership management

=" Group Communication
 Reliability and ordering guarantees (15.4)

 Membership management (18.2)

" Group communication vs. IP multicast is like TCP vs. IP

Group Communication

" Programming Model (6.2.1-6.2.2)
= Case study: JGroups (6.2.3)
= Reliable and ordered multicast (15.4)

" View-synchronous group communication (18.2)

Programming Model

= Process Groups
* Messages sent to the processes and no further support for dispatching provided
* Messages are unstructured byte arrays with no support for marshalling
e Similar to services provided by sockets
* Example: JGroups toolkit

= Object Groups
* A collection of objects (hormally instances of the same class)
* Each has a local proxy for the group
* Example: CORBA Group RMI

* transparent mode: local proxy returns the first available response to client

* non-transparent mode: the client object can access all the responses returned by the group
members

Programming Model

" Closed vs. open groups

= Overlapping vs. hon-overlapping
groups

O/Ci’

X
O

Closed group

Open group

11

Reliable Multicast

" integrity: message received is the same as the one sent and no
duplicates

= validity: any outgoing message is eventually delivered

" agreement: if the message is delivered to one process, it is delivered
to all processes

Ordered Multicast

= Determines the meaning of “same order” of multicast delivery
at different processes in the group

" Three popular flavors implemented by several multicast
protocols

1. FIFO ordering
2. Causal ordering

3. Total ordering

FIFO Ordering

" Multicasts from each sender are received in the order they are sent, at
all receivers

" Don’t worry about multicasts from different senders

" More formally

* If a correct process issues (sends) multicast(g, m) to group g and
then multicast(g, m'), then every correct process that delivers m’

would already have delivered m.

FIFO Ordering: Example

Pl >
MI1:1 M1:2 .
Time
P2 >
P3
P4

M1:1 and M1:2 should be received 1n that order at each receiver
Order of delivery of M3:1 and M1:2 could be different at different receivers

Causal Ordering

" Multicasts whose send events are causally related, must be received in
the same causality-obeying order at all receivers

" Formally

* If multicast(g, m) - multicast(g, m’) then any correct process that
delivers m’ would already have delivered m.

* (— is Lamport’s happens-before)

Causal Ordering: Example

Pl 1:1 \
Time
P9 M2: /

P3

P4 M3:1 - M3:2, and so should be received in that order\aaeacfh%eceiver

M1:1 - M3:1, and so should be received in that order at each receiver
M3:1 and M2:1 are concurrent and thus ok to be received in different orders at
different receivers

Causal vs. FIFO

" Causal Ordering => FIFO Ordering
" Why?

* If two multicasts M and M’ are sent by the same process P, and M was
sent before M’, then M - M’

 Then a multicast protocol that implements causal ordering will obey FIFO
ordering since M - M’

= Reverse is not true! FIFO ordering does not imply causal ordering.

Ordered Multicast Example: a bulletin board

Bulletin board: os.interesting

Item From Subject
23 Mach
FIFO 24 G.Joseph Microkernels Causal
ordering 25 Re: Microkernels ordering
26 T.L’Heureux RPC performance
Total 27 M. Walker Re: Mach

ordering end

Total Ordering

= Unlike FIFO and causal, this does not pay attention to order of multicast
sending

® Ensures all receivers receive all multicasts in the same order
" Formally

* If a correct process P delivers message m before m’ (independent of the
senders), then any other correct process P’ that delivers m’ would already
have delivered m.

Pl

P2

P3

P4

Total Ordering: Example

1:1
Time
M2:
3 3:2
The order of receipt of multicasts 1s the same at all processes.
M1:1, then M2:1, then M3:1, then M3:2
May need to delay delivery of some messages 21

Hybrid Variants

= Since FIFO/Causal are orthogonal to Total, can have hybrid
ordering protocols too
* FIFO-total hybrid protocol satisfies both FIFO and total orders

* Causal-total hybrid protocol satisfies both Causal and total orders

Group Membership Management

" Membership service provides

Group * Interface for membership changes

address
expansion * Failure detection

/ * Notification of membership changes
Group . Leave * Group address expansion
send %\ \
: LN :
Multicast Eai Group membership
communication — > management

Multicast delivery should be coordinated
< Join_ with membership change =>
view-synchronous group communication

Process group ——

Group Communication

" Programming Model (6.2.1-6.2.2)
= Case study: JGroups (6.2.3)
= Reliable and ordered multicast (15.4)

" View-synchronous group communication (18.2)

