
Group Communication
CMPS 4760/6760: Distributed Systems

1

Acknowledgement: slides adapted from Indranil Gupta’s lecture notes: 
https://courses.engr.illinois.edu/cs425/fa2019/index.html



Coordination in Distribution Systems

§ Distributed Mutual Exclusion (15.2)

§ Leader Election (15.3)

§ Group communication (15.4)

§ Consensus (15.5)
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Communication Forms

§ Multicast: message sent to a group of processes
• By issuing a single multicast operation

§ Broadcast: message sent to to all processes

§ Unicast: message sent to a single process
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Who Uses Multicast?

§ A widely-used abstraction by almost all cloud systems

§ Storage systems like Cassandra or a database
• Replica servers for a key: Writes/reads to the key are multicast within the replica group
• All servers: membership information (e.g., heartbeats) is multicast across all servers in cluster

§ Online scoreboards (ESPN, French Open, FIFA World Cup)
• Multicast to group of clients interested in the scores

§ Stock Exchanges
• Group is the set of broker computers
• Groups of computers for High frequency Trading

§ Air traffic control system
• All controllers need to receive the same updates in the same order
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Multicast vs. Unicast

§ Much than a convenience for the programmer

§ More efficient use of bandwidth, minimizing the delay
• Each message sent no more than once over any communication link 
• a distribution tree and hardware multicast support

§ Delivery guarantees
• If the sender fails halfway through sending, then some members of the group may 

receive the message while others do not. 
• The relative ordering of two messages delivered to any two group members is 

undefined
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Multicast vs. Unicast

§ Example: sending the same message from a computer in London to two 
computers on the same Ethernet in Palo Alto

(a) by two separate UDP sends
(b) by a single IP multicast operation: a single copy sent from London to a router 
in Palo Alto, followed by a hardware multicast via the Ethernet to destinations
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Multicast Trees

§ A shortest path tree rooted at source B
§ The tree will be different for a difference source

§ Routers replicate a packet and forward it to each 
of their neighbors in the tree
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Source tree Shared tree Rendezvous
point

§ All routers forward traffic to RP, which forwards 
them to the appropriate destinations via a 
common shortest path tree rooted at the RP

Source



Group Communication

§ IP Multicast
• Unreliable multicast
• Weak membership management

§ Group Communication
• Reliability and ordering guarantees (15.4)
• Membership management (18.2)

§ Group communication vs. IP multicast is like TCP vs. IP
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Group Communication

§ Programming Model (6.2.1-6.2.2)

§ Case study: JGroups (6.2.3)

§ Reliable and ordered multicast (15.4)

§ View-synchronous group communication (18.2)
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Programming Model

§ Process Groups
• Messages sent to the processes and no further support for dispatching provided
• Messages are unstructured byte arrays with no support for marshalling
• Similar to services provided by sockets
• Example: JGroups toolkit

§ Object Groups
• A collection of objects (normally instances of the same class)
• Each has a local proxy for the group
• Example: CORBA Group RMI 

• transparent mode: local proxy returns the first available response to client 
• non-transparent mode: the client object can access all the responses returned by the group 

members
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Programming Model

§ Closed vs. open groups

§ Overlapping vs. non-overlapping 
groups
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Reliable Multicast 

§ integrity: message received is the same as the one sent and no 
duplicates

§ validity: any outgoing message is eventually delivered

§ agreement: if the message is delivered to one process, it is delivered 
to all processes 
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Ordered Multicast

§ Determines the meaning of “same order” of multicast delivery 
at different processes in the group

§ Three popular flavors implemented by several multicast 
protocols

1. FIFO ordering
2. Causal ordering
3. Total ordering
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FIFO Ordering

§ Multicasts from each sender are received in the order they are sent, at 
all receivers

§ Don’t worry about multicasts from different senders

§ More formally
• If a correct process issues (sends) 𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡(𝑔,𝑚) to group g and 

then 𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡(𝑔,𝑚′) , then every correct process that delivers 𝑚’
would already have delivered 𝑚.

