Statistical Multiplexing and Queues
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Statistical multiplexing

Each user: active with prob p = 0.1

o Example: - 100 kbps when active
— 10 Mbps link S
v

— each user: * n users \ >
* active with a probability 0.1 g /—%Ebps link
* 100 kbps when “active” N

* How many users can be supported?
— 1. allocation according to peak rate (e.g., circuit switching): 10Mbps/100kpbs = 100
— 2. statistical multiplexing: allow n = 100 users to share the link

* What 1s the overflow probability?

* 1.e., what’s the probability that at least 101 users become active simultaneously?



Statistical multiplexing

e Allow n > 100 users to share the link Each user: active with prob 0.1

i : .. : 100 kbps when active
—For each user i, let X; = 1 ifuseriis active, X; =0 ..o

otherwise

" n users

— Assume X;’s are i.i.d., X; ~ Bernoull1(0.1)

3 . 10 Mbps link
— Overtlow probability:
n n
n
Pr (2 Xi 2 101) - z (k) 0.1%(1 — 0.1)"k
=1 k=101



Markov’s imnequality

Lemma 3.1.1 (Markov’s inequality) For a positive r.v. X, the following inequality
holds for any € > 0:

Pr(X > ¢) < 22X
Proof Definearv.Y suchthatY = e1f X > eand Y = 0 otherwise. So
X
E(X) = E(Y) ()
=ePr(Y =¢)
= ePr(X > ¢€) € Y(s)




The Chernoff bound

Theorem 3.1.2 (the Chernoff bound) Consider a sequence of independently and identically
distributed (i.i.d.) random variables {X;}. For any constant x, the following inequality holds:

n
— O6x—1 6
Pr(ZXi 2nx> <o " ipiOx-logM(O)}
=1

where M (0) = E(e?*1) is the moment generation function of X;

If X; ~ Bernoulli(p), and p < x < 1, then

n
Pr (Z X; > nx) < g P (lp)
i=1

where D(x || p) = x logg + (1 —x) logi_;; (Kullback-Leibler divergence between Bernoulli r.v.s)



Proving the Chernoff bound
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Independent dist. =

Identical dist. —

Pr (ZX > nx) <Pr(e‘92l 1 Xi > egnx) ve > 0

VO = 0,Pr(T™, X; = nx) < e ™6x-logM(8)

= Prx™, X; > nx) < g}Qge—"(@x—logM(@))

—n sup{fx—log M(6)}
= e 6=0

The Bernoulli case 1s left as an exercise



StatIStlcal mu1tlpleX1Hg Each user: active with prob 0.1

100 kbps when active
e Allow n > 100 users to share the link

— For each user i, let X; = 1 if user i is active, X; = 0

otherwise
10 Mbps link
— Assume X;’s are i.i.d., X; ~ Bernoulli(0.1) ="t
— Overflow probability

¢ Pr(YL, X; 2 101) = N016,(M)0.15(1 — 0.1)"
 Using the Chernoff bound:

n n
101
Fﬁ“(:g:)¥i22]1)1> ==PH‘<:E:J¥iEETI—;{—>

i=1 i=1

overflow probability
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Discrete-time stochastic processes

* Let {X;, k € N} be discrete-time stochastic process with a countable state space
—For each k € N, X}, is a random variable
— X} 1s considered as the state of the process in time-slot k
— X}, takes on values 1n a countable set S

— Any realization of {X,, } is called a sample path

* E.g., Let {Xy, k € N} be an i.i.d. Bernoulli process with parameter p

— X ~Bernoulli(p), i.i.d. over k

10



Discrete-time Markov chains

* Let {Xy, k € N} be a discrete-time stochastic process with a countable state space.

{X;} is called a Discrete-Time Markov Chain (DTMC) if

Pr(Xpr1 =J | X = i, Xgoq = igy,., Xo = o) = Pr(Xpeq = j | Xp = i) (Markovian Property)

= P (“ttme homogeneous™)

— P;;: the probability of moving to state j on the next transition, given that the

current state 1s i

11



Transition probability matrix

* Transition probability matrix of a DTMC

—a matrix P whose (i, j)-th element is P;;

- j Pj; =1, Vi (each row of P summing to 1 -- row stochastic)
% 1—p)

— EX: for an i.i.d. Bernoulli process with parameter p, P = (p 1—p

1—-p

R 00

p

12



Discrete-time Markov chains

Repair facility problem: a machine 1s either working or 1s W B
in the repair center, with the transition probability matrix: p- " (0'95 0.05 )
B \0.40 0.60.
Assume Pr(X, = “Working”) = 0.8, Pr(X, = “Broken”) = 0.2 0.05 0.60
o R 0
What is Pr(X; = “Working”)?
0.40

Pr(X; = “W”) = Pr(Xp = “W” N X;= “W”) +Pr(X, = “B” N X;= “W")
= Pr(X, = “W”) Pr(X; = “W”|X, = “W”) + Pr(X, = “B”) Pr(X; = “W"|X, = “B")
= Pr(X, = “W”)Pyy + Pr(X, = “B”)Pgy
= 0.8 X 0.95 + 0.2x0.4 = 0.84

13



Discrete-time Markov chains

In general, we have
. PI'(Xk =_]) = ZiES Pr(Xk_l = l)Pl]
" Letpjlk] = Pr(X, = j) ,plkl = (pulkl, p2lk], ...). Then

plk] = plk —1]P
= ADTMC is completely captured by p[0] and P



n-step Transition Probabilities

Let P* =P - P--- P, multiplied n times. Let Pig-n) denote (P™);;
Theorem Pr(X,, =j | X, =i) = Pi(.n)
Proof (by induction): n =1, we have Pr(X,, =j | Xo =1i) = P;; = P(l)
Assume the result holds for any n, we have
Pr(Xnt1 =Jj |1 Xo=1) = Xg PriXn+1 =J, Xn = k| Xo = 1)
= %5 Pr(Xns1 = jlXn = k=D Pr(X, = k | Xo = )

