• • • • • • • • • • • •

Distributed Mutual Exclusion

CMPS 4760/6760: Distributed Systems

Acknowledgement: slides adapted from Indranil Gupta's lecture notes: https://courses.engr.illinois.edu/cs425/fa2019/index.html

Why Mutual Exclusion?

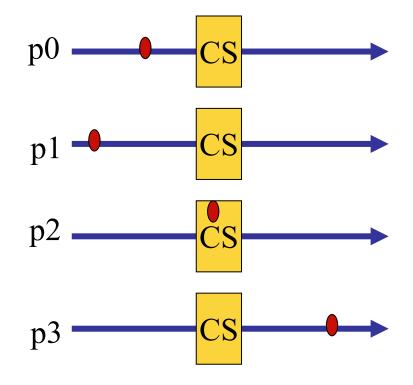
- Bank's Servers in the Cloud: Two of your customers make simultaneous deposits of \$10,000 into your bank account, each from a separate ATM.
 - Both ATMs read initial amount of \$1000 concurrently from the bank's cloud server
 - Both ATMs add \$10,000 to this amount (locally at the ATM)
 - Both write the final amount to the server
 - What's wrong?

Why Mutual Exclusion?

- Bank's Servers in the Cloud: Two of your customers make simultaneous deposits of \$10,000 into your bank account, each from a separate ATM.
 - Both ATMs read initial amount of \$1000 concurrently from the bank's cloud server
 - Both ATMs add \$10,000 to this amount (locally at the ATM)
 - Both write the final amount to the server
 - You lose \$10,000
- The ATMs need mutually exclusive access to your account entry at the server
 - or, mutually exclusive access to executing the code that modifies the account entry

Problem Statement for Mutual Exclusion

- Critical Section Problem: Piece of code (at all processes) for which we need to ensure there is at most one process executing it at any point of time
- Each process can call three functions
 - enter() to enter the critical section (CS)
 - AccessResource() to run the critical section code
 - exit() to exit the critical section



Approaches to Solve Mutual Exclusion

- Single OS:
 - If all processes are running in one OS on a machine (or VM), then
 - Semaphores, locks, condition variables, monitors, etc.
- Distributed system:
 - Message passing only

Problem Specification

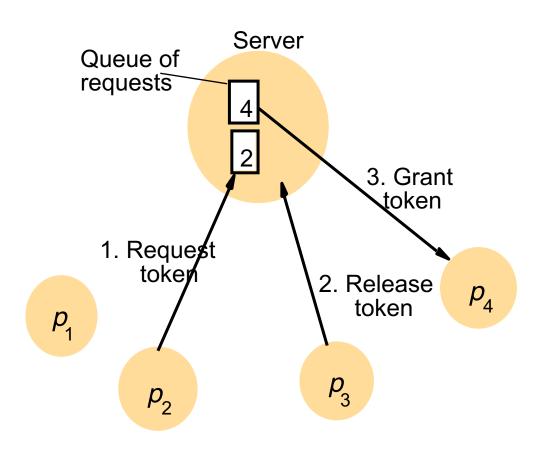
- Safety: At most one process can execute in the critical section (CS) at a time
 - Safety nothing "bad" will happen
- Liveness: Every request for the critical section is eventually granted
 - Liveness something "good" will eventually happen
- Fairness: Different requests are granted in the order they are made
 - If one request to enter the CS happened-before another, then entry to the CS is granted in that order

Assumptions

- No faults in the system: both processes and communication links are reliable
- A process that is granted access to the critical section eventually releases it (cooperation)
- A single critical section (CS)

