
Consensus
CMPS 4760/6760: Distributed Systems

1

Acknowledgement: slides adapted from Indranil Gupta’s lecture notes:
https://courses.engr.illinois.edu/cs425/fa2019/index.html

Overview

§ Distributed Mutual Exclusion (15.2)

§ Leader Election (15.3)

§ Group communication (6.2,15.4,18.2)

§ Consensus (15.5, 21.5.2)

2

Consensus

§ Problem definition (15.5.1)
§ Consensus in synchronous systems
• Consensus under crash failures (15.5.2)
• Byzantine generals problem (15.5.3)

§ Consensus in asynchronous systems
• FLP Impossibility Result (15.5.4)

§ Paxos (21.5.2)

3

Consensus Problem

§ Problem: a collection of processes need to agree on a value after one or
more of them has proposed what that value should be

§ Reaching agreement is a fundamental requirement in distributed
computing
• Leader election / Mutual Exclusion
• Commit or Abort in distributed transactions
• Reaching agreement about which process has failed
• Air traffic control system: all aircrafts must have the same view

4

Consensus

§ Each process 𝑃! beings in
undecided and proposes value
𝑣! ∈ 𝐷.

§ Processes exchange values with
each other via message passing

§𝑃! enters the decided state by
setting the value of a decision
variable 𝑑! (write-once).

5

𝑣!

𝑣"

𝑣#

𝑣$ 𝑣

𝑣

𝑣

𝑣

proposed
values

agreed
values

𝒑𝟏
𝒑𝟐
𝒑𝟑
𝒑𝟒

Requirements

§ Termination: Eventually each correct process sets its decision variable

§ Agreement: For any two processes 𝑃! and 𝑃", if they are correct and
have entered the decided state, then 𝑑! = 𝑑"

§ Integrity: If the correct processes all proposed the same value 𝑣, then
for any correct process 𝑃! in the decided state, 𝑑! = 𝑣

6

Assumptions

§N processes, message passing only

§ Communication is reliable

§ Processes can fail: crash or byzantine

§ Up to some number 𝑓 of 𝑁 processes are faulty

§ Messages are not signed (‘oral’ messages)

7

When processes cannot fail

§ A simple solution to solve consensus:
• Each 𝑃) reliably multicasts its proposed value to the group
• Each 𝑃) waits until it has collected all N values and then sets 𝑑) =
𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑣$, 𝑣#, … 𝑣*
• If no majority exists, 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑣$, 𝑣#, … 𝑣* = ⊥
• Other functions can also be applied, e.g., min or max for values that are

ordered

8

When processes can fail

§ Can we always achieve consensus if processes can crash?
• Yes if the system is synchronous
• No if the system is asynchronous even with a single process failure (FLP impossibility

result)

• Whatever protocol/algorithm you suggest, there is always a worst-case possible
execution (with failures and message delays) that prevents the system from reaching
consensus

• Subsequently, safe or probabilistic solutions have become quite popular to consensus or
related problems.

§ What if process can fail in arbitrary (Byzantine) ways?
• No if the system is asynchronous
• Yes if the system is synchronous and 𝑁 > 3𝑓

9

Consensus and RTO-Multicast

§ Implementing consensus using RTO-multicast

• Each 𝑃) multicasts its proposed value to the group using RTO-multicast

• Each 𝑃) sets 𝑑) = the first value it delivers.

§ Implementing RTO-multicast using consensus [Chandra and Toueg 1996]

10

Byzantine Generals

11

Byzantine Generals

§ Three or more generals are to agree to attack or to retreat

§ One, the commander, issues the order

§ The others, lieutenants to the commander, decide whether to attack or retreat

§ Both the commander and the generals can be treacherous

12

Byzantine Generals

§ Termination: Eventually each correct process sets its decision variable

§ Agreement: For any two processes 𝑃! and 𝑃" , if they are correct and
have entered the decided state, then 𝑑! = 𝑑"

§ Integrity: If the commander is correct, then all correct processes
decide on the value that the commander proposed

13

Byzantine Generals and Consensus

§ BG from C: We can construct a solution to BG from C as follows:
• The commander 𝑃+ sends its proposed value to itself and each of the

lieutenants (𝑃+ may be faulty)

• All generals run C with the values 𝑣$, 𝑣#… , 𝑣* that they receive

§ C from BG: homework

14

Consensus

§ Problem definition (15.5.1)

