
Group Communication
CMPS 4760/6760: Distributed Systems

1

Acknowledgement: slides adapted from Indranil Gupta’s lecture notes:
https://courses.engr.illinois.edu/cs425/fa2019/index.html

Coordination in Distribution Systems

§ Distributed Mutual Exclusion (15.2)

§ Leader Election (15.3)

§ Group communication (15.4)

§ Consensus (15.5)

2

Communication Forms

§ Multicast: message sent to a group of processes
• By issuing a single multicast operation

§ Broadcast: message sent to to all processes

§ Unicast: message sent to a single process

3

Who Uses Multicast?

§ A widely-used abstraction by almost all cloud systems

§ Storage systems like Cassandra or a database
• Replica servers for a key: Writes/reads to the key are multicast within the replica group
• All servers: membership information (e.g., heartbeats) is multicast across all servers in cluster

§ Online scoreboards (ESPN, French Open, FIFA World Cup)
• Multicast to group of clients interested in the scores

§ Stock Exchanges
• Group is the set of broker computers
• Groups of computers for High frequency Trading

§ Air traffic control system
• All controllers need to receive the same updates in the same order

4

Multicast vs. Unicast

§ Much than a convenience for the programmer

§ More efficient use of bandwidth, minimizing the delay
• Each message sent no more than once over any communication link
• a distribution tree and hardware multicast support

§ Delivery guarantees
• If the sender fails halfway through sending, then some members of the group may

receive the message while others do not.
• The relative ordering of two messages delivered to any two group members is

undefined

5

Multicast vs. Unicast

§ Example: sending the same message from a computer in London to two
computers on the same Ethernet in Palo Alto

(a) by two separate UDP sends
(b) by a single IP multicast operation: a single copy sent from London to a router
in Palo Alto, followed by a hardware multicast via the Ethernet to destinations

6

Multicast Trees

§ A shortest path tree rooted at source B
§ The tree will be different for a difference source

§ Routers replicate a packet and forward it to each
of their neighbors in the tree

7

Source tree Shared tree Rendezvous
point

§ All routers forward traffic to RP, which forwards
them to the appropriate destinations via a
common shortest path tree rooted at the RP

Source

Group Communication

§ IP Multicast
• Unreliable multicast
• Weak membership management

§ Group Communication
• Reliability and ordering guarantees (15.4)
• Membership management (18.2)

§ Group communication vs. IP multicast is like TCP vs. IP

8

Group Communication

§ Programming Model (6.2.1-6.2.2)

§ Case study: JGroups (6.2.3)

§ Reliable and ordered multicast (15.4)

§ View-synchronous group communication (18.2)

9

Programming Model

§ Process Groups
• Messages sent to the processes and no further support for dispatching provided
• Messages are unstructured byte arrays with no support for marshalling
• Similar to services provided by sockets
• Example: JGroups toolkit

§ Object Groups
• A collection of objects (normally instances of the same class)
• Each has a local proxy for the group
• Example: CORBA Group RMI

• transparent mode: local proxy returns the first available response to client
• non-transparent mode: the client object can access all the responses returned by the group

members
10

Programming Model

§ Closed vs. open groups

§ Overlapping vs. non-overlapping
groups

11

Closed group Open group

Reliable Multicast

§ integrity: message received is the same as the one sent and no
duplicates

§ validity: any outgoing message is eventually delivered

§ agreement: if the message is delivered to one process, it is delivered
to all processes

12

Ordered Multicast

§ Determines the meaning of “same order” of multicast delivery
at different processes in the group

§ Three popular flavors implemented by several multicast
protocols

1. FIFO ordering
2. Causal ordering
3. Total ordering

13

FIFO Ordering

§ Multicasts from each sender are received in the order they are sent, at
all receivers

§ Don’t worry about multicasts from different senders

§ More formally
• If a correct process issues (sends) 𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡(𝑔,𝑚) to group g and

then 𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡(𝑔,𝑚′) , then every correct process that delivers 𝑚’
would already have delivered 𝑚.

