Network Utility Optimization

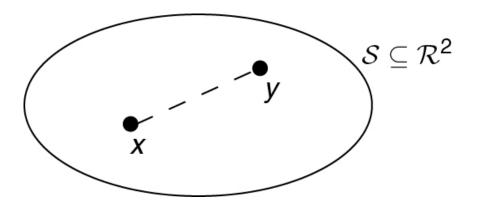
CMPS 4750/6750: Computer Networks

Outline

- Convex Optimization (SY 2.1)
- Network Utility Maximization (SY 2.2)
- Utility Functions and Fairness (SY 2.2.1)

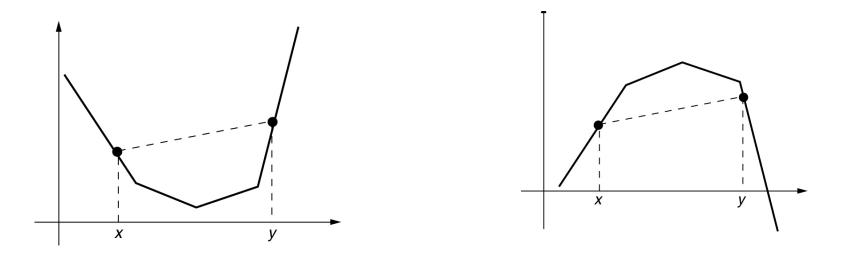
Convex Sets

• Convex Set $S \subseteq \mathbb{R}^n$: if $x \in S$ and $y \in S$, then $\alpha x + (1 - \alpha)y \in S$ for $\alpha \in [0, 1]$



Convex and Concave Functions

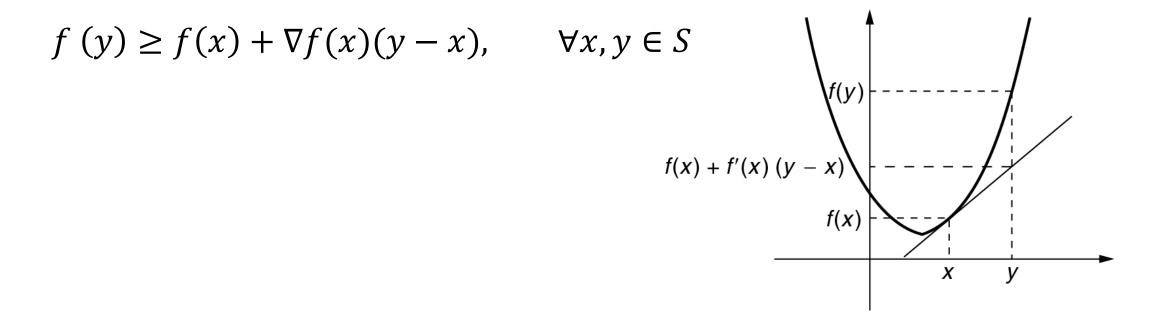
• Convex function $f(x): S \to R: S \subseteq R^n$ is a convex set and for any $x, y \in S$ and $\alpha \in [0,1]: f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$



• A function $f(x): S \to R$ is concave if -f is convex

Convex Functions: First-Order Condition

• Let $f(x): S \to R$ be differentiable and $S \subseteq R^n$ be convex. f is convex if and only if



Unconstrained Convex Optimization

 $\max_{x\in S}f(x)$

Fact: If f is concave and differentiable and S is convex, then x^* is a maximizer if and only if $\nabla f(x^*)(x - x^*) \leq 0$ for $x \in S$.

Network Utility Maximization

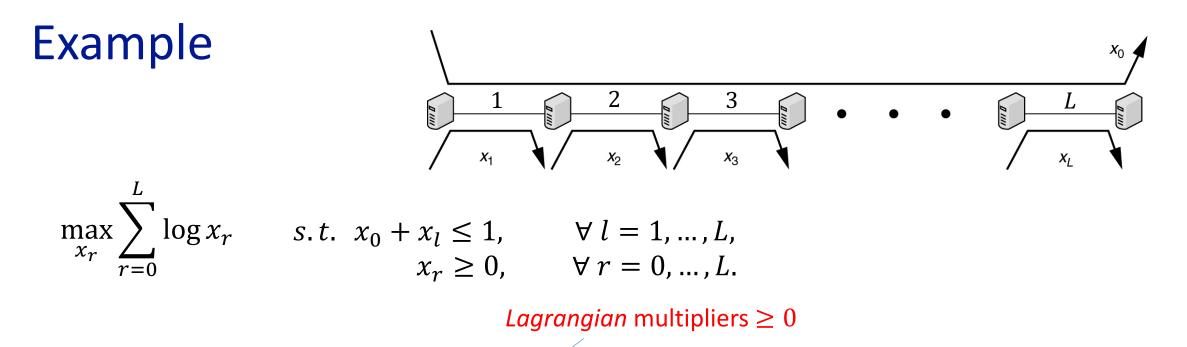
- L: set of links, S: set of sources (users)
- Each source has a fixed route (a collection of links)
- $U_r(x_r)$: utility of source r when transmitting at rate x_r
 - non-decreasing: $U_r(x) \ge U_r(y)$ if $x \ge y$
 - concave: $U_r(\alpha x + (1 \alpha)y) \ge \alpha U_r(x) + (1 \alpha)U_r(y)$

Network Utility Maximization

Network Utility Maximization (NUM)

$$\max_{x_r} \sum_{r \in S} U_r(x_r)$$
s.t.
$$\sum_{r:l \in r} x_r \le c_l, \forall l \in \mathcal{L},$$

$$x_r \ge 0, \quad \forall r \in S.$$



Lagrangian: $L(x, p) = \sum_{r=0}^{L} \log x_r - \sum_{l=1}^{L} p_l(x_0 + x_l - 1)$

KKT conditions: x is a global maximizer iff there exists p such that

(1)
$$\frac{\partial L}{\partial x_r} = 0$$
 for each r ; $rackin x_0 = \frac{1}{\sum_{l=1}^{L} p_l}$, $x_r = \frac{1}{p_r}$, $\forall r \ge 1$
(2) $p_l(x_0 + x_l - 1) = 0$ for each l . $p_l = \frac{L+1}{L}$, $\forall l \ge 1$

$$x_0 = \frac{1}{L+1}$$
, $x_r = \frac{L}{L+1}$, $\forall r \ge 1$

Utility Functions and Fairness

- A utility function can be interpreted as
 - an inherent utility associate with each user
 - imposing a notion of fair resource allocation

Proportional fairness

An allocation x^* is proportional fair if $\sum_{r \in S} \frac{x_r - x_r^*}{x_r^*} \le 0$ for any feasible allocation x

 $\Leftrightarrow x^*$ is the optimal solution to $\max_{x \in D} \sum_{r \in S} \log x_r$ (from the optimality condition)

Utility Functions and Fairness

• Max-min fairness: an allocation x^* is max-min fair if for any feasible x, if $x_s > x_s^*$, there is u such that $x_u < x_u^* \le x_s^*$

 $\Rightarrow \min_{r} x_{r}^{*} \ge \min_{r} x_{r}$

- α -fairness: x^* is the optimal solution to $\max_{x \in D} \sum_{r \in S} U_r(x_r)$ where $U_r(x_r) = \frac{x_r^{1-\alpha}}{1-\alpha}$ for some $\alpha > 0$
 - $\alpha \to 1 \Rightarrow$ proportional fairness (because $\lim_{\alpha \to 1} \frac{x_r^{1-\alpha} 1}{1-\alpha} = \log x_r$)
 - $\alpha \rightarrow \infty \Rightarrow$ max-min fairness