Case study: the JGroups toolkit

Causal ordering —fKCA_USAL \

— | GMS
—— 1| MERGE

Membership service

Merging subgroups
(after network partition)

Applications

Building
blocks

Channel

FRAG
UDP

47

<

http://www.jgroups.org/

Protocol Stack (a wide range

‘ of protocols can be combined)

Message packetization

IP multicast + UDP

Network 2

Java class FireAlarmJG

import org.jgroups.JChannel;

public class FireAlarmJG {
public void raise() {

try {
JChannel channel = new JChannel(),

channel.connect("AlarmChannel”);

Message msg = new Message(null, null, "Fire!");

channel . send(msg),

/
catch(Exception e) {

/

destination

source

Applications

Building
blocks

Channel

/c;usm. \

GMS
MERGE

FRAG

UDP

26

Java class FireAlarmConsumerl)G

import org.jgroups.JChannel;

public class FireAlarmConsumerJG {
public String await() {

try {

Applications

Building
blocks

Channel

JChannel channel = new JChannel();

channel.connect("AlarmChannel");

Message msg = (Message) channel.receive(0),;

return (String) msg. GetObject(),
} catch(Exception e) {
return null;

/
/
/

Timeout; O means
block until a message
is received

GMS
MERGE

FRAG

UDP

/c;usm. \

27

JGroups — Building Blocks

Applications
" MessageDispatcher: send a message to a
: : Building
group and waits for some or all of the replies Hoeks
= RpcDispatcher: invoke a method on all objects Channel
associated with a group ﬁ
= ReplicatedHashMap: allow members in a CAUSAL
group to share common state Sl
MERGE

FRAG
UDP

Group Communication

" Programming Model (6.2.1-6.2.2)
= Case study: JGroups (6.2.3)
= Reliable and ordered multicast (15.4)

" View-synchronous group communication (18.2)

29

Assumptions

" Processes can fail only by crash, reliable one-to-one channels
= Static groups with known membership
" Each process is a member of at most one group

" Closed groups

Group Communication

» multicast(g, m) sends a message m to all
members of group g

Message
processing

* m.sender: the unique id of the process that sent — b
* m. group: the unique destination group id U /(H s
When delivery

guarantees are
met

" deliver(m) delivers a message m sent by a
. . Incoming
multicast to the calling process messages
* A multicast message is not always handed to the

application layer inside the process as soon as it is
received at the process’s node

Reliable Multicast

" integrity: every correct process delivers a message at most once, only
if some process in the group multicasts that message

= validity: if a correct process multicasts a message, it will eventually
deliver it

" agreement: if a correct process delivers message m, then all other
correct processes in the group will eventually deliver m

Reliable Multicast via Reliable Unicast

P;::
var

Received={};

multicast(g, m) :
foreach g € g, send(q, m);

reliable unicast

receive(m):
if (m & Received)
Received = Received U {m};
if(P; # m.sender)
for each g € m. group, send(q, m);
deliver m to the application layer;

Message complexity: O(N?)

Reliable Multicast over IP Multicast

P;:.
var

hold-back ={};

S = 0; //seqno of last sent msg

R[1...N]; //R][q]: seq no of last
delivered msg from q

multicast(g, m) :
IP-multicast (g, m, S, {<q, R[q]>});
S =5+1;

piggybacked
acknowledgements

receive(m, S, <q, R'[q]>):

p = m.sender;
if (S ==R[p] +1)
deliver message; R[p] = R[p] + 1;
if (S < R[p])
message is discarded
if (S> R[p]+1)
put m in the hold-back queue
send NACKtop negative
forqg € [1...N]

if (R"[q] > R[q])
send NACK to p or q

acknowledgement

34

Reliable Multicast over IP Multicast

" Integrity
* duplicate detection

* error checking in IP-multicast

= Validity

* negative acknowledgement

= Agreement
* missing message always detected if there are infinite multicast messages

* there is always an available copy of a missing message if processes retain
copies they have delivered indefinitely

35

Ordered Multicast

= FIFO ordering: if a correct process issues multicast(g, m) and then
multicast(g, m’), then every correct process that delivers m’ would already have
delivered m

= Causal ordering: if multicast(g, m) — multicast(g, m’), then any correct process
that delivers m’ would already have delivered m

= Total ordering: if a correct process delivers message m before it delivers m’, then
any other correct process that delivers m’ would already have delivered m

= Hybrid ordering: FIFO-total ordering, causal-total ordering

Ordered Multicast and Reliable Multicast

" Ordered multicast does not assume or imply reliability

* Hybrids of ordered and reliable protocols
* reliable totally ordered multicast (atomic multicast)
* reliable FIFO multicast