14



M1:1 and M1:2 should be received in that order at each receiver
Order of delivery of M3:1 and M1:2 could be different at different receivers

FIFO Ordering: Example

P2

Time
P1

P3

M1:1 M1:2

P4

M3:1



Causal Ordering

§ Multicasts whose send events are causally related, must be received in 
the same causality-obeying order at all receivers

§ Formally

• If 𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡(𝑔,𝑚) →𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡(𝑔,𝑚′) then any correct process that 
delivers m’ would already have delivered m.

• (→ is Lamport’s happens-before)
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M3:1 à M3:2, and so should be received in that order at each receiver
M1:1 à M3:1, and so should be received in that order at each receiver
M3:1 and M2:1 are concurrent and thus ok to be received in different orders at 

different receivers

Causal Ordering: Example

P2

Time
P1

P3

M1:1

P4

M3:1 M3:2

M2:1



Causal vs. FIFO

§ Causal Ordering => FIFO Ordering

§ Why?
• If two multicasts M and M’ are sent by the same process P, and M was 

sent before M’, then M → M’
• Then a multicast protocol that implements causal ordering will obey FIFO 

ordering since M → M’

§ Reverse is not true! FIFO ordering does not imply causal ordering.
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Ordered Multicast Example: a bulletin board
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Bulletin board:os.interesting

Item From Subject

23 A.Hanlon Mach

24 G.Joseph Microkernels

25 A.Hanlon Re: Microkernels

26 T.L’Heureux RPC performance

27 M.Walker Re: Mach

end
Total 
ordering

Causal 
ordering

FIFO 
ordering



Total Ordering

§ Unlike FIFO and causal, this does not pay attention to order of multicast 
sending

§ Ensures all receivers receive all multicasts in the same order

§ Formally
• If a correct process 𝑃 delivers message 𝑚 before 𝑚’ (independent of the 

senders), then any other correct process 𝑃’ that delivers 𝑚’ would already 
have delivered 𝑚.
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The order of receipt of multicasts is the same at all processes.
M1:1, then M2:1, then M3:1, then M3:2
May need to delay delivery of some messages

Total Ordering: Example

P2

Time
P1

P3

M1:1

P4

M3:1 M3:2

M2:1
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Hybrid Variants

§ Since FIFO/Causal are orthogonal to Total, can have hybrid 
ordering protocols too
• FIFO-total hybrid protocol satisfies both FIFO and total orders
• Causal-total hybrid protocol satisfies both Causal and total orders
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Group Membership Management
§ Membership service provides

• Interface for membership changes

• Failure detection
• Notification of membership changes
• Group address expansion
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Join

Group
address

expansion

Group
send

Fail

Leave

Group membership
management

Multicast
communication

Process group

Multicast delivery should be coordinated 
with membership change =>
view-synchronous group communication



Group Communication

§ Programming Model (6.2.1-6.2.2)

§ Case study: JGroups (6.2.3)

§ Reliable and ordered multicast (15.4)

§ View-synchronous group communication (18.2)
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Case study: the JGroups toolkit  
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http://www.jgroups.org/

Causal ordering

Membership service
Merging subgroups 
(after network partition)

IP multicast + UDP
Message packetization

Protocol Stack (a wide range 
of protocols can be combined)



Java class FireAlarmJG
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import org.jgroups.JChannel;

public class FireAlarmJG { 
public void raise() {

try {
JChannel channel = new JChannel();
channel.connect("AlarmChannel"); 
Message msg = new Message(null, null, "Fire!"); 
channel.send(msg);

} 
catch(Exception e) { 
}

}

destination source



Java class FireAlarmConsumerJG
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import org.jgroups.JChannel;

public class FireAlarmConsumerJG { 
public String await() {

try {
JChannel channel = new JChannel(); 
channel.connect("AlarmChannel"); 
Message msg = (Message) channel.receive(0); 
return (String) msg.GetObject();

} catch(Exception e) {
return null;

