• • • • • • • • • • • •

Time and Global States

CMPS 4760/6760: Distributed Systems

Acknowledgement: slides adapted from Indranil Gupta's lecture notes: https://courses.engr.illinois.edu/cs425/fa2019/index.html

Overview

- Physical clocks
- States and events
- Logical clocks and vector clocks
- Global states and snapshot algorithm

Time and Clock

- Primary standard of time: rotation of earth
 - 1 solar second = 1/86,400th of a solar day that the Earth takes to complete one revolution around its axis
- De facto primary standard of time: atomic clocks
 - 1 atomic second = **9,192,631,770** orbital transitions of **Cesium-133** atom.
 - 86400 atomic sec = 1 solar day approx. 3 ms (*leap second* correction each year)
- Coordinated Universal Time (UTC) does the adjustment for leap seconds ± number of hours in your time zone

Global Positioning System: GPS

A system of 30+ satellites broadcasting accurate spatial coordinates and atomic times

- Location and precise time computed by triangulation
- no leap sec. correction => 18 seconds ahead of UTC (as of 2017)
- Per the theory of relativity, an additional correction is needed. Locally compensated by the receivers

Terminology

Drift rate $\rho = \left| \frac{d(C(t)-t)}{dt} \right|$ Clock skew δ Resynchronization interval R

Max drift rate ρ_{max} implies: $(1 - \rho_{max}) \le \frac{dC(t)}{dt} \le (1 + \rho_{max})$

Drift is unavoidable:

- Ordinary quartz-oscillators clocks: 10⁻⁶
- "High precision" quartz clocks: 10⁻⁸
- Atomic clocks: 10⁻¹³

Physical clock synchronization

Why accurate physical time is important?

- Accurate time keeping: air-traffic control systems
- Accurate timestamps: multi-version objects
- Some security mechanisms depend on the physical times of events, e.g., Kerberos

Physical clock synchronization

- External Synchronization: $|C_i(t) S(t)| < \delta/2$
 - S: a source of UTC time
- Internal Synchronization: $|C_i(t) C_j(t)| < \delta$
- Challenges: account for propagation delay, processing delay, and faulty clocks

Physical clock synchronization

- Bounded drift rate
- Monotonicity: $t' > t \Rightarrow C(t') > C(t)$
 - Y2K bug
- Hardware clock vs. Software clock
 - $C_i(t) = \alpha H_i(t) + \beta$

External Synchronization: Cristian's method

- Developed by Cristian in 1989
- Client sends a request to a time server at T₁
- Server receives the request at T_s and sends it back
- Client receives the response at T_2 , estimates the round trip time $RTT = T_2 T_1$, and sets $C_i = T_s + RTT/2$
 - Q: Assume that the minimum transmission *min* is known, what is the accuracy of client's clock right after synchronization ?
 - A: $\pm (RTT/2 min)$

External Synchronization: Cristian's method

- $\delta/2$ desired accuracy bound
- ρ clock drift rate
- Client pulls data from a time server every R unit of time, where $R < \delta/2\rho$ (why?)
 - *RTT* should be sufficiently short compared with the required accuracy
- Improve accuracy and fault tolerance
 - Query multiple times & take minimum *RTT*
 - Query multiple time servers

Internal Synchronization: The Berkeley Algorithm

- Initially designed by Gusella and Zatti in 1989 for internal synchronization of a collection of computers running Berkeley UNIX
- The participants elect a master (leader)
- The master coordinates the synchronization
- Step 1. Salves send their clock values to the master
- **Step 2.** Master discards outliers and computes the average
- **Step 3.** Master sends the needed adjustment to the slaves

The Berkeley Algorithm

RTT adjustment as in Cristian's method (not shown in the figure)

Internal synchronization with Byzantine clocks

Lamport and Melliar-Smith's algorithm

Assume N clocks, at most f are faulty

Clock *i* runs the following algorithm:

