
Distributed Mutual Exclusion
CMPS 4760/6760: Distributed Systems

1

Acknowledgement: slides adapted from Indranil Gupta’s lecture notes:
https://courses.engr.illinois.edu/cs425/fa2019/index.html

Why Mutual Exclusion?

§ Bank’s Servers in the Cloud: Two of your customers make
simultaneous deposits of $10,000 into your bank account, each
from a separate ATM.
• Both ATMs read initial amount of $1000 concurrently from the

bank’s cloud server
• Both ATMs add $10,000 to this amount (locally at the ATM)
• Both write the final amount to the server
• What’s wrong?

2

Why Mutual Exclusion?

§ Bank’s Servers in the Cloud: Two of your customers make simultaneous
deposits of $10,000 into your bank account, each from a separate ATM.
• Both ATMs read initial amount of $1000 concurrently from the bank’s

cloud server
• Both ATMs add $10,000 to this amount (locally at the ATM)
• Both write the final amount to the server
• You lose $10,000

§ The ATMs need mutually exclusive access to your account entry at the server
• or, mutually exclusive access to executing the code that modifies the

account entry

3

Problem Statement for Mutual Exclusion

• Critical Section Problem: Piece of code (at all
processes) for which we need to ensure there is at
most one process executing it at any point of time

• Each process can call three functions
• enter() to enter the critical section (CS)
• AccessResource() to run the critical section code
• exit() to exit the critical section

4

CS

CS

CS

CSp0

p1

p2

p3

Approaches to Solve Mutual Exclusion

• Single OS:
• If all processes are running in one OS on a machine (or VM), then
• Semaphores, locks, condition variables, monitors, etc.

• Distributed system:
• Message passing only

5

Problem Specification

§ Safety: At most one process can execute in the critical section (CS) at a time

• Safety – nothing “bad” will happen

§ Liveness: Every request for the critical section is eventually granted

• Liveness – something “good” will eventually happen

§ Fairness: Different requests are granted in the order they are made
• If one request to enter the CS happened-before another, then entry to the CS

is granted in that order

6

Assumptions

§ No faults in the system: both processes and communication links are
reliable

§ A process that is granted access to the critical section eventually
releases it (cooperation)

§ A single critical section (CS)

7

A simple centralized solution

§ A server serves as the coordinator for the CS

§ Any process that needs to access the CS sends
a request to the coordinator

§ The coordinator puts requests in a queue in
the order it receives them and grants
permission to the process that is at the head of
the queue

§ When a process exits the CS, it sends a release
message to the coordinator

8

Server

1. Request
token

Queue of
requests

2. Release
token

3. Grant
token

4

2

p4

p
3p2

p
1

A simple centralized solution

§ Assuming no faults, safety and liveness
satisfied, but not fairness (why?)

9

Server

1. Request
token

Queue of
requests

2. Release
token

3. Grant
token

4

2

p4

p
3p2

p
1

A simple centralized solution

§ Performance
• Entering the CS takes 2 messages
• Exiting the CS takes 1 message

• Delay to enter the CS (when no other process is in,
or waiting)
• 2 message latencies (request + grant) : one round-

trip time
• Synchronization delay: time interval between one

process exiting the CS and the other process entering it
• 2 message latencies (release + grant): one round-

trip time
10

Server

1. Request
token

Queue of
requests

2. Release
token

3. Grant
token

4

2

p4

p
3p2

p
1

A ring-based algorithm

§ Arrange processes into a logical ring

§ A token passes through the processes in a single
direction

§ A process can access the CS when it receives the
token. It forwards the token to its neighbor when
it exits the CS

§ If a process receives the token and does not
need to access the CS, it immediately forwards
the token to its neighbor

11

A ring-based algorithm

§ Assuming no faults, safety and liveness
satisfied, but not fairness (why?)

§ Performance
• Processes send and receive messages around the

ring even when no one requires entry to the CS
• Delay to enter the CS: 0 ~ 𝑁 messages
• Synchronization delay: 1 ~ 𝑁 messages

12

Ricart-Agrawala Algorithm

§ Classical algorithm from 1981

§ Invented by Glenn Ricart (NIH) and Ashok Agrawala (U. Maryland)

§ No token

§ Uses the notion of causality and multicast

§ Has lower waiting time to enter CS than Ring-Based approach

13

Assumptions

§ No faults in the system: both processes and communication links are
reliable

§ A process that is granted access to the critical section eventually
releases it (cooperation)

§ A single critical section (CS)

§ A completely connected graph, so that every process can directly
communicate with every other process in the system

14

Key Idea: Ricart-Agrawala Algorithm

§ enter() at process 𝑃!
• multicast a request to all processes

• Request: <𝑇!, 𝑃!>, where 𝑇! = current Lamport timestamp at 𝑃!
• Wait until all other processes have responded positively to request

§ Requests are granted in order of causality

§ <𝑇!, 𝑃!> is used lexicographically: 𝑃! in request <𝑇!, 𝑃!> is used to break ties
(since Lamport timestamps are not unique for concurrent events)

