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Overview

§ Distributed Mutual Exclusion (15.2)

§ Leader Election (15.3)

§ Group communication (6.2,15.4,18.2)

§ Consensus (15.5, 21.5.2)
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Consensus

§ Problem definition (15.5.1)
§ Consensus in synchronous systems 
• Consensus under crash failures (15.5.2)
• Byzantine generals problem (15.5.3)

§ Consensus in asynchronous systems
• FLP Impossibility Result (15.5.4)

§ Paxos (21.5.2)
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Consensus Problem

§ Problem: a collection of processes need to agree on a value after one or 
more of them has proposed what that value should be

§ Reaching agreement is a fundamental requirement in distributed 
computing
• Leader election / Mutual Exclusion  
• Commit or Abort in distributed transactions 
• Reaching agreement about which process has failed 
• Air traffic control system: all aircrafts must have the same view
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Consensus

§ Each process 𝑃! beings in 
undecided and proposes value 
𝑣! ∈ 𝐷. 

§ Processes exchange values with 
each other via message passing

§𝑃! enters the decided state by 
setting the value of a decision 
variable 𝑑! (write-once). 
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Requirements

§ Termination: Eventually each correct process sets its decision variable

§ Agreement: For any two processes 𝑃! and 𝑃", if they are correct and 
have entered the decided state, then 𝑑! = 𝑑"

§ Integrity: If the correct processes all proposed the same value 𝑣, then 
for any correct process 𝑃! in the decided state, 𝑑! = 𝑣
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Assumptions

§N processes, message passing only

§ Communication is reliable

§ Processes can fail: crash or byzantine

§ Up to some number 𝑓 of 𝑁 processes are faulty

§ Messages are not signed (‘oral’ messages)
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When processes cannot fail

§ A simple solution to solve consensus:
• Each 𝑃) reliably multicasts its proposed value to the group
• Each 𝑃) waits until it has collected all N values and then sets 𝑑) =
𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑣$, 𝑣#, … 𝑣*
• If no majority exists, 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑣$, 𝑣#, … 𝑣* = ⊥
• Other functions can also be applied, e.g., min or max for values that are 

ordered
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When processes can fail

§ Can we always achieve consensus if processes can crash?
• Yes if the system is synchronous
• No if the system is asynchronous even with a single process failure (FLP impossibility 

result)

• Whatever protocol/algorithm you suggest, there is always a worst-case possible 
execution (with failures and message delays) that prevents the system from reaching 
consensus

• Subsequently, safe or probabilistic solutions have become quite popular to consensus or 
related problems. 

§ What if process can fail in arbitrary (Byzantine) ways?
• No if the system is asynchronous
• Yes if the system is synchronous and 𝑁 > 3𝑓
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Consensus and RTO-Multicast

§ Implementing consensus using RTO-multicast

• Each 𝑃) multicasts its proposed value to the group using RTO-multicast

• Each 𝑃) sets 𝑑) = the first value it delivers. 

§ Implementing RTO-multicast using consensus [Chandra and Toueg 1996]
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Byzantine Generals
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Byzantine Generals

§ Three or more generals are to agree to attack or to retreat

§ One, the commander, issues the order

§ The others, lieutenants to the commander, decide whether to attack or retreat

§ Both the commander and the generals can be treacherous
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Byzantine Generals

§ Termination: Eventually each correct process sets its decision variable

§ Agreement: For any two processes 𝑃! and 𝑃" , if they are correct and 
have entered the decided state, then 𝑑! = 𝑑"

§ Integrity: If the commander is correct, then all correct processes 
decide on the value that the commander proposed
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Byzantine Generals and Consensus

§ BG from C: We can construct a solution to BG from C as follows:
• The commander 𝑃+ sends its proposed value to itself and each of the 

lieutenants (𝑃+ may be faulty)

• All generals run C with the values 𝑣$, 𝑣#… , 𝑣* that they receive

§ C from BG: homework
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Consensus

§ Problem definition (15.5.1)

§ Consensus in synchronous systems 
• Consensus under crash failures (15.5.2)
• Byzantine generals problem (15.5.3)

§ Consensus in asynchronous systems
• FLP Impossibility Result (15.5.4)