§ Consensus in synchronous systems
• Consensus under crash failures (15.5.2)
• Byzantine generals problem (15.5.3)

§ Consensus in asynchronous systems
• FLP Impossibility Result (15.5.4)

§ Paxos (21.5.2)

15

Consensus in a Synchronous System with Crash Failures

16

Round 1 Round 2 Round 3

• At most 𝑓 processes crash (𝑓 is known)

• All processes are synchronized and operate in “rounds” of time

• The algorithm proceeds in 𝑓 + 1 rounds (with timeout), using reliable communication
to all members

• 𝑉𝑎𝑙𝑢𝑒𝑠),: the set of proposed values known to 𝑃) at the beginning of round 𝑟

Consensus in a Synchronous System with Crash Failures

17

At most 𝑓 processes crash
(𝑓 is known)

The algorithm proceeds in 𝑓 +
1 rounds (with timeout), using
reliable communication to all
members

𝑉𝑎𝑙𝑢𝑒𝑠),: the set of proposed
values known to 𝑃) at the
beginning of round 𝑟

Initially 𝑉𝑎𝑙𝑢𝑒𝑠!" = {} ; 𝑉𝑎𝑙𝑢𝑒𝑠!# = {𝑣!}

for round 𝑟 = 1 to 𝑓 + 1 do
multicast (𝑉𝑎𝑙𝑢𝑒𝑠!$ − 𝑉𝑎𝑙𝑢𝑒𝑠!$%#) // iterate through

processes, send each a message
𝑉𝑎𝑙𝑢𝑒𝑠!$&# = 𝑉𝑎𝑙𝑢𝑒𝑠!$

for each 𝑉' received
𝑉𝑎𝑙𝑢𝑒𝑠!$&# = 𝑉𝑎𝑙𝑢𝑒𝑠!$&# ∪ 𝑉'

end
end
𝑑! = minimum 𝑉𝑎𝑙𝑢𝑒𝑠!

(&)

Consensus in a Synchronous System with Crash Failures

§ Message complexity: 𝑂(𝑓 + 1 𝑁!)

§ The simple algorithms guarantees

• Termination: each correct process terminates in 𝑓 + 1 rounds

• Integrity: set 𝑉 contains only the proposed values

• Agreement: Let 𝑉) denote the set of values of 𝑃) after the round 𝑓 + 1

Claim: If any value 𝑣 is in the set 𝑉) for some correct process 𝑃) , then it is
also in the set of 𝑉+ of any other correct process 𝑃+

18

Consensus in a Synchronous System with Crash Failures
Claim: If any value 𝑣 is in the set 𝑉! for some correct process 𝑃! , then it is also in the set of 𝑉"
of any other correct process 𝑃"

Proof by contradiction:

§ Assume that after 𝑓 + 1 rounds, 𝑃! possesses a value 𝑣 that 𝑃" does not possess.

à𝑃! must have received 𝑣 in the very last round

àElse, 𝑃! would have sent 𝑣 to 𝑃" in that last round

à So, in the last round: a third process, 𝑃#, must have sent 𝑣 to 𝑃𝑖, but then crashed before
sending 𝑣 to 𝑃".

à Similarly, a fourth process sending 𝑣 in the last-but-one round must have crashed; otherwise,
both 𝑃# and 𝑃" should have received 𝑣.

à Proceeding in this way, we infer at least one (unique) crash in each of the preceding rounds.

à This means a total of 𝑓 + 1 crashes, while we have assumed at most 𝑓 crashes can occur =>
contradiction.

19

Byzantine Generals

20

Impossibility result

§ “if the generals can send only oral messages, then no solution will work
unless more than ⁄! " of the generals are loyal.”

§ what are oral messages?

• every message that is sent is delivered correctly

• the receiver of a message knows who sent it

• the absence of a message can be detected

21

Impossibility with three processes

Impossibility with 𝑁 ≤ 3𝑓: a reduction from the three-process case

22

Solution with one faulty process

§ 𝑁 ≥ 4, 𝑓 = 1

Round 1: the commander sends a value to each of the lieutenants

• The value can be different to different lieutenants if the commander is faulty

Round 2: each of the lieutenants sends the value it received to its peers

• The value sent can be different from the value received if the lieutenant is
faulty

Each lieutenant applies the majority function to the set of values it receives

23

Solution with one faulty process

§ 𝑁 ≥ 4, 𝑓 = 1
§ Correctness of the solution

• If the commander is faulty

• all the lieutenants are correct and each will have gathered exactly the set of
values that the commander sent out.