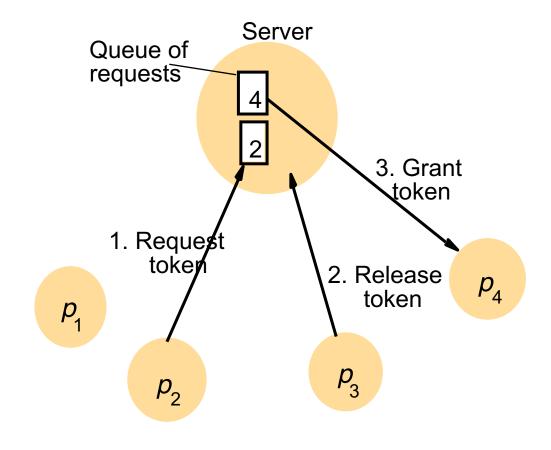
A simple centralized solution

- A server serves as the coordinator for the CS
- Any process that needs to access the CS sends a request to the coordinator
- The coordinator puts requests in a queue in the order it receives them and grants permission to the process that is at the head of the queue
- When a process exits the CS, it sends a release message to the coordinator



A simple centralized solution

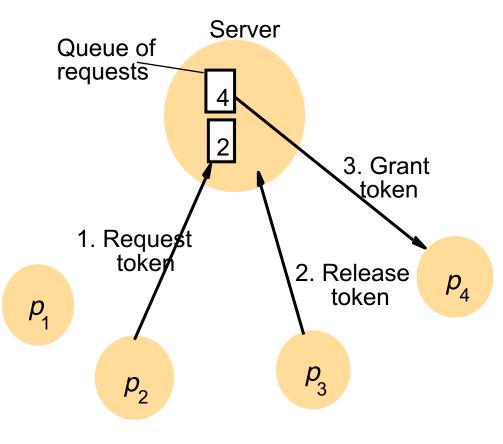
Assuming no faults, safety and liveness satisfied, but not fairness (why?)



A simple centralized solution

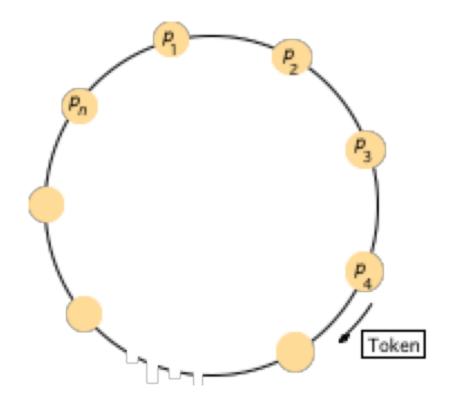
Performance

- Entering the CS takes 2 messages
- Exiting the CS takes 1 message
- Delay to enter the CS (when *no* other process is in, or waiting)
 - 2 message latencies (request + grant) : one roundtrip time
- Synchronization delay: time interval between one process exiting the CS and the other process entering it
 - 2 message latencies (release + grant): one roundtrip time



A ring-based algorithm

- Arrange processes into a logical ring
- A token passes through the processes in a single direction
- A process can access the CS when it receives the token. It forwards the token to its neighbor when it exits the CS
- If a process receives the token and does not need to access the CS, it immediately forwards the token to its neighbor

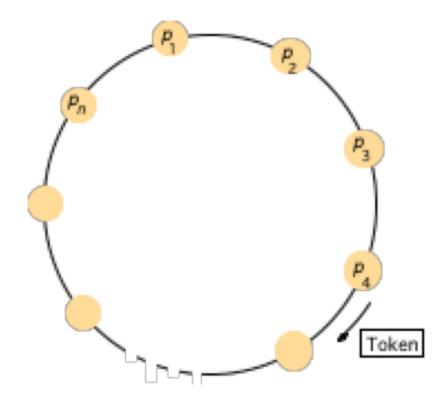


A ring-based algorithm

Assuming no faults, safety and liveness satisfied, but not fairness (why?)