§ Paxos (21.5.2)
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Consensus in a Synchronous System with Crash Failures
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Round 1 Round 2 Round 3

• At most 𝑓 processes crash (𝑓 is known)

• All processes are synchronized and operate in “rounds” of time

• The algorithm proceeds in 𝑓 + 1 rounds (with timeout), using reliable communication 
to all members 

• 𝑉𝑎𝑙𝑢𝑒𝑠),: the set of proposed values known to 𝑃) at the beginning of round 𝑟



Consensus in a Synchronous System with Crash Failures
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At most 𝑓 processes crash 
(𝑓 is known)

The algorithm proceeds in 𝑓 +
1 rounds (with timeout), using 
reliable communication to all 
members 

𝑉𝑎𝑙𝑢𝑒𝑠),: the set of proposed 
values known to 𝑃) at the 
beginning of round 𝑟

Initially 𝑉𝑎𝑙𝑢𝑒𝑠!" = {} ; 𝑉𝑎𝑙𝑢𝑒𝑠!# = {𝑣!}

for round 𝑟 = 1 to 𝑓 + 1 do
multicast (𝑉𝑎𝑙𝑢𝑒𝑠!$ − 𝑉𝑎𝑙𝑢𝑒𝑠!$%#) // iterate through 

processes, send each a message
𝑉𝑎𝑙𝑢𝑒𝑠!$&# = 𝑉𝑎𝑙𝑢𝑒𝑠!$

for each 𝑉' received 
𝑉𝑎𝑙𝑢𝑒𝑠!$&# = 𝑉𝑎𝑙𝑢𝑒𝑠!$&# ∪ 𝑉'

end
end
𝑑! = minimum 𝑉𝑎𝑙𝑢𝑒𝑠!
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Consensus in a Synchronous System with Crash Failures

§ Message complexity: 𝑂( 𝑓 + 1 𝑁!)

§ The simple algorithms guarantees

• Termination: each correct process terminates in 𝑓 + 1 rounds

• Integrity: set 𝑉 contains only the proposed values

• Agreement: Let 𝑉) denote the set of values of 𝑃) after the round 𝑓 + 1

Claim: If any value 𝑣 is in the set 𝑉) for some correct process 𝑃) , then it is 
also in the set of 𝑉+ of any other correct process 𝑃+
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Consensus in a Synchronous System with Crash Failures
Claim: If any value 𝑣 is in the set 𝑉! for some correct process 𝑃! , then it is also in the set of 𝑉"
of any other correct process 𝑃"

Proof by contradiction:

§ Assume that after 𝑓 + 1 rounds, 𝑃! possesses a value 𝑣 that 𝑃" does not possess.

à𝑃! must have received 𝑣 in the very last round 

àElse, 𝑃! would have sent 𝑣 to 𝑃" in that last round 

à So, in the last round: a third process, 𝑃#, must have sent 𝑣 to 𝑃𝑖, but then crashed before 
sending 𝑣 to 𝑃".

à Similarly, a fourth process sending 𝑣 in the last-but-one round must have crashed; otherwise, 
both 𝑃# and 𝑃" should have received 𝑣.

à Proceeding in this way, we infer at least one (unique) crash in each of the preceding rounds. 

à This means a total of 𝑓 + 1 crashes, while we have assumed at most 𝑓 crashes can occur => 
contradiction.
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Byzantine Generals
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Impossibility result

§ “if the generals can send only oral messages, then no solution will work 
unless more than ⁄! " of the generals are loyal.” 

§ what are oral messages?

• every message that is sent is delivered correctly 

• the receiver of a message knows who sent it 

• the absence of a message can be detected
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Impossibility with three processes

Impossibility with 𝑁 ≤ 3𝑓: a reduction from the three-process case
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Solution with one faulty process

§ 𝑁 ≥ 4, 𝑓 = 1

Round 1: the commander sends a value to each of the lieutenants

• The value can be different to different lieutenants if the commander is faulty

Round 2: each of the lieutenants sends the value it received to its peers

• The value sent can be different from the value received if the lieutenant is 
faulty

Each lieutenant applies the majority function to the set of values it receives
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Solution with one faulty process

§ 𝑁 ≥ 4, 𝑓 = 1
§ Correctness of the solution

• If the commander is faulty

• all the lieutenants are correct and each will have gathered exactly the set of 
values that the commander sent out. 

