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Cryptocurrencies
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§ A cryptocurrency (or crypto currency) 
is a digital asset designed to work as 
a medium of exchange that 
uses strong cryptography to secure 
financial transactions, control the 
creation of additional units, and verify 
the transfer of assets

--- Wikipedia



Cryptocurrencies

§ Prevent people from
• tampering with the state of the system
• equivocation: e.g., If Alice convinces Bob that she paid him a digital coin, she should not 

be able to convince Carol that she paid her that same coin.

§ Lack of central authority 
• Cryptography 
• Decentralized control
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Overview

§ From Cryptography to Cryptocurrency

§ Repeated Consensus and Blockchain 

§ Bitcoin and Nakamoto’s Blockchain Protocol

§ References:
• A. Narayanan, et al., “Bitcoin and Cryptocurrency Technologies”, 2016
• E. Shi, “Foundations of Distributed Consensus and Blockchains”, 2021
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https://bitcoinbook.cs.princeton.edu/
https://www.distributedconsensus.net/


Cryptographic hash functions

§ A hash function is a math function with three properties
• input can be any size
• a fixed-size output, e.g., 256 bit
• efficiently computable 

§ Cryptographic hash functions need to satisfy 
• Collision resistance
• Hiding
• Puzzle friendliness
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Collision Resistance

§ A hash function 𝐻 is collision resistant if it is 
infeasible to find two values, 𝑥 and 𝑦, such 
that 𝑥 ≠ 𝑦, yet 𝐻(𝑥) = 𝐻(𝑦).
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§ Application: message digests

§ e.g., Alice uploads a really large file, and she wants to be able to verify later that the file 
she downloads is the same as the one she uploaded.

• Just needs to keep the hash of the original file.

• computes the hash of the downloaded file and compares it to the one she stored.



Hash pointers 

§ A hash pointer is a pointer to where data 
is stored together with a cryptographic 
hash of the value of this data at some 
fixed point in time.
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Blockchains

Use case: Tamper-evident log

§ an adversary modifying data anywhere in the blockchain will result in the hash pointer in the 
following block being incorrect. 

§ If we store the head of the list, then even if an adversary modifies all pointers to be consistent 
with the modified data, the head pointer will be incorrect, and we can detect the tampering.8



Digital Signatures 

§ Alice has a key pair 𝑠𝑘, 𝑝𝑘 = generateKeys (keysize)

§ Valid signatures must verify: verify(𝑝𝑘,𝑚, sign(𝑠𝑘,𝑚)) = 𝑡𝑟𝑢𝑒

§ Unforgeability: it’s computationally infeasible to forge signatures

𝑚

Type equation here.isValid = verify 𝑝𝑘,𝑚, 𝑠𝑖𝑔 sig = sign 𝑠𝑘,𝑚

Bob

𝑚

Alice

(𝑚, 𝑠𝑖𝑔)

verification signing
Eve



Digital Signatures 

§ Public keys as identities 

• or hashes of public keys as identities (called “addresses” in Bitcoin)

• enables decentralized identity management

• privacy is still a big concern

• Over time, the identity that you create makes a series of statements.

• People see these statements and thus know that whoever owns this identity has done a 
certain series of actions. 

• They can start to connect the dots, using this series of actions to make inferences about 
your real-world identity
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Goofycoin

§ Goofy can create new coins by simply signing a 
statement that he’s making a new coin with a 
unique coin ID.

§ Whoever owns a coin can pass it on to someone 
else by signing a statement that says, “Pass on this 
coin to X” (where X is specified as a public key).

§ Anyone can verify the validity of a coin by following 
the chain of hash pointers back to its creation by 
Goofy, verifying all signatures along the way.

§ Suffering from double-spending attack
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Scroogecoin

§ Scrooge publishes an append-only 
ledger containing the history of all 
transactions
• Implemented as a blockchain
• Each block has one transaction
• Scrooge digitally signs the final hash 

pointer
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Scroogecoin - Two kinds of transactions
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A CreateCoins transaction is valid if it is 
signed by Scrooge 

A PayCoins transaction is valid if

• consumed coins are valid and signed by owners

• consumed coins have not been consumed before 
(no double-spending)

• total values coming out equals to total values that 
went in



Problem with Scroogecoin

§ Scroogecoin prevents double spending

§ Scrooge cannot forge transactions

§ But Scrooge has too much influence

• It could stop endorsing transactions from some users unless they transfer some 
mandated transaction fee to him. 