* reliable causal multicast

Implement FIFO Ordering

= Qur algorithm for reliable multicast over IP multicast guarantees FIFO ordering

= |f we don’t need reliability:

P;:.
var receive(m, S):
hold-back ={}; p = m.sender;
S = 0; //seqno of last sent msg if (S == R[p] + 1)
R[1..N]; // R[q]:seqno of last delivered ygjiver message; R[p] = R[p] + 1;
msg from g (S < R[p])

message is discarded
if (S > R[p]+1)
put m in the hold-back queue;

multicast(g, m) :
IP-multicast(g, m, S);
S =5+41;

FIFO Ordering: Example

P1
[0,0,0,0]

P2

Time

[0,0,0,0]

P3
[0,0,0,0]

P4
[0,0,0,0]

39

[1,0,0,0] 12,0,0,0]

Pl

10,0,0,0] Time

P2
[0,0,0,0]

P3

[0,0,0,0]

P4

[O’O’O’O] [1909090]

Deliver!

FIFO Ordering: Example

[1909090] [2,09090]

Pl
. Time
P2
[0,0,0,0]
P3 o
[0,0,0,0] [0,0,0,0]
Buffer!
Pgooo [1,0,0,0] '1,0,0,0]
[0,0,0,0] Deliver! Deliver this!

. Deliver buffered <P1, seq:2>
FIFO Ordering: Example Update [2,0,0,0]

[2909090] ﬁme
eliyer!

P3 —
[0,0,0,0] [0,0,0,0]

Buffter! |
0o [1.0,0,0] [1,0,0,0]
[0,0,0,0] Deliver! Deliver this!

FIFO Ordering: Example

Deliver buffered <P1, seq:2>
Update [2,0,0,0]

11,0,0,0] 12,0,0,0] [2,0,1,0]

Pl Déliver!

10,0,0,0] [2,0,0,0] ime

P9 GIIYGI’! [2909 1 ,\O]

10,0,0,0] eliver!

P3 | seq: 1

[0,0,0,0] 10,0,0,0] [2,0,1,0]
Buffer! ?

Pg 0.0.0 [1909090] [I’O’O’O] N

[0,0,0,0] Deliver! Deliver this!

Deliver buffered <P1, seq:2>
FIFO Ordering: Example Update [2,0,0,0]

[1,0,0,0] 2,0,0,0] [2,0,1,0]

Pl eliver!

[0,0,0,0] [2909090] Time

- GIIYGI’! [29091,9]

10,0,0,0] eliver!

[1,0,1,0]

p3 - N | seq: 1 Delive}r!

10,0,0,0] [O_,0,0,0] [2,0,/1,0__
Buffer! | S e

P4 A Deliver!

O O O O [1909090] [IDO’O’O]
[0.0,0,0] Deliver! Deliver this!

. Deliver buffered <P1, seq:2>
FIFO Ordering: Example Update [2.,0,0,0]

Total ordering using a sequencer

sequencer

O

Total ordering using a sequencer

P;:: Sequencer::
var var
hold-back = {}; s=0;
r=20;

receive(<m, id>):
multicast(g, m) :

IP-multicast (g, <“order”, id, s>);
IP-multicast (g U {sequencer(g)}, <m, id>);

deliver m;

receive(<m, id>): s=s4+1
-)

place m in the hold-back queue

receive(m 40 =<"“order”, id, s>)
wait until <m, id> in hold-back queue and s = r;
deliver m;
r=s+1;

46

Causal ordering using vector timestamps

(0,00) (1,0,0) (1,1,00 (2,1,0)

PO >
mM
0,0,0
Pl () ¢ >
(1,000 \(1,1,0) (2,1,0)
) ml
0,0,0 e N Vi S

Causal ordering using vector timestamps

P;:
var receive(<m, t>):
hold-back = {}; j = m.sender;
VC:array[1.. N] of integer; place m in the hold-back queue;
multicast(g, m) : wait until t[j] = VC|j] + 1 and t|k] < VC|k] (Vk #));
VCli] =VCli] + 1; deliver m;
IP-multicast (g, <m, VC>); VClj] = VClj] + 1;

e Causal multicast + reliable multicast = reliable causally ordered multicast

e Causal multicast + sequencer-based protocol = causally and totally ordered multicast

[1,0,0,0]

P1
[0,0,0,0]

Time

P2
[0,0,0,0]

P3
[0,0,0,0] \

P4
[0,0,0,0]

Causal Ordering: Example

49

[1,0,0,0]

Pl
[0,0,0,0] Time

P2

[0,0,0,00 [1,0,0,¢
DeliVer.