}
}

}

Timeout; 0 means 
block until a message 
is received



JGroups – Building Blocks

§ MessageDispatcher: send a message to a 
group and waits for some or all of the replies

§ RpcDispatcher: invoke a method on all objects 
associated with a group

§ ReplicatedHashMap: allow members in a 
group to share common state

§ …
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Group Communication

§ Programming Model (6.2.1-6.2.2)

§ Case study: JGroups (6.2.3)

§ Reliable and ordered multicast (15.4)

§ View-synchronous group communication (18.2)
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Assumptions

§ Processes can fail only by crash, reliable one-to-one channels

§ Static groups with known membership

§ Each process is a member of at most one group

§ Closed groups
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Group Communication

§𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡(𝑔,𝑚) sends a message 𝑚 to all 
members of group 𝑔
• 𝑚. 𝑠𝑒𝑛𝑑𝑒𝑟: the unique id of the process that sent it 
• 𝑚.𝑔𝑟𝑜𝑢𝑝: the unique destination group id

§ 𝑑𝑒𝑙𝑖𝑣𝑒𝑟(𝑚) delivers a message 𝑚 sent by a 
multicast to the calling process
• A multicast message is not always handed to the 

application layer inside the process as soon as it is 
received at the process’s node
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Reliable Multicast

§ integrity: every correct process delivers a message at most once, only 
if some process in the group multicasts that message

§ validity: if a correct process multicasts a message, it will eventually 
deliver it

§ agreement: if a correct process delivers message 𝑚, then all other 
correct processes in the group will eventually deliver 𝑚
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Reliable Multicast via Reliable Unicast
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𝑷𝒊:: 

var
𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑= {};

multicast(𝑔,𝑚) :
for each 𝑞 ∈ 𝑔, send(𝑞,𝑚); 

receive(𝑚):
if (𝑚 ∉ 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑)
𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑 = 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑 ∪ 𝑚 ;
if(𝑃" ≠ 𝑚. 𝑠𝑒𝑛𝑑𝑒𝑟)

for each 𝑞 ∈ 𝑚. 𝑔𝑟𝑜𝑢𝑝, send(𝑞,𝑚);
deliver 𝑚 to the application layer;

reliable unicast
Message complexity: 𝑂 𝑁#



Reliable Multicast over IP Multicast
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𝑷𝒊:: 

var
hold-back ={};
𝑆 = 0; // seq no of last sent msg
𝑅[1…𝑁];   // 𝑅[𝑞]: seq no of last 

delivered msg from 𝑞

multicast(𝑔,𝑚) :
IP-multicast (𝑔, 𝑚, 𝑆, {<𝑞, 𝑅[𝑞]>});
𝑆 = 𝑆 + 1;

receive(𝑚, 𝑆, <𝑞, 𝑅![𝑞]>):
𝑝 = 𝑚. 𝑠𝑒𝑛𝑑𝑒𝑟;
if (𝑆 == 𝑅[𝑝] + 1) 

deliver message; 𝑅[𝑝] = 𝑅[𝑝] + 1;
if (𝑆 ≤ 𝑅[𝑝]) 

message is discarded 
if (𝑆 > 𝑅[𝑝] + 1) 

put 𝑚 in the hold-back queue
send NACK to 𝑝

for 𝑞 ∈ [1…𝑁]
if (𝑅![𝑞] > 𝑅[𝑞]) 

send NACK to 𝑝 or 𝑞
piggybacked 
acknowledgements

negative 
acknowledgement



Reliable Multicast over IP Multicast

§ Integrity 
• duplicate detection
• error checking in IP-multicast

§ Validity 
• negative acknowledgement

§ Agreement
• missing message always detected if there are infinite multicast messages
• there is always an available copy of a missing message if processes retain 

copies they have delivered indefinitely
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Ordered Multicast

§ FIFO ordering: if a correct process issues multicast(𝑔,𝑚) and then 
multicast(𝑔,𝑚′), then every correct process that delivers 𝑚′ would already have 
delivered 𝑚