Performance

- Processes send and receive messages around the ring even when no one requires entry to the CS
- Delay to enter the CS: 0 ~ N messages
- Synchronization delay: 1 ~ N messages



Ricart-Agrawala Algorithm

- Classical algorithm from 1981
- Invented by Glenn Ricart (NIH) and Ashok Agrawala (U. Maryland)

- No token
- Uses the notion of causality and multicast
- Has lower waiting time to enter CS than Ring-Based approach

Assumptions

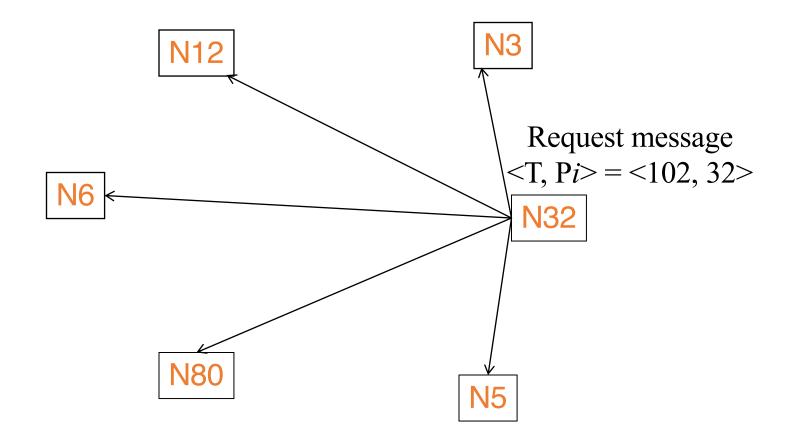
- No faults in the system: both processes and communication links are reliable
- A process that is granted access to the critical section eventually releases it (cooperation)
- A single critical section (CS)
- A completely connected graph, so that every process can directly communicate with every other process in the system

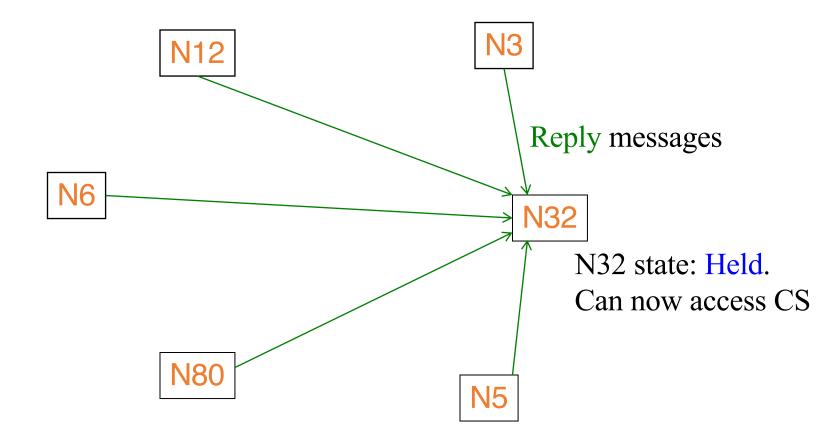
Key Idea: Ricart-Agrawala Algorithm

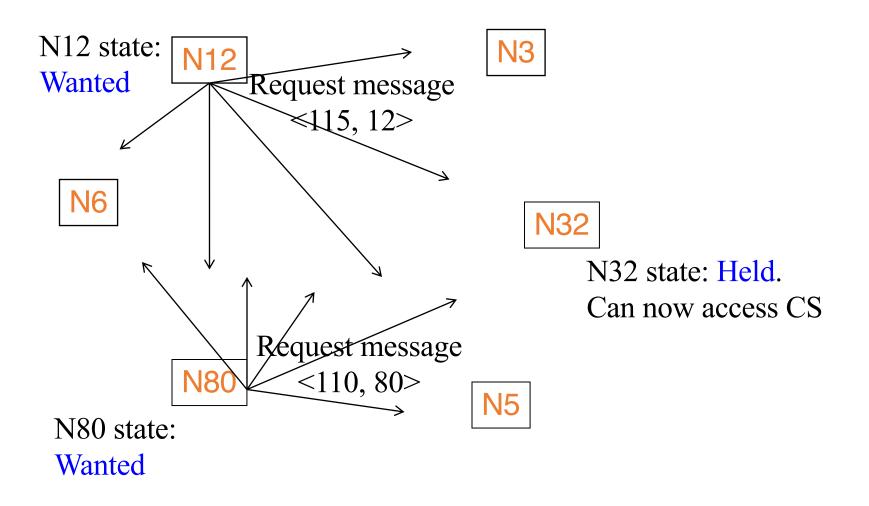
- enter() at process P_i
 - multicast a request to all processes
 - Request: $\langle T_i, P_i \rangle$, where T_i = current Lamport timestamp at P_i
 - Wait until *all* other processes have responded positively to request
- Requests are granted in order of causality
- $< T_i, P_i >$ is used lexicographically: P_i in request $< T_i, P_i >$ is used to break ties (since Lamport timestamps are not unique for concurrent events)