• Otherwise, one of the lieutenants is faulty

• each of its correct peers receives N – 2 copies of the value that the commander 
sent, plus a value that the faulty lieutenant sent to it.

• Since 𝑁 ≥ 4, 𝑁 − 2 ≥ 2, the majority function will ignore any value that a faulty 
lieutenant sent, and it will produce the value that the commander sent
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Four Byzantine Generals
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Solution with 𝑓 faulty processes

§ Lamport et al. 1982 gives a general solution for unsigned messages that

• operates over 𝑓 + 1 rounds - best possible

• has a message complexity of 𝑂(𝑁#$%) – can be improved
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Consensus with signed messages

§ With only oral messages, traitors can lie by telling the wrong command they 
received

§ Signed messages
• cannot be forged

• anyone can verify the authenticity

§ Consensus can be reached for 𝑁 ≥ 𝑓 + 2 using signed messages

§ Dolev and Strong [1983] gives a solution for signed messages that
• operates over 𝑓 + 1 rounds

• has a message complexity of 𝑂(𝑁#)
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Consensus

§ Problem definition (15.5.1)

§ Consensus in synchronous systems 
• Consensus under crash failures (15.5.2)
• Byzantine generals problem (15.5.3)

§ Consensus in asynchronous systems
• FLP Impossibility Result (15.5.4)

§ Paxos (21.5.2)
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FLP Impossibility Result

§ One of the most important results in distributed computing

§ “Impossibility of Distributed Consensus with One Faulty Process”, 
Journal of the ACM, Vol. 32, No. 2, 1985.  
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Models and Assumptions

§ Consider an easier problem and a more restrictive system model

§ Each process 𝑖 proposes a binary value 𝑣) in {0,1}

§ Only one process can fail (and we can choose which one) 

§ A process can fail only by crashing

§ Communication is reliable but delay is unbounded

§ A weaker termination requirement: some process eventually enters the decision 
state

§ A weaker integrity requirement (non-triviality): both values 0 and 1 should be 
possible outcomes
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Network

§ A global message buffer

§ If receive() is performed an unbounded number of times, then every message is 
eventually delivered 
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𝑝 𝑞

Global Message Buffer

send(𝑞,𝑚)
receive(𝑞)

may return null

“Network”



States

§ Global state 𝐺: state of all the processes and the state of the global buffer

§ 𝐺 𝑖 : state of process 𝑖, initially this includes the proposed value 𝑣& and the 
decision variable 𝑑& = ⊥ (undecided)  

§ An event (𝑝,𝑚) consists of 
• receipt of a message 𝑚 by a process 𝑝
• processing of 𝑚 (may change recipient’s state)
• sending out of all necessary messages by 𝑝

§ Schedule: sequence of events
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𝐺-

𝐺$

𝐺#

event 𝑒% = (𝑝,𝑚)

event 𝑒! = (𝑝', 𝑚')

𝐺-

𝐺#

schedule 𝑠 = 𝑒!𝑒%

𝐺# = 𝑒# 𝐺$
= 𝑒#(𝑒$ 𝐺- )

= 𝑠(𝐺-)



Commute property of disjoint events 
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𝐺

𝑠(𝐺) 𝑡(𝐺)

𝑠 𝑡

𝑡 𝑠

𝑠𝑡 𝐺 = 𝑡𝑠(𝐺) if 𝑠 and 𝑡
involve disjoint set of 
receiving processes and are 
each applicable to 𝐺

𝑠𝑡 𝐺 = 𝑡𝑠(𝐺)



Asynchrony of events

§ Any event may be arbitrarily 
delayed
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𝐺

𝑠(𝐺)

𝑒 𝑠

𝑒
If 𝑒 is enabled at G and 𝑒 ∉ 𝑠, 
it is still enabled at 𝑠(𝐺)



Main Idea of the Proof

1. There is an initial global state in which the system is indecisive

2. There exists a method to keep the system indecisive

§ How to model indecision? 