§ Causal ordering: if multicast(𝑔,𝑚) → multicast(𝑔,𝑚’), then any correct process 
that delivers 𝑚′ would already have delivered 𝑚

§ Total ordering: if a correct process delivers message 𝑚 before it delivers 𝑚′, then 
any other correct process that delivers 𝑚′ would already have delivered 𝑚

§ Hybrid ordering: FIFO-total ordering, causal-total ordering
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Ordered Multicast and Reliable Multicast

§ Ordered multicast does not assume or imply reliability

§ Hybrids of ordered and reliable protocols
• reliable totally ordered multicast (atomic multicast)
• reliable FIFO multicast
• reliable causal multicast
• …
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Implement FIFO Ordering

§ Our algorithm for reliable multicast over IP multicast guarantees FIFO ordering
§ If we don’t need reliability:
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𝑷𝒊:: 
var

hold-back ={};
𝑆 = 0; // seq no of last sent msg
𝑅[1…𝑁];   // 𝑅[𝑞]: seq no of last delivered

msg from 𝑞

multicast(𝑔,𝑚) :
IP-multicast(𝑔, 𝑚, 𝑆);
𝑆 = 𝑆 + 1;

receive(𝑚, 𝑆):
𝑝 = 𝑚. 𝑠𝑒𝑛𝑑𝑒𝑟;
if (𝑆 == 𝑅[𝑝] + 1) 

deliver message; 𝑅[𝑝] = 𝑅[𝑝] + 1;
if (𝑆 ≤ 𝑅[𝑝]) 

message is discarded 
if (𝑆 > 𝑅[𝑝] + 1) 

put 𝑚 in the hold-back queue;



P2

Time
P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

FIFO Ordering: Example
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P2

Time
P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]
Deliver!

P1, seq: 1

[1,0,0,0]
Deliver!

?

[1,0,0,0]

FIFO Ordering: Example

P1, seq: 2

[2,0,0,0]



P2

Time
P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]
Deliver!

P1, seq: 1

[1,0,0,0]
Deliver!

[0,0,0,0]
Buffer!

P1, seq: 2

[1,0,0,0] [2,0,0,0]

FIFO Ordering: Example

[1,0,0,0]
Deliver this!
Deliver buffered <P1, seq:2>
Update [2,0,0,0]



P2

Time
P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]
Deliver!

P1, seq: 1

[1,0,0,0]
Deliver!

[0,0,0,0]
Buffer!

P1, seq: 2

[1,0,0,0] [2,0,0,0]

[2,0,0,0]
Deliver!

[1,0,0,0]
Deliver this!
Deliver buffered <P1, seq:2>
Update [2,0,0,0]FIFO Ordering: Example



P2

Time
P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]
Deliver!

P1, seq: 1

[1,0,0,0]
Deliver!

[0,0,0,0]
Buffer!

P1, seq: 2

[1,0,0,0] [2,0,0,0]

[2,0,0,0]
Deliver!

[1,0,0,0]
Deliver this!
Deliver buffered <P1, seq:2>
Update [2,0,0,0]

P3, seq: 1
[2,0,1,0]

[2,0,1,0]
Deliver!

[2,0,1,0]
Deliver!

?

FIFO Ordering: Example



P2

Time
P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]
Deliver!

P1, seq: 1

[1,0,0,0]
Deliver!

[0,0,0,0]
Buffer!

P1, seq: 2

[1,0,0,0] [2,0,0,0]

[2,0,0,0]
Deliver!

[1,0,0,0]
Deliver this!
Deliver buffered <P1, seq:2>
Update [2,0,0,0]

P3, seq: 1
[2,0,1,0]

[2,0,1,0]
Deliver!

[2,0,1,0]
Deliver!
[1,0,1,0]
Deliver!

[2,0,1,0]
Deliver!