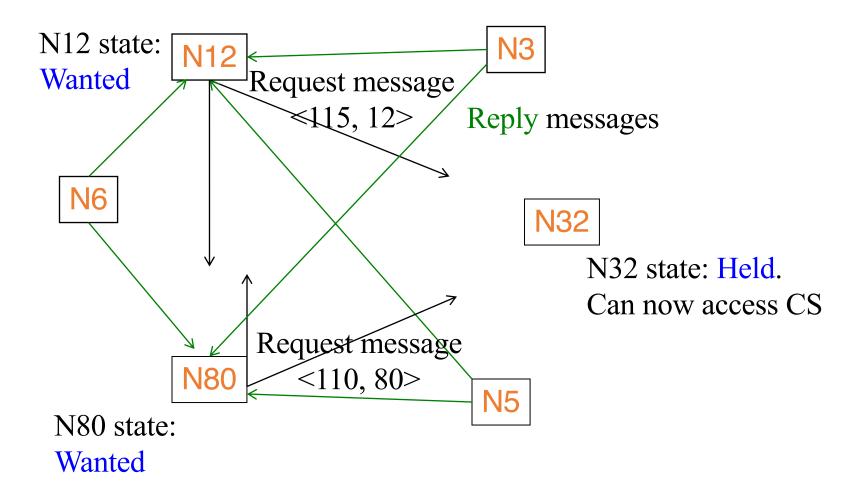
Messages in RA Algorithm

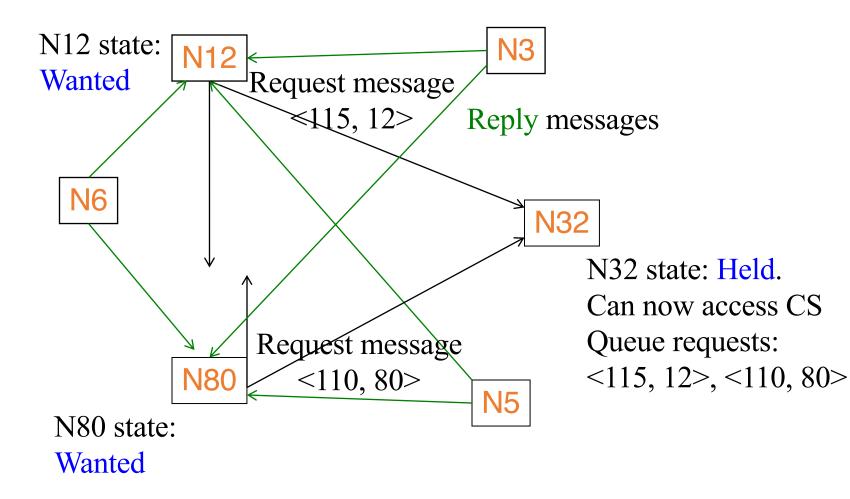
- enter() at process P_i
 - set state to Wanted
 - multicast "Request" $\langle T_i, P_i \rangle$ to all processes, where T_i = current Lamport timestamp at P_i
 - wait until all processes send back "Reply"
 - change state to Held and enter the CS
- On receipt of a Request $< T_j$, $P_j >$ at P_i $(i \neq j)$:
 - if (state = Held) or (state = Wanted & ((T_i, i)<(T_j, j)) // lexicographic ordering in (T_j, P_j) add request to local queue (of waiting requests)
 else send "Reply" to P_i
- exit() at process P_i
 - change state to Released and "Reply" to all queued requests