P3
0.0.0,0] \

P4
[OQOQOQO: [1,0)090]

Deliver!
Causal Ordering: Example

[1,0,0,0]

Pl
0000 Time
) o [LEOO]
[0.0.0.01[1,0,0,0]
Deliver!

P3
[0,0,0,0] \ \
P4
[0,0,0,0] [1,0,0,0]

_ Deliver!
Causal Ordering: Example

[1,0.0,0) L1.1,6.0]
Pl Delpver!
[0909090] ﬁme
P2
[0,0,0,0]
Deliver!
P3 ———
[0,0,0,0] 1ssing 1 from P1
Buftfer!
P4
[0,0,0,0° [1,0,0,0]
' Deliver!
Causal Ordering: Example

11,1,0,0] Deliver!

P1 [1,0,0,0] Deliver! Rece1ver satisfies causali}ty

0000 Deliver! Time
P2 \ [1,1,0,0] Receiver satisfies causality

[0,0,0,0] [1,0,0,0]

Deliver!
P3 —
[0,0,0,0] issing 1 from P
Buffer!
P4
[O O O O_ [1909090] [1909091]
B Deliver!

Causal Ordering: Example

[1,1,0,0] Deliver!

. [1,0,0,0] Deliver! Receiver satisfies causality
[0,0,0,0] Deliver! lime
- [1,1,0,0] Receiver satisfies causality
[0,0,0,0] [1,0,0,0]
Deliver!
P3 I
10,0,0,0] issing 1 from P}V 'Missing 1 from P1
Bufter! ffer!
P4
[0,0,0,0° [1,0,0,0] [1,0,0,1]
T Deliver!

Causal Ordering: Example

[1,1,0,0] Deliver!

. [1,0,0,0] Deliver! Rece1ver satisfies causali}ty
[0,0,0,0] Deliver! Time
B9 [1,1,0,0] Receiver satisfies causality
[0,0,0,0] 0.
P3 ——— S
[0,0,0,0] 1ssing 1 from P}V Missing 1 from Pl

Buffer] ffer!
b4 1.0.0.0 11,0,0,1] Deliver P1’s ﬂ;ulticast >
[0909090- [N] , ,R,eceiver satisfies causality for buffered multicasts

Deliver!
Causal Ordering: Example

Deliver P2’s buffered multicast
Deliver P4’s buffered multicast

[1,1,0,0] Deliver!

. [1,0,0,0] Deliver! Receiver satisfies causality
[0909090] Deliver! Time
- [1,1,0,0] Recetver satisfies causality
[0,0,0,01 [1,0,0,
Deliver!
P3] —— - / >
[0,0,0,0] 1ssing 1 issing 1 from P1
Buffer ffer!”
P4 e >
i [1,0,0,0] [1,0,0,1] Deliver P1’°s multicast
[0909090- Recerver satisfies causality for buffered multicasts

Deliver!
Causal Ordering: Example

Deliver P2’s buffered multicast
Deliver P4’s buffered multicast

Overlapping groups

" Global FIFO ordering: If a correct process issues multicast(g, m) and then
multicast(g’,m'), every correct process in g N g' that delivers m’ would already
have delivered m

" One can define global causal ordering and global total ordering similarly
= A simple approach to implement global ordering
* Multicast each message m to all the processes in the system

* Each process either discards or delivers m according to whether belongs to group(m)

Multicast in synchronous and asynchronous systems

»" We have described algorithms for

e Reliable unordered multicast

Reliable FIFO-ordered multicast

Reliable causally ordered multicast

Totally ordered multicast

Causally and totally ordered multicast

FIFO and totally ordered multicast

Multicast in synchronous and asynchronous systems

» Can we get reliable and totally ordered multicast (atomic multicast)?
* Yes for synchronous system
* No for asynchronous system even with a single process crash failure

e Equivalent to consensus with crash failures (FLP impossibility result)

Group Communication

" Programming Model (6.2.1-6.2.2)
= Case study: JGroups (6.2.3)
= Reliable and ordered multicast (15.4)

" View-synchronous group communication (18.2)

60

Virtual Synchrony/View Synchrony

= Attempts to preserve multicast ordering and reliability in spite of
failures

=" Combines a membership protocol with a multicast protocol

= Systems that implemented it have been used in NYSE, French Air
Traffic Control System, Swiss Stock Exchange

61

Views

® Each process maintains a membership list

" The membership list is called a View

* i.e., lists of the current group members, identified by their unique process ids