• It can create as many new coins for himself as he wants. 

• It could get bored of the whole system and stop updating the blockchain

§ Problem: centralization

14



What we want

§ A decentralized system where

• All users need to agree on a single published blockchain as the authoritative 
history of all transactions. 

• They must all agree on which transactions are valid, and which transactions 
have actually occurred. 

• They also need to be able to assign IDs in a decentralized way. 

• Finally, the minting of new coins also needs to be decentralized.
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Overview

§ From Cryptography to Cryptocurrency

§ Repeated Consensus and Blockchain 

§ Bitcoin and Nakamoto’s Blockchain Protocol
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Consensus in Bitcoin

§ Bitcoin is a peer-to-peer system: anybody can run a Bitcoin node
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§ When Alice wants to pay Bob, she broadcasts a transaction to all nodes
• Running a node is not necessary for Bob to receive the funds



Consensus in Bitcoin
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§ At any point in time, all nodes have

• A sequence of blocks each containing a list of transactions that they have 
reached consensus on

• a pool of outstanding transactions (may differ from each other)

§ Consensus problem: what’s the next block to be included in the blockchain



Repeated Consensus 

§ So far in our lectures, we have considered single-shot consensus

§ Practical applications often require reaching consensus repeatedly over time

§ In Bitcoin, a distributed set of nodes maintain an ever-growing public ledger
which records the sequence of all transactions that have taken place so far

§ Blockchain is an abstraction for repeated consensus

• classically called state machine replication in distributed systems literature
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Assumptions 

§ A system with 𝑛 nodes (processes)
• Each receives transactions from an external environment
• transactions are represented as bit strings that possibly need to abide by 

certain validity rules
• The nodes each maintain a growing linearly ordered log of transactions.

§ Synchronous system
• Nodes communicate in rounds
• Honest nodes' messages can take at most Δ rounds to be delivered to an 

honest recipient
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Requirements of a Blockchain 

§ LOG!": node 𝑖’s finalized log in round 𝑡

§ Consistency: for any honest nodes 𝑖 and 𝑗, and for any round numbers 𝑡 and 𝑟, it 
must be that either LOG!" is a prefix of LOG#$, or LOG#$ is a prefix of LOG!"

§ 𝑇%&'(-liveness: If an honest node receives some transaction tx as input in some 
round 𝑟, then by the end of round 𝑟 + 𝑇%&'(, all honest nodes’ local logs must 
include tx.

• 𝑇%&'( is called confirmation time and is a function of the number of nodes 
𝑛 and the maximum network delay Δ
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Blockchain from Sequential Composition of Byzantine Broadcast

§ Byzantine Broadcast (BB): A 
multi-valued extension of 
Byzantine Generals Problem
• Either using signatures 

or not

§ 𝑛 nodes are numbered 
0, 1, … , 𝑛 − 1

§ Each BB instance runs in 
𝑅 number of rounds
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• In every round 𝑘𝑅 (𝑘 = 0, 1, 2… ), spawn a 
new BB protocol with 𝐿) ≔ (𝑘 mod 𝑛) as the 
designated sender

• 𝐿) collects transactions it has received as 
input, but that have not been included in its 
current log, and inputs the concatenation of 
all such transactions into BB)
• At any time, a node’s output log is defined as 

the concatenation of the output of the BB 
protocols that have finished.



Blockchain from Sequential Composition of Byzantine Broadcast

Theorem:  Suppose that the BB protocol adopted realizes Multi-Valued Byzantine 
Broadcast for a network of 𝑛 nodes and tolerating up to 𝑓 corruptions, then the 
above blockchain construction satisfies consistency and 𝑂(𝑅𝑛)-liveness also for the 
same 𝑛 and 𝑓, where 𝑅 denotes the round complexity of BB.