14

M1:1 and M1:2 should be received in that order at each receiver
Order of delivery of M3:1 and M1:2 could be different at different receivers

FIFO Ordering: Example

P2

Time
P1

P3

M1:1 M1:2

P4

M3:1

Causal Ordering

§ Multicasts whose send events are causally related, must be received in
the same causality-obeying order at all receivers

§ Formally

• If 𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡(𝑔,𝑚) →𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡(𝑔,𝑚′) then any correct process that
delivers m’ would already have delivered m.

• (→ is Lamport’s happens-before)

16

M3:1 à M3:2, and so should be received in that order at each receiver
M1:1 à M3:1, and so should be received in that order at each receiver
M3:1 and M2:1 are concurrent and thus ok to be received in different orders at

different receivers

Causal Ordering: Example

P2

Time
P1

P3

M1:1

P4

M3:1 M3:2

M2:1

Causal vs. FIFO

§ Causal Ordering => FIFO Ordering

§ Why?
• If two multicasts M and M’ are sent by the same process P, and M was

sent before M’, then M → M’
• Then a multicast protocol that implements causal ordering will obey FIFO

ordering since M → M’

§ Reverse is not true! FIFO ordering does not imply causal ordering.

18

Ordered Multicast Example: a bulletin board

19

Bulletin board:os.interesting

Item From Subject

23 A.Hanlon Mach

24 G.Joseph Microkernels

25 A.Hanlon Re: Microkernels

26 T.L’Heureux RPC performance

27 M.Walker Re: Mach

end
Total
ordering

Causal
ordering

FIFO
ordering

Total Ordering

§ Unlike FIFO and causal, this does not pay attention to order of multicast
sending

§ Ensures all receivers receive all multicasts in the same order

§ Formally
• If a correct process 𝑃 delivers message 𝑚 before 𝑚’ (independent of the

senders), then any other correct process 𝑃’ that delivers 𝑚’ would already
have delivered 𝑚.

20

The order of receipt of multicasts is the same at all processes.
M1:1, then M2:1, then M3:1, then M3:2
May need to delay delivery of some messages

Total Ordering: Example

P2

Time
P1

P3

M1:1

P4

M3:1 M3:2

M2:1

21

Hybrid Variants

§ Since FIFO/Causal are orthogonal to Total, can have hybrid
ordering protocols too
• FIFO-total hybrid protocol satisfies both FIFO and total orders
• Causal-total hybrid protocol satisfies both Causal and total orders

22

Group Membership Management
§ Membership service provides

• Interface for membership changes

• Failure detection
• Notification of membership changes
• Group address expansion

23

Join

Group
address

expansion

Group
send

Fail

Leave

Group membership
management

Multicast
communication

Process group

Multicast delivery should be coordinated
with membership change =>
view-synchronous group communication

Group Communication

§ Programming Model (6.2.1-6.2.2)

§ Case study: JGroups (6.2.3)

§ Reliable and ordered multicast (15.4)

§ View-synchronous group communication (18.2)

24

Case study: the JGroups toolkit

25

http://www.jgroups.org/

Causal ordering

Membership service
Merging subgroups
(after network partition)

IP multicast + UDP
Message packetization

Protocol Stack (a wide range
of protocols can be combined)

Java class FireAlarmJG

26

import org.jgroups.JChannel;

public class FireAlarmJG {
public void raise() {

try {
JChannel channel = new JChannel();
channel.connect("AlarmChannel");
Message msg = new Message(null, null, "Fire!");
channel.send(msg);

}
catch(Exception e) {
}

}

destination source

Java class FireAlarmConsumerJG

27

import org.jgroups.JChannel;

public class FireAlarmConsumerJG {
public String await() {

try {
JChannel channel = new JChannel();
channel.connect("AlarmChannel");
Message msg = (Message) channel.receive(0);
return (String) msg.GetObject();

} catch(Exception e) {
return null;

}
}

}

Timeout; 0 means
block until a message
is received

JGroups – Building Blocks

§ MessageDispatcher: send a message to a
group and waits for some or all of the replies

§ RpcDispatcher: invoke a method on all objects
associated with a group

§ ReplicatedHashMap: allow members in a
group to share common state

§ …

28

Group Communication

§ Programming Model (6.2.1-6.2.2)

§ Case study: JGroups (6.2.3)

§ Reliable and ordered multicast (15.4)

§ View-synchronous group communication (18.2)