FIFO Ordering: Example



Total ordering using a sequencer
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sequencer



Total ordering using a sequencer
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𝑷𝒊:: 

var
hold-back = {};
𝑟 = 0;

multicast(𝑔,𝑚) :
IP-multicast (𝑔 ∪ {𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑟(g)}, <𝑚, 𝑖𝑑>);

receive(<𝑚, 𝑖𝑑>):
place m in the hold-back queue

receive(𝑚#$%&$ =<“order”, 𝑖𝑑, 𝑠>)
wait until <𝑚, 𝑖𝑑> in hold-back queue and 𝑠 = 𝑟;
deliver 𝑚;
𝑟 = 𝑠 + 1;

Sequencer::

var

𝑠 = 0;

receive(<𝑚, 𝑖𝑑>):
IP-multicast (𝑔, <“order”, 𝑖𝑑, 𝑠>);

deliver 𝑚;

𝑠 = 𝑠 + 1;



P0

P1

P2

(0,0,0)

(0,0,0)

(0,0,0)
(1,0,0)

(1,0,0)

(1,1,0)

m1

m1m2

m2

(1,0,0) (1,1,0)

(1,1,0) (2,1,0)

(2,1,0)

(2,1,0)

Causal ordering using vector timestamps
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Causal ordering using vector timestamps
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𝑷𝒊:: 

var

hold-back = {};

𝑉𝐶: array[1. . 𝑁] of integer; 

multicast(𝑔,𝑚) :

𝑉𝐶 𝑖 = 𝑉𝐶 𝑖 + 1;
IP-multicast (𝑔, <𝑚,𝑉𝐶>);

receive(<𝑚, 𝑡>):

𝑗 = 𝑚. 𝑠𝑒𝑛𝑑𝑒𝑟;

place 𝑚 in the hold-back queue;

wait until 𝑡 𝑗 = 𝑉𝐶 𝑗 + 1 and 𝑡 𝑘 ≤ 𝑉𝐶 𝑘 (∀𝑘 ≠ 𝑗);

deliver 𝑚; 

𝑉𝐶 𝑗 = 𝑉𝐶 𝑗 + 1; 

• Causal multicast + reliable multicast ⇒ reliable causally ordered multicast  

• Causal multicast + sequencer-based protocol ⇒ causally and totally ordered multicast



Time

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]

Causal Ordering: Example 49



Time

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]

[1,0,0,0]
Deliver!

[1,0,0,0]
Deliver!

Causal Ordering: Example



Time

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]

[1,0,0,0]
Deliver!

[1,0,0,0]
Deliver!

[1,1,0,0]

Causal Ordering: Example



Time

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]

[1,0,0,0]
Deliver!

[1,0,0,0]
Deliver!

[1,1,0,0]

[1,1,0,0]
Deliver!

Missing 1 from P1
Buffer!

Causal Ordering: Example



Time

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]

[1,0,0,0]
Deliver!

[1,0,0,0]
Deliver!

[1,1,0,0]

[1,1,0,0]
Deliver!

Missing 1 from P1
Buffer!

[1,0,0,1]

Deliver!
Receiver satisfies causality

Deliver!
Receiver satisfies causality

Causal Ordering: Example



Time

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]

[1,0,0,0]
Deliver!

[1,0,0,0]
Deliver!

[1,1,0,0]

[1,1,0,0]
Deliver!

Missing 1 from P1
Buffer!

[1,0,0,1]

Deliver!
Receiver satisfies causality

Deliver!
Receiver satisfies causality

Missing 1 from P1
Buffer!

Causal Ordering: Example



Causal Ordering: Example

Time

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]

[1,0,0,0]
Deliver!

[1,0,0,0]
Deliver!

[1,1,0,0]

[1,1,0,0]
Deliver!

Missing 1 from P1
Buffer!

[1,0,0,1]

Deliver!
Receiver satisfies causality

Deliver!
Receiver satisfies causality

Missing 1 from P1
Buffer!

Deliver P1’s multicast
Receiver satisfies causality for buffered multicasts

Deliver P2’s buffered multicast
Deliver P4’s buffered multicast



Causal Ordering: Example

Time

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]

[1,0,0,0]
Deliver!