§ Problems with the protocol

• Long confirmation time

• Byzantine Broadcast requires a permissioned system 

• Oral messages: pairwise authenticated

• Signed messages
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Overview

§ From Cryptography to Cryptocurrency

§ Repeated Consensus and Blockchain 

§ Bitcoin and Nakamoto’s Blockchain Protocol
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Consensus in Bitcoin

§ Permissionless 

• Anyone is free to join the consensus protocol at any time

• No a-priori knowledge of the identities of the participants

• Unauthenticated channels: anyone can impersonate anyone else

• Leading to Sybil Attack
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Proof-of-Work (PoW)

§ Players need to solve computational puzzles to cast votes (called mining)

§ Roughly, a player's voting power is proportional to its computational power

§ Moreover, the blockchain protocol guarantees consistency and liveness as 
long as the majority of the mining power in the system is honest
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Nakamoto’s Blockchain

§ Each honest node maintains a blockchain, denoted chain, at any point of time. 

§ The first block chain[0] is a canonical block called the genesis

§ Every other block has the format chain[𝑖] ≔ ℎ*+, 𝜂, txs, ℎ , where

• ℎ!": hash of the previous block

• 𝜂: a puzzle solution

• txs: a set of transactions to be confirmed

• ℎ: hash of the present block 
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Mining

§ Given a blockchain chain with last block (_, _, _, ℎ*+)

§ To “mine” a new block, a miner would try random puzzle solutions 𝜂 ∈ 0,1 ,

and check if
𝐻 ℎ*+, 𝜂, txs < 𝐷-

• 𝐻: 0,1 ∗ → 0,1 ": a Proof-of-Work (PoW) oracle, implemented as a hash function

• 𝐷#: a difficulty parameter

• In Bitcoin, 𝐷# is chosen such that in expectation it takes all miners combined 10 minutes to 
mine a new block

• If 𝜂 solves the puzzle, ℎ$%, 𝜂, txs, 𝐻 ℎ$%, 𝜂, txs forms a valid block extending from chain
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Longest Chain 
§ Miners always try to mine a block off the longest chain it has seen

§ At any time, all but the last 𝐾 blocks in the longest chain are considered final. 

§ The larger the 𝐾, the more confident we are about tx’s finality.

§ To undo tx, the adversary would have to mine an attack fork off some prefix of 
chain[: −𝐾], and the attack fork must be longer than the main chain for it to win
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Nakamoto's Blockchain (simplified)

§ Nodes that are newly spawned start with initial chain containing only a special genesis 
block: chain ≔ 0,0, ⊥, 𝐻 0,0, ⊥

§ Whenever a node hears a fresh message from the network or receives a new transaction as 
input, it echoes the message or transaction to everyone else

§ In every round, a node tries to mine a new block off the longest chain seen so far
• Pick a random solution solution 𝜂 ∈ 0,1 " and issue query ℎ = 𝐻 ℎ$%, 𝜂, txs
• If ℎ < 𝐷#, append the newly mined block to chain and send chain|| ℎ$%, 𝜂, txs, ℎ to everyone

§ Whenever a node hears a message chain’ from the network, if chain’ is a valid and is longer 
than its current local chain, replace chain by chain’

§ At any time, a node’s finalized log is defined to be chain[: −𝐾], i.e., the longest chain 
observed so far removing the last 𝐾 blocks.
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Choosing the Mining Difficulty Parameter

§ In Bitcoin, the difficulty parameter is chosen such that on average, all miners 
combined take 10 minutes to mine the next block

§ In practice, many consider 𝐾 = 6 to be secure enough — this means it could 
easily take an hour for a transaction to confirm! 