29

Assumptions

§ Processes can fail only by crash, reliable one-to-one channels

§ Static groups with known membership

§ Each process is a member of at most one group

§ Closed groups

30

Group Communication

§𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡(𝑔,𝑚) sends a message 𝑚 to all
members of group 𝑔
• 𝑚. 𝑠𝑒𝑛𝑑𝑒𝑟: the unique id of the process that sent it
• 𝑚.𝑔𝑟𝑜𝑢𝑝: the unique destination group id

§ 𝑑𝑒𝑙𝑖𝑣𝑒𝑟(𝑚) delivers a message 𝑚 sent by a
multicast to the calling process
• A multicast message is not always handed to the

application layer inside the process as soon as it is
received at the process’s node

31

Reliable Multicast

§ integrity: every correct process delivers a message at most once, only
if some process in the group multicasts that message

§ validity: if a correct process multicasts a message, it will eventually
deliver it

§ agreement: if a correct process delivers message 𝑚, then all other
correct processes in the group will eventually deliver 𝑚

32

Reliable Multicast via Reliable Unicast

33

𝑷𝒊::

var
𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑= {};

multicast(𝑔,𝑚) :
for each 𝑞 ∈ 𝑔, send(𝑞,𝑚);

receive(𝑚):
if (𝑚 ∉ 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑)
𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑 = 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑 ∪ 𝑚 ;
if(𝑃" ≠ 𝑚. 𝑠𝑒𝑛𝑑𝑒𝑟)

for each 𝑞 ∈ 𝑚. 𝑔𝑟𝑜𝑢𝑝, send(𝑞,𝑚);
deliver 𝑚 to the application layer;

reliable unicast
Message complexity: 𝑂 𝑁#

Reliable Multicast over IP Multicast

34

𝑷𝒊::

var
hold-back ={};
𝑆 = 0; // seq no of last sent msg
𝑅[1…𝑁]; // 𝑅[𝑞]: seq no of last

delivered msg from 𝑞

multicast(𝑔,𝑚) :
IP-multicast (𝑔, 𝑚, 𝑆, {<𝑞, 𝑅[𝑞]>});
𝑆 = 𝑆 + 1;

receive(𝑚, 𝑆, <𝑞, 𝑅![𝑞]>):
𝑝 = 𝑚. 𝑠𝑒𝑛𝑑𝑒𝑟;
if (𝑆 == 𝑅[𝑝] + 1)

deliver message; 𝑅[𝑝] = 𝑅[𝑝] + 1;
if (𝑆 ≤ 𝑅[𝑝])

message is discarded
if (𝑆 > 𝑅[𝑝] + 1)

put 𝑚 in the hold-back queue
send NACK to 𝑝

for 𝑞 ∈ [1…𝑁]
if (𝑅![𝑞] > 𝑅[𝑞])

send NACK to 𝑝 or 𝑞
piggybacked
acknowledgements

negative
acknowledgement

Reliable Multicast over IP Multicast

§ Integrity
• duplicate detection
• error checking in IP-multicast

§ Validity
• negative acknowledgement

§ Agreement
• missing message always detected if there are infinite multicast messages
• there is always an available copy of a missing message if processes retain

copies they have delivered indefinitely

35

Ordered Multicast

§ FIFO ordering: if a correct process issues multicast(𝑔,𝑚) and then
multicast(𝑔,𝑚′), then every correct process that delivers 𝑚′ would already have
delivered 𝑚

§ Causal ordering: if multicast(𝑔,𝑚) → multicast(𝑔,𝑚’), then any correct process
that delivers 𝑚′ would already have delivered 𝑚

§ Total ordering: if a correct process delivers message 𝑚 before it delivers 𝑚′, then
any other correct process that delivers 𝑚′ would already have delivered 𝑚

§ Hybrid ordering: FIFO-total ordering, causal-total ordering

36

Ordered Multicast and Reliable Multicast

§ Ordered multicast does not assume or imply reliability

§ Hybrids of ordered and reliable protocols
• reliable totally ordered multicast (atomic multicast)
• reliable FIFO multicast
• reliable causal multicast
• …

37

Implement FIFO Ordering

§ Our algorithm for reliable multicast over IP multicast guarantees FIFO ordering
§ If we don’t need reliability:

38

𝑷𝒊::
var

hold-back ={};
𝑆 = 0; // seq no of last sent msg
𝑅[1…𝑁]; // 𝑅[𝑞]: seq no of last delivered

msg from 𝑞

multicast(𝑔,𝑚) :
IP-multicast(𝑔, 𝑚, 𝑆);
𝑆 = 𝑆 + 1;

receive(𝑚, 𝑆):
𝑝 = 𝑚. 𝑠𝑒𝑛𝑑𝑒𝑟;
if (𝑆 == 𝑅[𝑝] + 1)

deliver message; 𝑅[𝑝] = 𝑅[𝑝] + 1;
if (𝑆 ≤ 𝑅[𝑝])

message is discarded
if (𝑆 > 𝑅[𝑝] + 1)

put 𝑚 in the hold-back queue;

P2

Time
P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

FIFO Ordering: Example

39

P2

Time
P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]
Deliver!

P1, seq: 1

[1,0,0,0]
Deliver!

?

[1,0,0,0]

FIFO Ordering: Example

P1, seq: 2

[2,0,0,0]

P2

Time
P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]
Deliver!

P1, seq: 1

[1,0,0,0]
Deliver!

[0,0,0,0]
Buffer!

P1, seq: 2

[1,0,0,0] [2,0,0,0]

FIFO Ordering: Example

[1,0,0,0]
Deliver this!
Deliver buffered <P1, seq:2>
Update [2,0,0,0]

P2

Time
P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]
Deliver!

P1, seq: 1

[1,0,0,0]
Deliver!

[0,0,0,0]
Buffer!

P1, seq: 2

[1,0,0,0] [2,0,0,0]

[2,0,0,0]
Deliver!

[1,0,0,0]
Deliver this!
Deliver buffered <P1, seq:2>
Update [2,0,0,0]FIFO Ordering: Example

P2

Time
P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]
Deliver!

P1, seq: 1

[1,0,0,0]
Deliver!

[0,0,0,0]
Buffer!

P1, seq: 2

[1,0,0,0] [2,0,0,0]

[2,0,0,0]
Deliver!

[1,0,0,0]
Deliver this!
Deliver buffered <P1, seq:2>
Update [2,0,0,0]

P3, seq: 1
[2,0,1,0]

[2,0,1,0]
Deliver!

[2,0,1,0]
Deliver!

?

FIFO Ordering: Example

P2

Time
P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]
Deliver!

P1, seq: 1

[1,0,0,0]
Deliver!

[0,0,0,0]
Buffer!

P1, seq: 2

[1,0,0,0] [2,0,0,0]

[2,0,0,0]
Deliver!

[1,0,0,0]
Deliver this!
Deliver buffered <P1, seq:2>
Update [2,0,0,0]

P3, seq: 1
[2,0,1,0]

[2,0,1,0]
Deliver!

[2,0,1,0]
Deliver!
[1,0,1,0]
Deliver!

[2,0,1,0]
Deliver!

FIFO Ordering: Example

Total ordering using a sequencer

45

sequencer

Total ordering using a sequencer

46

𝑷𝒊::

var
hold-back = {};
𝑟 = 0;

multicast(𝑔,𝑚) :
IP-multicast (𝑔 ∪ {𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑟(g)}, <𝑚, 𝑖𝑑>);

receive(<𝑚, 𝑖𝑑>):
place m in the hold-back queue

receive(𝑚#$%&$ =<“order”, 𝑖𝑑, 𝑠>)
wait until <𝑚, 𝑖𝑑> in hold-back queue and 𝑠 = 𝑟;
deliver 𝑚;
𝑟 = 𝑠 + 1;

Sequencer::

var

𝑠 = 0;

receive(<𝑚, 𝑖𝑑>):
IP-multicast (𝑔, <“order”, 𝑖𝑑, 𝑠>);

deliver 𝑚;

𝑠 = 𝑠 + 1;

P0

P1

P2

(0,0,0)

(0,0,0)

(0,0,0)
(1,0,0)

(1,0,0)

(1,1,0)

m1

m1m2

m2

(1,0,0) (1,1,0)

(1,1,0) (2,1,0)

(2,1,0)

(2,1,0)

Causal ordering using vector timestamps

47

Causal ordering using vector timestamps

48

𝑷𝒊::

var

hold-back = {};