• Otherwise, one of the lieutenants is faulty

• each of its correct peers receives N – 2 copies of the value that the commander
sent, plus a value that the faulty lieutenant sent to it.

• Since 𝑁 ≥ 4, 𝑁 − 2 ≥ 2, the majority function will ignore any value that a faulty
lieutenant sent, and it will produce the value that the commander sent

24

Four Byzantine Generals

25

Solution with 𝑓 faulty processes

§ Lamport et al. 1982 gives a general solution for unsigned messages that

• operates over 𝑓 + 1 rounds - best possible

• has a message complexity of 𝑂(𝑁#$%) – can be improved

26

Consensus with signed messages

§ With only oral messages, traitors can lie by telling the wrong command they
received

§ Signed messages
• cannot be forged

• anyone can verify the authenticity

§ Consensus can be reached for 𝑁 ≥ 𝑓 + 2 using signed messages

§ Dolev and Strong [1983] gives a solution for signed messages that
• operates over 𝑓 + 1 rounds

• has a message complexity of 𝑂(𝑁#)

27

Consensus

§ Problem definition (15.5.1)

§ Consensus in synchronous systems
• Consensus under crash failures (15.5.2)
• Byzantine generals problem (15.5.3)

§ Consensus in asynchronous systems
• FLP Impossibility Result (15.5.4)

§ Paxos (21.5.2)

28

FLP Impossibility Result

§ One of the most important results in distributed computing

§ “Impossibility of Distributed Consensus with One Faulty Process”,
Journal of the ACM, Vol. 32, No. 2, 1985.

29

Michael J. Fischer Nancy A Lynch Michael S. Paterson

Models and Assumptions

§ Consider an easier problem and a more restrictive system model

§ Each process 𝑖 proposes a binary value 𝑣) in {0,1}

§ Only one process can fail (and we can choose which one)

§ A process can fail only by crashing

§ Communication is reliable but delay is unbounded

§ A weaker termination requirement: some process eventually enters the decision
state

§ A weaker integrity requirement (non-triviality): both values 0 and 1 should be
possible outcomes

30

Network

§ A global message buffer

§ If receive() is performed an unbounded number of times, then every message is
eventually delivered

31

𝑝 𝑞

Global Message Buffer

send(𝑞,𝑚)
receive(𝑞)

may return null

“Network”

States

§ Global state 𝐺: state of all the processes and the state of the global buffer

§ 𝐺 𝑖 : state of process 𝑖, initially this includes the proposed value 𝑣& and the
decision variable 𝑑& = ⊥ (undecided)

§ An event (𝑝,𝑚) consists of
• receipt of a message 𝑚 by a process 𝑝
• processing of 𝑚 (may change recipient’s state)
• sending out of all necessary messages by 𝑝

§ Schedule: sequence of events

32

33

𝐺-

𝐺$

𝐺#

event 𝑒% = (𝑝,𝑚)

event 𝑒! = (𝑝', 𝑚')

𝐺-

𝐺#

schedule 𝑠 = 𝑒!𝑒%

𝐺# = 𝑒# 𝐺$
= 𝑒#(𝑒$ 𝐺-)

= 𝑠(𝐺-)

Commute property of disjoint events

34

𝐺

𝑠(𝐺) 𝑡(𝐺)

𝑠 𝑡

𝑡 𝑠

𝑠𝑡 𝐺 = 𝑡𝑠(𝐺) if 𝑠 and 𝑡
involve disjoint set of
receiving processes and are
each applicable to 𝐺

𝑠𝑡 𝐺 = 𝑡𝑠(𝐺)

Asynchrony of events

§ Any event may be arbitrarily
delayed

35

𝐺

𝑠(𝐺)

𝑒 𝑠

𝑒
If 𝑒 is enabled at G and 𝑒 ∉ 𝑠,
it is still enabled at 𝑠(𝐺)

Main Idea of the Proof

1. There is an initial global state in which the system is indecisive

2. There exists a method to keep the system indecisive

§ How to model indecision?