Step 1. Read every clock in the system

• $c_i[j]$: clock *i*'s reading of clock *j*'s value

Step 2. if $|c_i[j] - c_i[i]| > \delta$, $c_i[j] = c_i[i]$

Step 3. Update the clock using the average of these values

Synchronization is maintained if N > 3f

A faulty clock exhibits 2-faced or byzantine behavior

Lamport and Melliar-Smith's algorithm

The maximum difference between the averages computed by two non-faulty nodes is $(3f\delta/N)$

To keep the clocks synchronized,

$$\frac{3f\delta}{N} < \delta \iff N > 3f$$

Overview

- Physical clocks
- States and events
- Logical clocks and vector clocks
- Global states and snapshot algorithm

System Model

- A distributed program consists of a set of N processes, $\{P_1, P_2, \dots, P_N\}$, and a set of unidirectional channels.
 - Message passing only, no shared memory, no global clock
 - Channel model: error free, arbitrary but finite delay, no assumptions on ordering

States and Actions

- Each process P_i has a state s_i that, in general, it transforms as it executes
 - a state includes the values of all the variables within it (including the program counter)
 - may also include the values of any objects in its local operating system environment that it affects, such as files
- As each process P_i executes it takes a series of actions, each of which is either
 - message *send* or *receive* operation
 - or an operation that transforms P_i's state one that changes one or more of the values in s_i
- State of a channel: sequence of messages set along the channel but not received
 - A process may record messages sent and received as part of its local state

States and Events

- An event e ∈ E corresponds to an action and may change the state of a process and the state of at most one channel incident on that process
 - Internal events only change the state of a process
 - External events: sends to/receives from other process
- A set of events (e⁰_i, e¹_i, e²_i, ...) in a single process is called sequential, and their occurrences can be totally ordered in time using the clock at that process
- A run or a computation of a process P_i is defined as a sequence of local states and events: s⁰_ie⁰_is¹_i ... e^k_is^k_i

Global States

- The set of global states = the cross product of local states and the states of channels.
- An initial global state is one in which all local states are initial, and all the channels are empty

Global States

 "time-based model": a global state is a set of local states that occur simultaneously

 "happened-before model": a global state is a set of local states that are all concurrent with each other

There is nothing called simultaneous in the physical world.

Global States

- Questions:
 - How do we decide if an event happened before another event when the two events are on different processes?
 - How do we decide if two events are concurrent?
 - Can we do these without using physical clocks, since physical clocks are not be perfectly synchronized?

Causality

The event of sending message must have happened before the event of receiving that message

Happened Before Model

Notations:

 $e \prec f$ iff e, f are two events in a single process P, and e proceeds f

$$e \leq f \text{ iff } e \prec f \lor e = f$$

 $e \sim f$ iff e = sending a message, and f = receipt of that message

These definitions also apply to states

Happened Before Model

The *happened-before* relation (\rightarrow) is the smallest relation that satisfies

Rule 1. if $(e \prec f) \lor (e \rightsquigarrow f)$ then $e \rightarrow f$.

Rule 2. $(e \to f) \land (f \to g) \Rightarrow e \to g$

 \rightarrow defines a partial order on *E* (the set of all events) – why?

e and *f* are concurrent (denoted by e||f) if $\neg(e \rightarrow f) \land \neg(f \rightarrow e)$

Again, we can similarly define happened-before relation for states

Overview

- Physical clocks
- States and events
- Logical clocks and vector clocks
- Global states and snapshot algorithm

Logical Clocks

• A logical clock *LC* is a map from *E* to \mathbb{N} with the constraint:

 $\forall e, f \in E, e \rightarrow f \Rightarrow LC(e) < LC(f)$

- The constraint models:
 - sequential nature of execution at each process
 - Physical requirement that any message transmission requires a nonzero amount of time

Leslie B. Lamport

Lamport timestamps

Implementation

P_i::

var

LC: integer initially 0;

internal event ():

LC = LC + 1;

send event (m):

LC = LC + 1;piggybacks *LC* on *m;*

receive event (m, t): $LC = \max(LC, t) + 1;$

A total ordering on events

Let e and f be two events at processes i and j, respectively. We can define a total order << of events as:</p>

 $e \ll f$ iff either LC(e) < LC(f)

or LC(e) = LC(f) and i < j

Logical Clocks and Causality

Logical clocks cannot detect causality (why?)