𝑉𝐶: array[1. . 𝑁] of integer;

multicast(𝑔,𝑚) :

𝑉𝐶 𝑖 = 𝑉𝐶 𝑖 + 1;
IP-multicast (𝑔, <𝑚,𝑉𝐶>);

receive(<𝑚, 𝑡>):

𝑗 = 𝑚. 𝑠𝑒𝑛𝑑𝑒𝑟;

place 𝑚 in the hold-back queue;

wait until 𝑡 𝑗 = 𝑉𝐶 𝑗 + 1 and 𝑡 𝑘 ≤ 𝑉𝐶 𝑘 (∀𝑘 ≠ 𝑗);

deliver 𝑚;

𝑉𝐶 𝑗 = 𝑉𝐶 𝑗 + 1;

• Causal multicast + reliable multicast ⇒ reliable causally ordered multicast

• Causal multicast + sequencer-based protocol ⇒ causally and totally ordered multicast

Time

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]

Causal Ordering: Example 49

Time

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]

[1,0,0,0]
Deliver!

[1,0,0,0]
Deliver!

Causal Ordering: Example

Time

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]

[1,0,0,0]
Deliver!

[1,0,0,0]
Deliver!

[1,1,0,0]

Causal Ordering: Example

Time

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]

[1,0,0,0]
Deliver!

[1,0,0,0]
Deliver!

[1,1,0,0]

[1,1,0,0]
Deliver!

Missing 1 from P1
Buffer!

Causal Ordering: Example

Time

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]

[1,0,0,0]
Deliver!

[1,0,0,0]
Deliver!

[1,1,0,0]

[1,1,0,0]
Deliver!

Missing 1 from P1
Buffer!

[1,0,0,1]

Deliver!
Receiver satisfies causality

Deliver!
Receiver satisfies causality

Causal Ordering: Example

Time

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]

[1,0,0,0]
Deliver!

[1,0,0,0]
Deliver!

[1,1,0,0]

[1,1,0,0]
Deliver!

Missing 1 from P1
Buffer!

[1,0,0,1]

Deliver!
Receiver satisfies causality

Deliver!
Receiver satisfies causality

Missing 1 from P1
Buffer!

Causal Ordering: Example

Causal Ordering: Example

Time

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]

[1,0,0,0]
Deliver!

[1,0,0,0]
Deliver!

[1,1,0,0]

[1,1,0,0]
Deliver!

Missing 1 from P1
Buffer!

[1,0,0,1]

Deliver!
Receiver satisfies causality

Deliver!
Receiver satisfies causality

Missing 1 from P1
Buffer!

Deliver P1’s multicast
Receiver satisfies causality for buffered multicasts

Deliver P2’s buffered multicast
Deliver P4’s buffered multicast

Causal Ordering: Example

Time

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]

[1,0,0,0]
Deliver!

[1,0,0,0]
Deliver!

[1,1,0,0]

[1,1,0,0]
Deliver!

Missing 1 from P1
Buffer!

[1,0,0,1]

Deliver!
Receiver satisfies causality

Deliver!
Receiver satisfies causality

Missing 1 from P1
Buffer!

Deliver P1’s multicast
Receiver satisfies causality for buffered multicasts

Deliver P2’s buffered multicast
Deliver P4’s buffered multicast

Deliver!

Overlapping groups

§ Global FIFO ordering: If a correct process issues multicast(𝑔,𝑚) and then
multicast(𝑔′,𝑚′), every correct process in 𝑔 ∩ 𝑔′ that delivers 𝑚′ would already
have delivered 𝑚

§ One can define global causal ordering and global total ordering similarly

§ A simple approach to implement global ordering

• Multicast each message 𝑚 to all the processes in the system

• Each process either discards or delivers 𝑚 according to whether belongs to group(m)

57

Multicast in synchronous and asynchronous systems

§ We have described algorithms for
• Reliable unordered multicast
• Reliable FIFO-ordered multicast
• Reliable causally ordered multicast
• Totally ordered multicast
• Causally and totally ordered multicast
• FIFO and totally ordered multicast

58

Multicast in synchronous and asynchronous systems

§ Can we get reliable and totally ordered multicast (atomic multicast)?
• Yes for synchronous system
• No for asynchronous system even with a single process crash failure
• Equivalent to consensus with crash failures (FLP impossibility result)