36



Bivalent states

§ 𝐺. 𝑉 − set of decision values reachable from global state 𝐺
• If 𝐺. 𝑉 = 0 , 𝐺 is 0−valent

• If 𝐺. 𝑉 = 1 , 𝐺 is 1−valent

• If |𝐺. 𝑉| = 2 , 𝐺 is bivalent  (indecisive) 

§ Main idea of the proof 

1. Every consensus protocol has a bivalent initial global state

2. Starting from a bivalent global state, there is always another bivalent global 
state that is reachable
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Proof of Lemma 1 - Some initial state is bivalent

§ Suppose all initial global states were either 0-valent or 1-valent

§ If there are 𝑁 processes, there are 2* possible initial configurations

§ The protocol must have both 0-valent or 1-valent states (from integrity)

§ Place all initial global states side-by-side (in a lattice), where adjacent states differ 
in proposed values for exactly one process

§ Claim: there has to be some adjacent pair of 1-valent and 0-valent global states
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Proof of Lemma 1 (cont.)

§ There has to be some adjacent pair of 1-valent and 0-valent global states

§ Assume that they differ in the state of 𝑝 and let 𝑝 be the process that has 
crashed (i.e., is silent throughout)

§ Both initial states will reach the same decision value for the same sequence 
of events, a contradiction
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Main Idea of the Proof

1. Every consensus protocol has a bivalent initial global state

2. Starting from a bivalent global state, there is always another bivalent 
global state that is reachable
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Proof of Lemma 2 - Starting from a bivalent state, there is always 
another bivalent state that is reachable

§ Let 𝐺 be a bivalent global state of a 
protocol. 

§ Let 𝑒 = (𝑝,𝑚) be an event applicable to 𝐺

§ Let 𝑪 be the set of global states reachable 
from 𝐺 without applying 𝑒

§ Let 𝑫 = 𝑒(𝑪) (asynchrony of events)

§ Claim: 𝑫 contains a bivalent global state 

§ Proof by contradiction. Assume 𝑫 does not 
contain a bivalent global state
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Proof of Lemma 2 (cont.)

§ Proof by contradiction. Assume 𝑫 does not contain a 
bivalent global state

§ Claim : There are states 𝐷$ and 𝐷% in 𝑫, and states 𝐶$
and 𝐶% in 𝑪 such that

• 𝐷$ is 0-valent, 𝐷% is 1-valent

• 𝐷$ = 𝑒(𝐶$), 𝐷% = 𝑒(𝐶%)

• 𝐶% = 𝑒′ 𝐶$ for some event 𝑒& = (𝑝&, 𝑚&)
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𝑒 𝑒 𝑒 𝑒 𝑒

𝐺

𝑪

𝑫

Proof of the claim: (1) 𝑫 must contain both 0-valent and 1-valent states; (2) 
consider the shortest sequence 𝑡 without applying 𝑒 such that 𝑒𝑡(𝐺) has different 
valency from 𝑒(𝐺). Let 𝐶$ and 𝐶% be the last two states reached in sequence 𝑡.



Proof of Lemma 2 (cont.)

§ Let 𝐶$ = 𝑒′ 𝐶- where 𝑒3 = (𝑝3, 𝑚′)

§ Case 1: 𝑝′ ≠ 𝑝

𝑒′ is applicable to 𝐷- by commutativity of disjoint events

=> a contradiction since 𝐷- is 0-valent and 𝐷$ is 1-valent 
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Proof of Lemma 2 (cont.)

§ Let 𝐶$ = 𝑒′ 𝐶- where 𝑒3 = (𝑝3, 𝑚′)

§ Case 2: 𝑝′ = 𝑝
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𝑠: a finite deciding run from 𝐶-
in which 𝑝 takes no steps

𝐴 is bivalent, contradicting the 
fact that 𝑠 is a deciding run



Putting it all together

1. Every consensus protocol has a bivalent initial global state

2. Starting from a bivalent global state, there is always another 
bivalent global state that is reachable

§ Theorem (Impossibility of Consensus): There is always a run of events 
in an asynchronous distributed system such that the group of 
processes never reach consensus (i.e., stays bivalent all the time)
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Consensus

§ Problem definition (15.5.1)