36

Bivalent states

§ 𝐺. 𝑉 − set of decision values reachable from global state 𝐺
• If 𝐺. 𝑉 = 0 , 𝐺 is 0−valent

• If 𝐺. 𝑉 = 1 , 𝐺 is 1−valent

• If |𝐺. 𝑉| = 2 , 𝐺 is bivalent (indecisive)

§ Main idea of the proof

1. Every consensus protocol has a bivalent initial global state

2. Starting from a bivalent global state, there is always another bivalent global
state that is reachable

37

Proof of Lemma 1 - Some initial state is bivalent

§ Suppose all initial global states were either 0-valent or 1-valent

§ If there are 𝑁 processes, there are 2* possible initial configurations

§ The protocol must have both 0-valent or 1-valent states (from integrity)

§ Place all initial global states side-by-side (in a lattice), where adjacent states differ
in proposed values for exactly one process

§ Claim: there has to be some adjacent pair of 1-valent and 0-valent global states

38

1 1 0 1 0 1

Proof of Lemma 1 (cont.)

§ There has to be some adjacent pair of 1-valent and 0-valent global states

§ Assume that they differ in the state of 𝑝 and let 𝑝 be the process that has
crashed (i.e., is silent throughout)

§ Both initial states will reach the same decision value for the same sequence
of events, a contradiction

39

1 1 0 1 0 1

Main Idea of the Proof

1. Every consensus protocol has a bivalent initial global state

2. Starting from a bivalent global state, there is always another bivalent
global state that is reachable

40

Proof of Lemma 2 - Starting from a bivalent state, there is always
another bivalent state that is reachable

§ Let 𝐺 be a bivalent global state of a
protocol.

§ Let 𝑒 = (𝑝,𝑚) be an event applicable to 𝐺

§ Let 𝑪 be the set of global states reachable
from 𝐺 without applying 𝑒

§ Let 𝑫 = 𝑒(𝑪) (asynchrony of events)

§ Claim: 𝑫 contains a bivalent global state

§ Proof by contradiction. Assume 𝑫 does not
contain a bivalent global state

41

𝑒 𝑒 𝑒 𝑒 𝑒

𝐺

𝑪

𝑫

Proof of Lemma 2 (cont.)

§ Proof by contradiction. Assume 𝑫 does not contain a
bivalent global state

§ Claim : There are states 𝐷$ and 𝐷% in 𝑫, and states 𝐶$
and 𝐶% in 𝑪 such that

• 𝐷$ is 0-valent, 𝐷% is 1-valent

• 𝐷$ = 𝑒(𝐶$), 𝐷% = 𝑒(𝐶%)

• 𝐶% = 𝑒′ 𝐶$ for some event 𝑒& = (𝑝&, 𝑚&)

42

𝑒 𝑒 𝑒 𝑒 𝑒

𝐺

𝑪

𝑫

Proof of the claim: (1) 𝑫 must contain both 0-valent and 1-valent states; (2)
consider the shortest sequence 𝑡 without applying 𝑒 such that 𝑒𝑡(𝐺) has different
valency from 𝑒(𝐺). Let 𝐶$ and 𝐶% be the last two states reached in sequence 𝑡.

Proof of Lemma 2 (cont.)

§ Let 𝐶$ = 𝑒′ 𝐶- where 𝑒3 = (𝑝3, 𝑚′)

§ Case 1: 𝑝′ ≠ 𝑝

𝑒′ is applicable to 𝐷- by commutativity of disjoint events

=> a contradiction since 𝐷- is 0-valent and 𝐷$ is 1-valent

43

𝑒 𝑒 𝑒 𝑒 𝑒

𝐺

𝑪

𝑫

𝐶$

𝐷%

𝐷$ 𝐶%

𝑒

𝑒𝑒′

𝑒′

Proof of Lemma 2 (cont.)

§ Let 𝐶$ = 𝑒′ 𝐶- where 𝑒3 = (𝑝3, 𝑚′)

§ Case 2: 𝑝′ = 𝑝

44

𝑒 𝑒 𝑒 𝑒 𝑒

𝐺

𝑪

𝑫

𝐶-

𝐷$

𝐷-
𝐶$

𝑒 𝑒′

𝐴

𝐸-

𝑒

𝑠

𝑠

𝐸$

𝑠
𝑒′𝑒

𝑒

𝑠: a finite deciding run from 𝐶-
in which 𝑝 takes no steps

𝐴 is bivalent, contradicting the
fact that 𝑠 is a deciding run

Putting it all together

1. Every consensus protocol has a bivalent initial global state

2. Starting from a bivalent global state, there is always another
bivalent global state that is reachable

§ Theorem (Impossibility of Consensus): There is always a run of events
in an asynchronous distributed system such that the group of
processes never reach consensus (i.e., stays bivalent all the time)