* The list is ordered, e.g., according to when the members joined the group

=" An update to the membership list is called a View Change

* Process join, leave, or failure

62

Virtual Synchrony

" Virtual synchrony guarantees that all view changes are delivered in the same
order at all correct processes
* If a correct P1 process receives views, say {P1}, {P1, P2, P3}, {P1, P2}, {P1, P2, P4} then

* Any other correct process receives the same sequence of view changes (after it joins
the group)

* P2 receives views {P1, P2, P3}, {P1, P2}, {P1, P2, P4}

" Views may be delivered at different physical times at processes, but they are

delivered in the same order (i.e., total ordering)

VSync Multicasts

" A multicast M is said to be “delivered in a view V at process P;” if

* P; receives view V, and then sometime before P; receives the next view it delivers
multicast M

= Virtual synchrony ensures that
* The set of multicasts delivered in a given view is the same set at all correct processes that
were in that view
* What happens in a View, stays in that View

* The sender of the multicast message also belongs to that view

* |f a process P; does not deliver a multicast M in view V while other processes in the view V
delivered M in V, then P; will be forcibly removed from the next view delivered after V at the
other processes

64

Pl

P2

P3

P4

View {P1,P2,P3,P4} View {P1,P2,P3}

Time
View (P1,P2,P3}
I >
View{P1,P2,P3,P4 View {P1,P2,P3}
| | g
View {P1,P2,P3,P4} M3 \
| > E

Crash

Satisfies virtual synchrony 65

Pl

P2

P3

P4

View {P1,P2,P3,P4} View {P1,P2,P3}

Time
View{P1,P2,P3}
I >
Vielw {P1,P2,P3,P4 1,P2,P3}
| | g
View {P1,P2,P3,P4] M3 \
| > h

Crash

Does not satisfy virtual synchrony 66

View {P1,P2,P3,P4} View {P1,P2}

Pl '
Time
View {P1,P2}
P2 I
View {P1,P2,P3,P4
P3 |]
View {P1,P2,P3,P4} M3
P4 | \

Crash

Satisfies virtual synchrony 67

Pl

P2

P3

P4

View {P1,P2,P3,P4} View {P1,P2,P3}

Time
View{P1,P2,P3}
I >
Vielw {P1,P2,P3,P4 Vielw {P1,P2,P3}
| | g
View {P1,P2,P3,P4] M3 \
| > E

Crash

Does not satisfy virtual synchrony 63

Pl

P2

P3

P4

View {P1,P2,P3,P4} View {P1,P2,P3}
[>

Time
View {P1,P delivéred at P2) View{P1,P2,P3}
| | >
View{P1,P2,P3,P4 Vielw{Pl,Pz,P3}
| > >
View {P1,P2,P3,P4} M3 \
| > E

Crash

Satisfies virtual synchrony 69

Pl

P2

P3

P4

View {P1,P2,P3,P4} View {P1,P2,P3}

Vv

Time

Vv

View{P1,P2,P3,P4

View {P1,P2,P3}
[>

View {P1,P2,P3,P4] M3

S
SN
S
<
SN
S
S
S
S 2\
I -

Crash
Does not satisty virtual synchrony

70

Pl

P2

P3

P4

View {P1,P2,P3,P4} View {P1,P2,P3}

Time

View {P1,P2,P3,P4

View {P1,P2,P3,P4}
[

Crash
Does not satisfy virtual synchrony

\%

71

Pl

P2

P3

P4

View {P1,P2,P3,P4} View {P1,P2,P3}

Vv

Time

Vv

View{P1,P2,P3,P4
|

View {P1,P2,P3}
| >

View {P1,P2,P3,P4] M3
[

Crash
Satisfies virtual synchrony

72

What about Multicast Ordering?

= Again, orthogonal to virtual synchrony

" The set of multicasts delivered in a view can be ordered either
* FIFO
* Or Causally
e Or Totally

* Or using a hybrid scheme

73

About that name

= Called “virtual synchrony” since in spite of running on an asynchronous
network, it gives the appearance of a synchronous network underneath that
obeys the same ordering at all processes

" So can this virtually synchronous system be used to implement consensus?
" No! VSync groups susceptible to partitioning

* E.g., due to inaccurate failure detections

74

Pl

P2

P3

P4

View {P1,P2,P3,P4} View {P1}

Time
View (P2, P3}
I >
View {P1,P2,P3,P4 View {P2,P3}
| | g
View {P1,P2,P3,P4] M3 \
| > h

Crash

Partitioning in View synchronous systems "