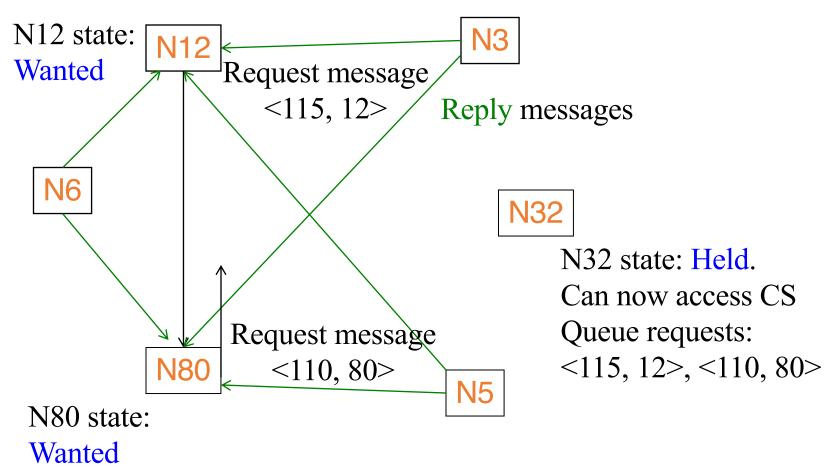




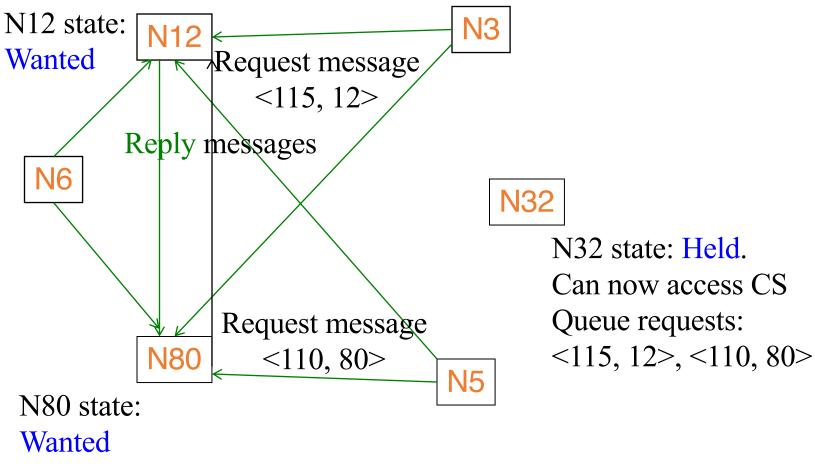




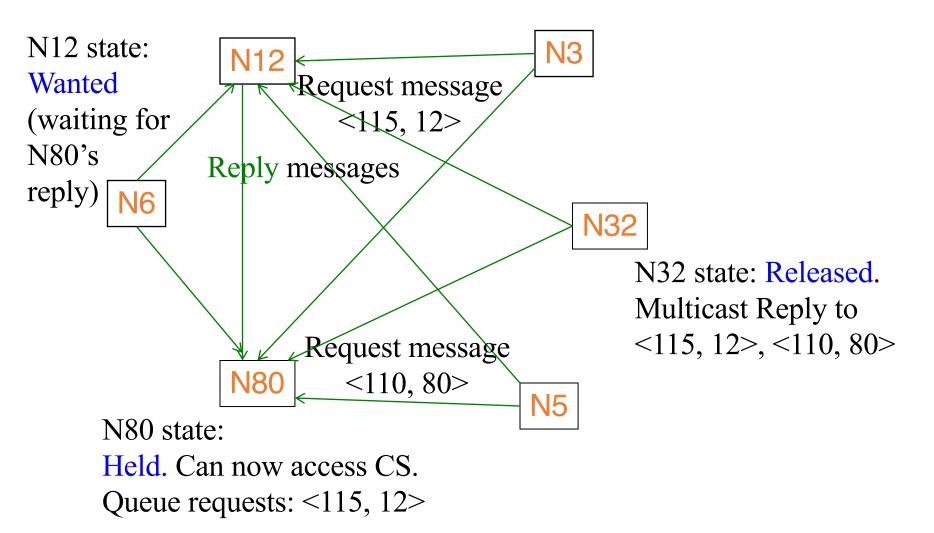




```
Queue requests: <115, 12> (since > (110, 80))
```



Queue requests: <115, 12>



Analysis: Ricart-Agrawala Algorithm

- Safety: Two processes P_i and P_j cannot both have access to CS
 - If they did, then both would have sent Reply to each other
 - Thus, $(T_i, i) < (T_j, j)$ and $(T_j, j) < (T_i, i)$, which are together not possible
 - What if (T_i, i) < (T_j, j) and P_i replied to P_j's request before it created its own request?
 - Then it seems like both P_i and P_j would approve each others' requests
 - But then, causality and Lamport timestamps at P_i implies that $T_i > T_j$, which is a contradiction
 - So this situation cannot arise

Analysis: Ricart-Agrawala Algorithm (cont.)

Liveness

- Worst-case: wait for all other (N-1) processes to send Reply
- Fairness
 - Requests with lower Lamport timestamps are granted earlier

Performance: Ricart-Agrawala Algorithm

- 2(N-1) messages per enter() operation
 - N-1 unicasts for the multicast request + N-1 replies
 - N messages if the underlying network supports multicast (1 multicast + N-1 unicast replies)
- N-1 unicast messages per exit operation
 - 1 multicast if the underlying network supports multicast
- Client delay: one round-trip time
- Synchronization delay: one message transmission time

Performance: Ricart-Agrawala Algorithm