59

Group Communication

§ Programming Model (6.2.1-6.2.2)

§ Case study: JGroups (6.2.3)

§ Reliable and ordered multicast (15.4)

§ View-synchronous group communication (18.2)

60

§ Attempts to preserve multicast ordering and reliability in spite of
failures

§ Combines a membership protocol with a multicast protocol

§ Systems that implemented it have been used in NYSE, French Air
Traffic Control System, Swiss Stock Exchange

Virtual Synchrony/View Synchrony

61

§ Each process maintains a membership list

§ The membership list is called a View
• i.e., lists of the current group members, identified by their unique process ids

• The list is ordered, e.g., according to when the members joined the group

§ An update to the membership list is called a View Change

• Process join, leave, or failure

Views

62

Virtual Synchrony

§ Virtual synchrony guarantees that all view changes are delivered in the same
order at all correct processes
• If a correct P1 process receives views, say {P1}, {P1, P2, P3}, {P1, P2}, {P1, P2, P4} then

• Any other correct process receives the same sequence of view changes (after it joins
the group)

• P2 receives views {P1, P2, P3}, {P1, P2}, {P1, P2, P4}

§ Views may be delivered at different physical times at processes, but they are
delivered in the same order (i.e., total ordering)

63

§ A multicast M is said to be “delivered in a view V at process 𝑃"” if

• 𝑃" receives view V, and then sometime before 𝑃" receives the next view it delivers
multicast M

§ Virtual synchrony ensures that

• The set of multicasts delivered in a given view is the same set at all correct processes that
were in that view
• What happens in a View, stays in that View

• The sender of the multicast message also belongs to that view
• If a process 𝑃" does not deliver a multicast M in view V while other processes in the view V

delivered M in V, then 𝑃" will be forcibly removed from the next view delivered after V at the
other processes

VSync Multicasts

64

Time

P2

P1

P3

P4

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

Crash

View{P1,P2,P3}

View{P1,P2,P3}

View{P1,P2,P3}

M1

M2

M3

Satisfies virtual synchrony 65

Time

P2

P1

P3

P4

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

View{P1,P2,P3}

View{P1,P2,P3}

View{P1,P2,P3}

M1

M2

M3

Does not satisfy virtual synchrony
Crash

66

Time

P2

P1

P3

P4

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

View{P1,P2}

View{P1,P2}

M1

M2

M3

Satisfies virtual synchrony
Crash

67

Time

P2

P1

P3

P4

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

Crash

View{P1,P2,P3}

View{P1,P2,P3}

View{P1,P2,P3}

M1

M2

M3

Does not satisfy virtual synchrony 68

Time

P2

P1

P3

P4

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

Crash

View{P1,P2,P3}

View{P1,P2,P3}

View{P1,P2,P3}

M1

M2 (not delivered at P2)

M3

Satisfies virtual synchrony 69

Time

P2

P1

P3

P4

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

Crash

View{P1,P2,P3}

View{P1,P2,P3}

View{P1,P2,P3}

M1

M2

M3

Does not satisfy virtual synchrony 70

Time

P2

P1

P3

P4

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

Crash

View{P1,P2,P3}

View{P1,P2,P3}

View{P1,P2,P3}

M1

M2

M3

Does not satisfy virtual synchrony 71

Time

P2

P1

P3

P4

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

Crash

View{P1,P2,P3}

View{P1,P2,P3}

View{P1,P2,P3}

M1

M2

M3

Satisfies virtual synchrony 72

§ Again, orthogonal to virtual synchrony

§ The set of multicasts delivered in a view can be ordered either

• FIFO

• Or Causally

• Or Totally

• Or using a hybrid scheme

What about Multicast Ordering? Ordering?

73

§ Called “virtual synchrony” since in spite of running on an asynchronous
network, it gives the appearance of a synchronous network underneath that
obeys the same ordering at all processes

§ So can this virtually synchronous system be used to implement consensus?

§ No! VSync groups susceptible to partitioning

• E.g., due to inaccurate failure detections

About that name

74

Time

P2

P1

P3

P4

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

Crash

View{P1}

View{P2, P3}

View{P2,P3}

M1

M2

M3

Partitioning in View synchronous systems 75