•
$$\exists e, f \in E, (LC(e) < LC(f)) \land (e \not \rightarrow f)$$

Vector Clocks

• A vector clock VC is a map from E to \mathbb{N}^N with the constraint:

$$\forall e, f \in E, e \rightarrow f \Leftrightarrow VC(e) < VC(f)$$

Given two vectors x and y of dimension N, we compare them as follows:

$$x < y := (\forall k: 0 \le k \le N - 1: x[k] \le y[k]) \land (\exists j: 0 \le j \le N - 1: x[j] < y[j])$$

E.g., (2,1,0) < (2,1,1)

$$x \le y := (x < y) \lor (x = y)$$

Vector timestamps

Implementation

P_i:: var

```
VC: array[1..N] of integer; initially VC[j] = 0 \forall j;
```

internal event ():

VC[i] = VC[i] + 1;

```
send event (m):
```

```
VC[i] = VC[i] + 1;
```

```
piggybacks VC on m;
```

```
receive event (m, t):

VC[i] = VC[i] + 1;

\forall j: VC[j] = \max(VC[j], t[j]);
```

Properties

 $\forall e, f \in E, e \to f \Leftrightarrow VC(e) < VC(f)$

Theorem: For any two events e and f occurred at two processes i and j respectively, we have

 $e \to f \Leftrightarrow (\forall k \neq j: VC(e)[k] \leq VC(f)[k]) \land (VC(e)[j] < VC(f)[j])$

Overview

- Physical clocks
- States and events
- Logical clocks and vector clocks
- Global states and snapshot algorithm

Detecting Global Properties

Global State

- Current global state is hard to get
 - No process has global knowledge
- Past global state is often sufficient
 - Failure recovery
 - Monitoring stable properties

Global State Predicates

- A global state predicate that maps from the set of global states of processes in the system to {True, False}
- A property is called stable if once it is true it stays true forever
 - E.g., Is the object garbage? Is the system deadlocked? Or Is the system terminated?

Global Snapshot

Global State

 "time-based model": a global state is a set of local states that occur simultaneously.

• "happened-before model": a global state is a set of local states that are all concurrent with each other.

Local States

- A distributed system Ø of N processes, {P₁, P₂, ..., P_N}, connected by unidirectional channels.
- Event ordering on a single process
 - $e \rightarrow_i e'$: event e occurs before e' at P_i
 - $history(P_i) = h_i = \langle e_i^0, e_i^1, e_i^2, ... \rangle$
 - $h_i^k = < e_i^0, e_i^1, e_i^2, \dots, e_i^k >$
 - s_i^k the state of process P_i immediately before the *k*th event occurs, so that s_i^0 is the initial state of P_i
 - processes record the sending or receipt of all messages as part of their state

A cut of the system's execution is a subset of its global history that is a union of prefixes of process histories:

$$C = h_1^{c_1} \cup h_2^{c_2} \cup \dots \cup h_N^{c_N}$$

- $e_i^{c_i}$ the last event processed by P_i in the cut C
- The set of events $\{e_i^{c_i}: i = 1, 2, ..., N\}$ is called the frontier of the cut
- A cut defines a global state $S = (s_1, s_2, ..., s_N)$ where s_i is the state of P_i immediately after event $e_i^{c_i}$

Cuts

A cut *C* is consistent, if for each event it contains, it also contains all the events that happened-before that event: $\forall e \in C, f \rightarrow e \Rightarrow f \in C$

A consistent global state (or a snapshot) is one that corresponds to a consistent cut

Runs and Linearizations

- A run is a total ordering of all the events in a global history that is consistent with each local history's ordering
- A linearization (or a consistent run) is a total ordering of all the events in a global history that is consistent with the happened-before relation
- A state S' is reachable from a state S if there is a linearization that passes through S and then S'

Safety and Liveness

- Safety ``something bad does no occur''
 - A system is safe with respect to an undesirable property α if the α evaluates to False for all states *S* reachable from the original state S_0
- Liveness ``something good will eventually occur"
 - For any linearization L starting in the state S_0 , a desirable property β evaluates to True for some state S_L reachable from S_0