§ Consensus in synchronous systems 
• Consensus under crash failures (15.5.2)
• Byzantine generals problem (15.5.3)

§ Consensus in asynchronous systems
• FLP Impossibility Result (15.5.4)

§ Paxos (21.5.2)
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Paxos Algorithm

§ Invented by Leslie Lamport

§ Most popular “consensus-solving” algorithm

§ Safety is provided: agreement and integrity 

§ Liveness is not: no guarantee on termination
• Provides eventual liveness if majority of of the processes run for long enough 

with sufficient network stability

§ A lot of systems use it
• Zookeeper (Yahoo!), Google Chubby, and many other companies
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Paxos Overview

§ Paxos has rounds; each round has a unique ballot id

§ Rounds are asynchronous
• Time synchronization not required
• If you’re in round j and hear a message from round j+1, abort everything and 

move over to round j+1
• Use timeouts; may be pessimistic

§ Each round itself broken into phases (which are also asynchronous)
• Phase 1: A leader is elected 
• Phase 2: Leader proposes a value, processes ack 
• Phase 3: Leader multicasts final value 
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Phase 1 – Election
§ Potential leader chooses a unique ballot id, higher than seen anything so far
§ Sends to all processes
§ Processes wait, respond once to highest ballot id

• If potential leader sees a higher ballot id, it can’t be a leader
• Paxos tolerant to multiple leaders, but we’ll only discuss 1 leader case
• Processes also log received ballot ID on disk (why?)

§ If a process has in a previous round decided on a value v’, it includes value v’ in its 
response

§ If majority (i.e., quorum) respond OK then you are the leader
• If no one has majority, start new round 

§ (If things go right) A round cannot have two leaders (why?)
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Phase 2 – Proposal

§ Leader sends proposed value v to all 
• use v=v’ if some process already decided in a previous round and 

sent you its decided value v’

§ Recipient logs on disk; responds OK
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Please elect me! OK!
Value v ok?

OK!



Phase 3 – Decision

§ If leader hears a majority of OKs, it lets everyone know of the decision

§ Recipients receive decision, log it on disk
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Please elect me! OK!
Value v ok?

OK!
v!



Which is the point of No-Return

§ That is, when is consensus reached in the system
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Please elect me! OK!
Value v ok?

OK!
v!



Which is the point of No-Return

§ If/when a majority of processes hear proposed value and accept it (i.e., are 
about to/have respond(ed) with an OK!)

§ Processes may not know it yet, but a decision has been made for the group
• Even leader does not know it yet

§ What if leader fails after that?
• Keep having rounds until some round completes
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Please elect me! OK!
Value v ok?

OK!
v!



Safety
§ If some round has a majority (i.e., quorum) hearing proposed value v’ and 

accepting it (middle of Phase 2), then subsequently at each round either: 1) the 
round chooses v’ as decision or 2) the round fails

§ “Proof”: 
• Potential leader waits for majority of OKs in Phase 1
• At least one will contain v’ (because two majorities always intersect)
• It will choose to send out v’ in Phase 2

§ Success requires a majority, and any two majority sets intersect
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Please elect me! OK!
Value v ok?

OK!
v!



What could go Wrong
§ Process fails

• Majority does not include it
• When process restarts, it uses log to retrieve a past decision (if any) and past-seen 

ballot ids. Tries to know of past decisions.
§ Leader fails

• Start another round
§ Messages dropped

• If too flaky, just start another round
§ Note that anyone can start a round any time
§ Protocol may never end – tough luck, buddy!

• Impossibility result not violated
• If things go well sometime in the future, consensus reached
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Please elect me! OK!
Value v ok?

OK!
v!



§ Consensus is a very important problem
• Equivalent to many important distributed computing problems that have to do with 
reliability

§ Consensus is possible to solve in a synchronous system where message delays and 
processing delays are bounded

§ Consensus is impossible to solve in an asynchronous system where these delays are 
unbounded

§ Paxos protocol: widely used implementation of a safe, eventually-live consensus 
protocol for asynchronous systems
• Paxos (or variants) used in Apache Zookeeper, Google’s Chubby system, Active Disk Paxos, 

and many other cloud computing systems

Summary