- Compared to Ring-Based approach, in Ricart-Agrawala approach
 - Client/synchronization delay has now gone down to O(1)
 - But message complexity has gone up to O(N)
- Can we get both down?

Maekawa's algorithm: Key Idea

- Ricart-Agrawala requires replies from all processes in group
- Instead, get replies from only some processes in group
- But ensure that only process one is given access to CS (Critical Section) at a time

=> A sublinear $O(\sqrt{N})$ message complexity

Maekawa's algorithm: key idea

Each P_i is associated with a voting set V_i. Divide the set of processes into subsets that satisfy the following conditions:

a) $i \in V_i$

- b) $V_i \cap V_j \neq \emptyset, \forall i, j$
- Main idea: Each P_i is required to receive permission from V_i only. Correctness requires that multiple processes will never receive permission from all members of their respective subsets.

Maekawa's voting sets

- Each P_i is associated with a subset V_i. Divide the set of processes into subsets that satisfy the following conditions:
 - a) $i \in V_i$
 - b) $V_i \cap V_j \neq \emptyset, \forall i, j$
 - c) $|V_i| = K, \forall i$
 - d) Any *i* is contained in $M V'_i s$
- Maekawa showed that $K = M \sim \sqrt{N}$ works best
- One way of doing this is to put N processes in a \sqrt{N} by \sqrt{N} matrix and for each P_i , its voting set V_i = row containing $P_i \cup$ column containing P_i . Size of voting set $K = 2\sqrt{N} - 1$