Assumptions

- Neither channels nor processes fail
- Channels are unidirectional and FIFO-ordered (First in First out)
- The graph of processes and channels is strongly connected (there is a path between any two processes)
- Any process may initiate a global snapshot at any time
- The processes may continue their execution and send and receive normal messages while the snapshot takes place

- Informal description
 - Each process is either white or red. All processes are initially white
 - After recording the local state, a process turns red
- Two difficulties
 - Need to ensure that the recorded local states are mutually concurrent
 - Need to capture the state of channels

Informal description

- Each process is either white or red. All processes are initially white
- After recording the local state, a process turns red
- Once a process turns red, it is required to send a special message called a marker along all its outgoing channels before it sends out any normal message, and start recording messages from all incoming channels
- Once P_i receives a marker from P_i
 - it is required to turn red if it has not already done so
 - it stops recording messages from P_i

P_i::

var

color: {white, red} initially white;
// assume k incoming channels
chan: array[1..k] queues of messages initially null;
closed: array[1..k] of boolean initially false;

turn_red() enabled if (*color* == *white*):

save_local_state; color = red; send (marker) to all neighbors; Upon receive(marker) on channel j
if(color == white) turn_red();
closed[j] = true;

Upon $receive(prog_message)$ on channel jif($color == red \land \neg closed[j]$) chan[j] = append(chan[j], $prog_message)$

- The algorithm terminates when
 - All processes have received a Marker
 - To record their own state
 - All processes have received a Marker on all the (N-1) incoming channels at each
 - To record the state of all channels
- Then, (if needed), a central server collects all these partial state pieces to obtain the full global snapshot

Example 1

P1 is Initiator:

- Record local state S1,
- Send out markers

 $C_{23} = <>$

Example 2

- Two processes trade in 'widgets'
- Process p₁ sends orders for widgets over c₂ to p₂, enclosing payment at the rate of \$10 per widget
- Some time later, process p₂
 sends widgets along channel
 c₁ to p₁

An Execution of the System

An Execution of the System

The snapshot state is p_1 : (\$1000,0), p_2 : (\$50,1995), c1: (five widgets), c_2 : ()

this state differs from all the global states through which the system actually passed

Termination

- Theorem: The Chandy–Lamport algorithm ensures that eventually all processes turn red and all channels are closed
- Proof sketch:
 - We assume that a process that has received a marker message records its state within a finite time and sends marker messages over each outgoing channel within a finite time.
 - If there is a path of communication channels and processes from a process p_i to a process p_j, then p_j will record its state a finite time after p_i recorded its state and close its incoming channel from p_i. It will then send a marker to p_i (if p_i is an outgoing neighbor of p_j) so that p_i will close its incoming channel from p_j within a finite time.
 - Since the graph of processes and channels to be strongly connected, all processes will have recorded their states and the states of incoming channels a finite time after some process initially records its state.

Correctness

- Theorem: The Chandy–Lamport algorithm records a consistent cut/global state and all the WR messages
- Proof sketch (of the first part):
 - Let e_i and e_j be events occurring at p_i and p_j , respectively, such that $e_i \rightarrow e_j$. We assert that if e_j is in the cut, then e_i is in the cut
 - That is, if e_j occurred before p_j recorded its state, then e_i must have occurred before p_i recorded its state. This is obvious if i = j. Assume i ≠ j.
 - Assume p_i recorded its state before e_i occurred (proof by contradiction)
 - Consider the sequence of H messages $m_1, m_2, ..., m_H$, giving rise to $e_i \rightarrow e_j$.
 - By FIFO ordering of channels and the marker sending and receiving rules, a marker message would have reached p_j ahead of each of $m_1, m_2, ..., m_H$, so that p_j would have recorded its state before e_j , a contradiction.

Understanding snapshot

- The snapshot state is a consistent global state that is reachable from the initial state. It may not actually be visited during a specific execution
- The final state of the original computation is always reachable from the snapshot state
- Proof in the textbook

Reachability

- If a stable predicate is True in the state S_{snap} then we may conclude that the predicate is True in the state S_{final}
- If the predicate evaluates to False for S_{snap} , then it must also be False for S_{init}