15

Messages in RA Algorithm
§ enter() at process 𝑃!
• set state to Wanted
• multicast “Request” <𝑇! , 𝑃!> to all processes, where 𝑇!= current Lamport timestamp at 𝑃!
• wait until all processes send back “Reply”
• change state to Held and enter the CS

§ On receipt of a Request < 𝑇" , 𝑃" > at 𝑃! (𝑖 ≠ 𝑗):

• if (state = Held) or (state = Wanted & ((𝑇! , 𝑖)<(𝑇" , 𝑗)) // lexicographic ordering in (𝑇" , 𝑃")

add request to local queue (of waiting requests)

else send “Reply” to 𝑃"
§ exit() at process 𝑃!
• change state to Released and “Reply” to all queued requests

16

Example: Ricart-Agrawala Algorithm

N80

N32

N5

N12

N6

N3

Request message
<T, Pi> = <102, 32>

17

Example: Ricart-Agrawala Algorithm

N80

N32

N5

N12

N6

N3

Reply messages

N32 state: Held.
Can now access CS

18

Example: Ricart-Agrawala Algorithm

N80

N32

N5

N12

N6

N3

N32 state: Held.
Can now access CS

N12 state:
Wanted

N80 state:
Wanted

Request message
<115, 12>

Request message
<110, 80>

19

Example: Ricart-Agrawala Algorithm

N80

N32

N5

N12

N6

N3

N32 state: Held.
Can now access CS

N12 state:
Wanted

N80 state:
Wanted

Reply messages
Request message

<115, 12>

Request message
<110, 80>

20

Example: Ricart-Agrawala Algorithm

N80

N32

N5

N12

N6

N3

N32 state: Held.
Can now access CS
Queue requests:
<115, 12>, <110, 80>

N12 state:
Wanted

N80 state:
Wanted

Reply messages
Request message

<115, 12>

Request message
<110, 80>

21

Example: Ricart-Agrawala Algorithm

N80

N32

N5

N12

N6

N3

N32 state: Held.
Can now access CS
Queue requests:
<115, 12>, <110, 80>

N12 state:
Wanted

N80 state:
Wanted
Queue requests: <115, 12> (since > (110, 80))

Reply messages
Request message

<115, 12>

Request message
<110, 80>

22

Example: Ricart-Agrawala Algorithm

N80

N32

N5

N12

N6

N3

N32 state: Held.
Can now access CS
Queue requests:
<115, 12>, <110, 80>

N12 state:
Wanted

N80 state:
Wanted
Queue requests: <115, 12>

Reply messages

Request message
<115, 12>

Request message
<110, 80>

23

Example: Ricart-Agrawala Algorithm

N80

N32

N5

N12

N6

N3

N32 state: Released.
Multicast Reply to
<115, 12>, <110, 80>

N12 state:
Wanted
(waiting for
N80’s
reply)

N80 state:
Held. Can now access CS.
Queue requests: <115, 12>

Reply messages

Request message
<115, 12>

Request message
<110, 80>

24

Analysis: Ricart-Agrawala Algorithm

§ Safety: Two processes 𝑃! and 𝑃" cannot both have access to CS
• If they did, then both would have sent Reply to each other

• Thus, (𝑇!, 𝑖) < (𝑇", 𝑗) and (𝑇", 𝑗) < (𝑇!, 𝑖), which are together not possible

• What if (𝑇!, 𝑖) < (𝑇", 𝑗) and 𝑃! replied to 𝑃"’s request before it created its own
request?
• Then it seems like both 𝑃! and 𝑃" would approve each others’ requests

• But then, causality and Lamport timestamps at 𝑃! implies that 𝑇! > 𝑇" , which
is a contradiction

• So this situation cannot arise

25

Analysis: Ricart-Agrawala Algorithm (cont.)

§ Liveness
• Worst-case: wait for all other (N-1) processes to send Reply

§ Fairness
• Requests with lower Lamport timestamps are granted earlier

26

Performance: Ricart-Agrawala Algorithm

§ 2(N-1) messages per enter() operation
• N-1 unicasts for the multicast request + N-1 replies
• N messages if the underlying network supports multicast (1 multicast +

N-1 unicast replies)

§ N-1 unicast messages per exit operation
• 1 multicast if the underlying network supports multicast

§ Client delay: one round-trip time

§ Synchronization delay: one message transmission time

27

Performance: Ricart-Agrawala Algorithm

§ Compared to Ring-Based approach, in Ricart-Agrawala approach

• Client/synchronization delay has now gone down to O(1)

• But message complexity has gone up to O(N)

§ Can we get both down?