45

Consensus

§ Problem definition (15.5.1)

§ Consensus in synchronous systems
• Consensus under crash failures (15.5.2)
• Byzantine generals problem (15.5.3)

§ Consensus in asynchronous systems
• FLP Impossibility Result (15.5.4)

§ Paxos (21.5.2)

46

Paxos Algorithm

§ Invented by Leslie Lamport

§ Most popular “consensus-solving” algorithm

§ Safety is provided: agreement and integrity

§ Liveness is not: no guarantee on termination
• Provides eventual liveness if majority of of the processes run for long enough

with sufficient network stability

§ A lot of systems use it
• Zookeeper (Yahoo!), Google Chubby, and many other companies

47

Paxos Overview

§ Paxos has rounds; each round has a unique ballot id

§ Rounds are asynchronous
• Time synchronization not required
• If you’re in round j and hear a message from round j+1, abort everything and

move over to round j+1
• Use timeouts; may be pessimistic

§ Each round itself broken into phases (which are also asynchronous)
• Phase 1: A leader is elected
• Phase 2: Leader proposes a value, processes ack
• Phase 3: Leader multicasts final value

48

Phase 1 – Election
§ Potential leader chooses a unique ballot id, higher than seen anything so far
§ Sends to all processes
§ Processes wait, respond once to highest ballot id

• If potential leader sees a higher ballot id, it can’t be a leader
• Paxos tolerant to multiple leaders, but we’ll only discuss 1 leader case
• Processes also log received ballot ID on disk (why?)

§ If a process has in a previous round decided on a value v’, it includes value v’ in its
response

§ If majority (i.e., quorum) respond OK then you are the leader
• If no one has majority, start new round

§ (If things go right) A round cannot have two leaders (why?)

49

Please elect me! OK!

Phase 2 – Proposal

§ Leader sends proposed value v to all
• use v=v’ if some process already decided in a previous round and

sent you its decided value v’

§ Recipient logs on disk; responds OK

50

Please elect me! OK!
Value v ok?

OK!

Phase 3 – Decision

§ If leader hears a majority of OKs, it lets everyone know of the decision

§ Recipients receive decision, log it on disk

51

Please elect me! OK!
Value v ok?

OK!
v!

Which is the point of No-Return

§ That is, when is consensus reached in the system

52

Please elect me! OK!
Value v ok?

OK!
v!

Which is the point of No-Return

§ If/when a majority of processes hear proposed value and accept it (i.e., are
about to/have respond(ed) with an OK!)

§ Processes may not know it yet, but a decision has been made for the group
• Even leader does not know it yet

§ What if leader fails after that?
• Keep having rounds until some round completes

53

Please elect me! OK!
Value v ok?

OK!
v!

Safety
§ If some round has a majority (i.e., quorum) hearing proposed value v’ and

accepting it (middle of Phase 2), then subsequently at each round either: 1) the
round chooses v’ as decision or 2) the round fails

§ “Proof”:
• Potential leader waits for majority of OKs in Phase 1
• At least one will contain v’ (because two majorities always intersect)
• It will choose to send out v’ in Phase 2

§ Success requires a majority, and any two majority sets intersect

54

Please elect me! OK!
Value v ok?

OK!
v!

What could go Wrong
§ Process fails

• Majority does not include it
• When process restarts, it uses log to retrieve a past decision (if any) and past-seen

ballot ids. Tries to know of past decisions.
§ Leader fails

• Start another round
§ Messages dropped

• If too flaky, just start another round
§ Note that anyone can start a round any time
§ Protocol may never end – tough luck, buddy!

• Impossibility result not violated
• If things go well sometime in the future, consensus reached

55

Please elect me! OK!
Value v ok?

OK!
v!

§ Consensus is a very important problem
• Equivalent to many important distributed computing problems that have to do with
reliability

§ Consensus is possible to solve in a synchronous system where message delays and
processing delays are bounded

§ Consensus is impossible to solve in an asynchronous system where these delays are
unbounded

§ Paxos protocol: widely used implementation of a safe, eventually-live consensus
protocol for asynchronous systems
• Paxos (or variants) used in Apache Zookeeper, Google’s Chubby system, Active Disk Paxos,

and many other cloud computing systems

Summary