Example: Maekawa's voting sets

Example. Let there be seven processes 0, 1, 2, 3, 4, 5, 6

$$V_0 = \{0, 1, 2\}$$

$$V_1 = \{1, 3, 5\}$$

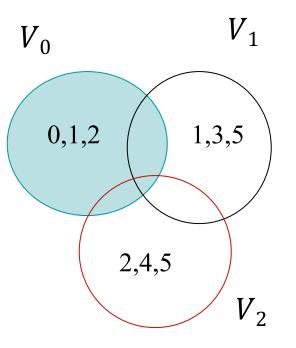
$$V_2 = \{2, 4, 5\}$$

$$V_3 = \{0, 3, 4\}$$

$$V_4 = \{1, 4, 6\}$$

$$V_5 = \{0, 5, 6\}$$

$$V_6 = \{2, 3, 6\}$$



•
$$K = 3, M = 3$$

Maekawa: Key Differences From Ricart-Agrawala

- Each process requests permission from only its voting set members
 - Not from all
- Each process (in a voting set) gives permission to at most one process at a time
 - Not to all

Actions

- state = Released, voted = false
- enter() at process P_i:
 - state = Wanted
 - Multicast Request message to all processes in V_i
 - Wait for Reply (vote) messages from all processes in V_i (including vote from self)
 - state = Held
- exit() at process P_i:
 - state = Released
 - Multicast Release to all processes in V_i

Actions (cont.)

 When P_i receives a Request from P_j:
 if (state == Held OR voted = true) queue Request
 else

```
send Reply to P_j and set voted = true
```

When P_i receives a Release from P_j:
 if (queue empty)
 voted = false

else

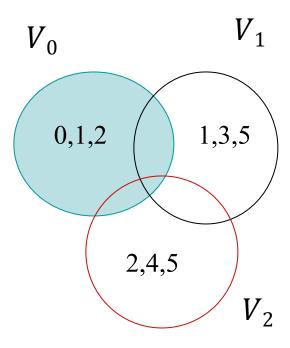
```
dequeue head of queue, say P_k
Send Reply only to P_k
voted = true
```

Safety

- When a process P_i receives replies from all its voting set V_i members, no other process P_j could have received replies from all its voting set members V_j
 - V_i and V_j intersect in at least one process say P_k
 - But P_k sends only one Reply (vote) at a time, so it could not have voted for both P_i and P_j

Liveness

- A process needs to wait for at most (N-1) other processes to finish CS
- But does not guarantee liveness
- Since can have a *deadlock*
 - Assume 0, 1, 2 want to enter their critical sections.
 - From $V_0 = \{0, 1, 2\}, 0, 2$ send reply to 0, but 1 sends reply to 1;
 - From V_1 = {1,3,5}, 1,3 send reply to 1, but 5 sends reply to 2;
 - From V_2 = {2,4,5}, 4,5 send reply to 2, but 2 sends reply to 0;
 - Now, 0 waits for 1 (to send a release), 1 waits for 2 (to send a release), and 2 waits for 0 (to send a release). So, deadlock is possible!
- There are deadlock-free versions



Performance

- Message complexity
 - $2\sqrt{N}$ messages per enter()
 - \sqrt{N} messages per exit()
 - Better than Ricart and Agrawala's (2(N-1) and N-1 messages)
 - \sqrt{N} quite small. $N \sim 1$ million => $\sqrt{N} = 1$ K
- Client delay: One round trip time
- Synchronization delay: 2 message transmission times

Why \sqrt{N} ?

- Each voting set is of size K
- Each process belongs to M other voting sets
- Total number of voting set members (processes may be repeated) = K*N
- But since each process is in M voting sets
 - $K^*N/M = N => K = M$ (1)

- Consider a process P_i
 - Total number of voting sets = members present in P_i's voting set and all their voting sets = (M-1)*K + 1
 - All processes in group must be in above
 - To minimize the overhead at each process
 (K), need each of the above members to be unique, i.e.,
 - N = (M-1)*K + 1
 - $N = (K-1)^*K + 1$ (due to (1))
 - $K \sim \sqrt{N}$