§ However, the puzzles’ difficulty cannot be arbitrarily lowered

• As doing so could break the consistency of the consensus protocol
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Choosing the Mining Difficulty Parameter
§ Choose 𝐷# such that the probability that any player mines a block in a round is 𝑝 ∈ (0, 1)

§ Suppose that there are 𝑛 nodes, 51% of which is honest

§ The probability that the honest nodes combined can mine a block in a round is roughly 1 − (
)

1 −
𝑝 &.(%) ≈ 0.51𝑝𝑛 ≪ 1

§ The expected number of rounds till a new honest block is mined is roughly %
&.(%#)

§ It takes ∆ rounds to propagate the block to the honest nodes, while the adversary may not need to 
suffer from the same ∆ delay

§ Then roughly speaking, every %
&.(%#)

rounds, we end up wasting ∆ rounds

§ The discounted honest mining power can be defined as 
!

".$!%&
!

".$!%&*+
0.51𝑛 ≈ 1 − 0.51𝑝𝑛Δ 0.51n

§ To ensure consensus, we require that the honest mining power, even when discounted by the network 
delay ∆, must exceed the corrupt mining power!
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Properties of Nakamoto's Blockchain

§ With 1 − negl(𝜆) probability over the choice of the randomized execution of 
Nakamoto’s blockchain, the consensus property is satisfied.

• 𝜆 − the security parameter

• negl 𝜆 − for any fixed polynomial function 𝑝 𝜆 , there exists 𝜆# such that for 
any 𝜆 > 𝜆#, negl 𝜆 < 1/𝑝(𝜆)

§ With 1 − negl(𝜆) probability over the choice of the randomized execution of 
Nakamoto’s blockchain, the liveness property is satisfied with confirmation time 

bounded by Θ .
/ + Δ

• 𝛼 is the expected number of blocks mined by honest nodes in each round.
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A double-spend attempt

§ Alice creates two transactions: 
one in which she sends Bob 
bitcoins, and a second in 
which she double spends 
those bitcoins by sending 
them to a different address, 
which she controls
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§ Bob should wait to release the merchandise until the transaction with which Alice 
pays him is included in the blockchain and has several confirmations.
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Recap

§ protection against invalid transactions is entirely cryptographic, but is 
enforced by consensus

• a cryptographically invalid transaction won’t end up in the long-term consensus 
chain because a majority of the nodes are honest and won’t include an invalid 
transaction in the block chain

§ protection against double spending is purely by consensus

• the double-spend probability decreases exponentially with the number of 
confirmations if the majority of nodes are honest
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Incentives

§ Can we punish nodes with double-spend attempts?

• not really, hard to detect

• besides, nodes don’t have identities 

§ Instead, we can reward nodes that created the blocks that did end up on the 
long-term consensus chain
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Block Reward 

§ The node that creates a block gets a 
reward if the block ends up on the 
long-term consensus branch

§ The block reward is 25 bitcoins as of 2015 
and halves with every 210,000 blocks 
created (~every 4 years)
• This is the only way in which new 

bitcoins can be created. 
• Limit the total supply of bitcoins to 

21 million
• This block reward will run out in 2140
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Transaction Fees

§ The creator of any transaction can choose to make 
the total value of the transaction outputs less 
than the total value of its inputs

§ Whoever creates the block that first puts that 
transaction into the block chain gets to collect the 
difference, which acts a transaction fee.
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Selfish Mining

§ Since miners make some money for mining each block, a selfish miner should 
want to mine as many blocks as possible

§ The Nakamoto’s consensus protocol is vulnerable to selfish-mining attack
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Selfish Mining

§ Assume network‘s delay Δ = 0, the selfish miner controls 𝜌 < 0.5 fraction of the mining power.

§ Consider a very long window in which a total of 𝑇 blocks are mined. 

§ Number of blocks mined by the selfish miner ≈ 𝜌𝑇, whereas the number of blocks mined by 
honest nodes ≈ (1 − 𝜌)𝑇. 

§ Every block the selfish miner mines can erase one block mined by honest nodes.

§ In the final blockchain, there would only be 1 − 𝜌 𝑇 − 𝜌𝑇 = 1 − 2𝜌 𝑇 blocks mined by honest 
nodes.

§ The fraction of blocks controlled by the selfish miner is 1 − %$,-
%$-

• 1 − "!$%
"!%

≈ 0.96 if 𝜌 = 0.49
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