[1,0,0,0]
Deliver!

[1,1,0,0]

[1,1,0,0]
Deliver!

Missing 1 from P1
Buffer!

[1,0,0,1]

Deliver!
Receiver satisfies causality

Deliver!
Receiver satisfies causality

Missing 1 from P1
Buffer!

Deliver P1’s multicast
Receiver satisfies causality for buffered multicasts

Deliver P2’s buffered multicast
Deliver P4’s buffered multicast

Deliver!



Overlapping groups

§ Global FIFO ordering: If a correct process issues multicast(𝑔,𝑚) and then 
multicast(𝑔′,𝑚′), every correct process in 𝑔 ∩ 𝑔′ that delivers 𝑚′ would already 
have delivered 𝑚

§ One can define global causal ordering and global total ordering similarly

§ A simple approach to implement global ordering

• Multicast each message 𝑚 to all the processes in the system

• Each process either discards or delivers 𝑚 according to whether belongs to group(m) 
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Multicast in synchronous and asynchronous systems

§ We have described algorithms for
• Reliable unordered multicast
• Reliable FIFO-ordered multicast
• Reliable causally ordered multicast
• Totally ordered multicast
• Causally and totally ordered multicast
• FIFO and totally ordered multicast
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Multicast in synchronous and asynchronous systems

§ Can we get reliable and totally ordered multicast (atomic multicast)? 
• Yes for synchronous system
• No for asynchronous system even with a single process crash failure
• Equivalent to consensus with crash failures (FLP impossibility result)
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Group Communication

§ Programming Model (6.2.1-6.2.2)

§ Case study: JGroups (6.2.3)

§ Reliable and ordered multicast (15.4)

§ View-synchronous group communication (18.2)
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§ Attempts to preserve multicast ordering and reliability in spite of
failures

§ Combines a membership protocol with a multicast protocol

§ Systems that implemented it have been used in NYSE, French Air 
Traffic Control System, Swiss Stock Exchange

Virtual Synchrony/View Synchrony
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§ Each process maintains a membership list

§ The membership list is called a View
• i.e., lists of the current group members, identified by their unique process ids

• The list is ordered, e.g., according to when the members joined the group

§ An update to the membership list is called a View Change

• Process join, leave, or failure

Views
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Virtual Synchrony

§ Virtual synchrony guarantees that all view changes are delivered in the same 
order at all correct processes
• If a correct P1 process receives views, say {P1}, {P1, P2, P3}, {P1, P2}, {P1, P2, P4} then 

• Any other correct process receives the same sequence of view changes (after it joins 
the group)

• P2 receives views {P1, P2, P3}, {P1, P2}, {P1, P2, P4} 

§ Views may be delivered at different physical times at processes, but they are 
delivered in the same order (i.e., total ordering)
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§ A multicast M is said to be “delivered in a view V at process 𝑃"” if 

• 𝑃" receives view V, and then sometime before 𝑃" receives the next view it delivers 
multicast M

§ Virtual synchrony ensures that 

• The set of multicasts delivered in a given view is the same set at all correct processes that 
were in that view 
• What happens in a View, stays in that View 

• The sender of the multicast message also belongs to that view 
• If a process 𝑃" does not deliver a multicast M in view V while other processes in the view V 

delivered M in V, then 𝑃" will be forcibly removed from the next view delivered after V at the 
other processes

VSync Multicasts
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§ Again, orthogonal to virtual synchrony

§ The set of multicasts delivered in a view can be ordered either

• FIFO

• Or Causally

• Or Totally

• Or using a hybrid scheme

What about Multicast Ordering? Ordering?
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§ Called “virtual synchrony” since in spite of running on an asynchronous 
network, it gives the appearance of a synchronous network underneath that 
obeys the same ordering at all processes

§ So can this virtually synchronous system be used to implement consensus?

§ No! VSync groups susceptible to partitioning

• E.g., due to inaccurate failure detections

About that name
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