28

Maekawa’s algorithm: Key Idea

§ Ricart-Agrawala requires replies from all processes in group

§ Instead, get replies from only some processes in group

§ But ensure that only process one is given access to CS (Critical
Section) at a time

=> A sublinear O(𝑁) message complexity

29

Maekawa’s algorithm: key idea

§ Each 𝑃! is associated with a voting set 𝑉!. Divide the set of
processes into subsets that satisfy the following conditions:

a) 𝑖 ∈ 𝑉!
b) 𝑉! ∩ 𝑉" ≠ ∅, ∀𝑖, 𝑗

§ Main idea: Each 𝑃! is required to receive permission from 𝑉!
only. Correctness requires that multiple processes will never
receive permission from all members of their respective
subsets.

30

Maekawa’s voting sets

§ Each 𝑃! is associated with a subset 𝑉!. Divide the set of processes
into subsets that satisfy the following conditions:

a) 𝑖 ∈ 𝑉!
b) 𝑉! ∩ 𝑉" ≠ ∅, ∀𝑖, 𝑗
c) |𝑉!| = 𝐾, ∀𝑖
d) Any 𝑖 is contained in 𝑀 𝑉!#𝑠

§ Maekawa showed that 𝐾 = 𝑀 ~ 𝑁 works best

§ One way of doing this is to put 𝑁 processes in a 𝑁 by 𝑁matrix
and for each 𝑃!, its voting set 𝑉! = row containing 𝑃! ∪ column
containing 𝑃!. Size of voting set 𝐾 = 2 𝑁 − 1

31

Example: Maekawa’s voting sets

§ 𝐾 = 3,𝑀 = 3
32

Example. Let there be seven
processes 0, 1, 2, 3, 4, 5, 6

𝑉0 = {0, 1, 2}
𝑉1 = {1, 3, 5}
𝑉2 = {2, 4, 5}
𝑉3 = {0, 3, 4}
𝑉4 = {1, 4, 6}
𝑉5 = {0, 5, 6}
𝑉6 = {2, 3, 6}

0,1,2 1,3,5

2,4,5

𝑉0 𝑉1

𝑉2

Maekawa: Key Differences From Ricart-Agrawala

§ Each process requests permission from only its voting set members
• Not from all

§ Each process (in a voting set) gives permission to at most one
process at a time
• Not to all

33

Actions

§ state = Released, voted = false

§ enter() at process 𝑃!:
• state = Wanted
• Multicast Request message to all processes in 𝑉!
• Wait for Reply (vote) messages from all processes in 𝑉! (including vote from self)
• state = Held

§ exit() at process 𝑃!:
• state = Released
• Multicast Release to all processes in 𝑉!

34

Actions (cont.)

§ When 𝑃! receives a Request from 𝑃":
if (state == Held OR voted = true)

queue Request
else

send Reply to 𝑃" and set voted = true

§ When 𝑃! receives a Release from 𝑃":
if (queue empty)

voted = false
else

dequeue head of queue, say 𝑃#
Send Reply only to 𝑃#
voted = true

35

Safety

§ When a process 𝑃! receives replies from all its voting set 𝑉! members,
no other process 𝑃" could have received replies from all its voting set
members 𝑉"
• 𝑉! and 𝑉" intersect in at least one process say 𝑃#
• But 𝑃# sends only one Reply (vote) at a time, so it could not have

voted for both 𝑃! and 𝑃"

36

Liveness

§ A process needs to wait for at most (N-1) other processes
to finish CS

§ But does not guarantee liveness
§ Since can have a deadlock

• Assume 0, 1, 2 want to enter their critical sections.

• From 𝑉!= {0,1,2}, 0,2 send reply to 0, but 1 sends reply to 1;

• From 𝑉"= {1,3,5}, 1,3 send reply to 1, but 5 sends reply to 2;

• From 𝑉#= {2,4,5}, 4,5 send reply to 2, but 2 sends reply to 0;

• Now, 0 waits for 1 (to send a release), 1 waits for 2 (to send a release),
and 2 waits for 0 (to send a release). So, deadlock is possible!

§ There are deadlock-free versions

37

0,1,2 1,3,5

2,4,5

𝑉0 𝑉1

𝑉2

Performance

§ Message complexity
• 2 𝑁 messages per enter()

• 𝑁 messages per exit()
• Better than Ricart and Agrawala’s (2(N-1) and N-1 messages)

• 𝑁 quite small. 𝑁~ 1 million => 𝑁 = 1K

§ Client delay: One round trip time

§ Synchronization delay: 2 message transmission times

38

Why 𝑁?

§ Each voting set is of size K

§ Each process belongs to M other
voting sets

§ Total number of voting set members
(processes may be repeated) = K*N

§ But since each process is in M voting
sets

• K*N/M = N => K = M (1)

39

§ Consider a process 𝑃!
• Total number of voting sets = members

present in 𝑃!’s voting set and all their
voting sets = (M-1)*K + 1

• All processes in group must be in above

• To minimize the overhead at each process
(K), need each of the above members to
be unique, i.e.,

• N = (M-1)*K + 1

• N = (K-1)*K + 1 (due to (1))

• K ~ 𝑁