+1
= Dk Prj Pi%") =2k P (n)Pk] PLE" :



Limiting distributions

. oy C : : w B
* Repair facility problem: a machine 1s either working or 1s
in the repair center, with the transition probability matrix: P = g/ (1 ; a 1 a b)

* 0: What fraction of time does the machine spend in the 0<a<10<b<l1

repair shop?
b+a(l1—a-b)* a—-a(l—-a-b)"

pn — a+b a+b A probability distribution m = (14, 5, ... ) 1S
b—b(1—a-b)" atb(1-a-b)" called a limiting distribution of the DTMS
a+b a+b . .. . .
b . with transition matrix P if
: +b  a+b = 1 M . -
lim,,_,o, P* = ab aa TT; 11111)1100131 P Vi,j

a+b a+b



Stationary distributions

* A probability distribution m = (11, 75, ... ) 1s said to be stationary for the DTMS if
m-P=m
—n-P=nm &y Pj=m; V]
— If p|0] = &, then p|k] = = for all k

* Theorem If a DTMS has a limiting distribution 7, then 7 1s also a stationary
distribution and there 1s no other stationary distribution

* O/: under what conditions, does the limiting distribution exist?

* 02: how to find a stationary distribution?



Irreducible Markov chains

* Ex: A Markov chain with two states a and b and the transition probability matrix
given by: /1 0
b= (o 1)

— If the chain started in one state, it remained in the same state forever
—lim,,,, P" =P
—m - P = @ for any distribution  (not unique)

* State j 1s said to be reachable from state i 1f there exists n = 1 so that Pig-n) >0

* A Markov chain 1s said to be 1irreducible 1f any state j 1s reachable from any other
state 1
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Aperiodic Markov chains

* Ex: A Markov chain with two states a and b and the transition probability matrix
given by: /0 1
P=(] o
-—n-P=m = m=(05,0.5)

— lim Pjg-n) does not exist for any j (a state 1s only visited every other time step.)
n—>0o

* Period of state j: dj = gcd{n > 0: Pjg.n) > 0}
— State j 1s said to be aperiodic if d;=1
* A Markov chain 1s said to be aperiodic 1f all states are aperiodic

* Theorem Every state in an irreducible Markov chain has the same period.
19



Big Theorem

Consider a DTMC that 1s 1irreducible and aperiodic
» [f the chain has a finite state-space, it always has a limiting distribution.
» There must be a positive vector = such that m = 7P (an invariant measure)

» [f )}; m; = 1, then m is the unique stationary distribution and lim Pig-n) = T

n—>0o

= [f ); m; = oo, a stationary distribution does not exist and lim Pig-n) =0

n—>0o

20



How to find stationary distributions?

* Using the definition:  Ex: given the transition matrix P of a

, DTMC, find its stationary distribution.
mj = 27 Pij Vj
e T[j Zziijﬂi Pl]+7T]P]] Vj p_ g (]; (i
. 4 4
< m(1-Pj) = Zizjmi Py V) 1 0 0

S T Qizj Pji = DizjTi Pij V)

(global balance equations)

21



How to find stationary distributions?

* Using the definition:
mj = 2 Pij Vj
S W= YT Pij+miPj V)
< (1= Py;) = Zizjmi Py VJ
S T Nixj Pji = Lizj T Py V)

(global balance equations)

* Using the local balance equations:

T[iji — T[iPij Vi,j
= X mjPy = X;m;i Pij Vj

= T Nizj Pji = Xizj T Pij Vj

22



Geo/Geo/1 queue

. . . . . —_—> —>
* A single server queue with infinite buffer size I O
* a(k) - number of packets that arrive in time-slot k buffer with infinite size

— a(k)~Bernoulli(1), i.i.d. over k = inter-arrival time ? Geometric (A)

s(k) - number of packets served in time-slot k

— s(k)~Bernoulli(u), i.i.d. over k = service time ~ Geometric (i)

— s(k) and a(k) are independent processes

q (k) - number of packets in the queue at the beginning of time-slot k (before packet arrivals occur)

Queueing dynamics: q(k +1) = [q(k) + a(k) — s(k)]* (x)* = max(x, 0)
— Arrival occurs before any departure in each time-slot

— q(k) includes the packet that is being processed

23



Geo/Geo/1 queue

g (k) is an infinite state Markov chain

= AM1-p)

Piit1
SOWB oW 0 S
' ' Pii= A+ (1 -1 —p) Vi>0

Pyo = 1—-2(1—pu)

Let @ = A(1 — u) = Pr(1 arrival, no departure) We will assume 0 < A, u <1
B = u(1 — A1) =Pr(no arrival, 1 departure) which implies 0 < o, f <1

24



Geo/Geo/1 queue

1-a O (U

—a—-pf 1-a-p

* The Markov chain q(k) is
— 1rreducible: any state 1s reachable from any other state

— aperiodic: Pyy > 0

25



Geo/Geo/1 queue

To find the stationary distribution, apply the local
balance equation:

i = am;
a _ A(1—up)
= ;41 = PT; Where p = — = _
l l B (=Du The Markov chain has a
stationary distribution 1ff

p < 1, orequivalently A < u

= m; = P

Yom =1 }: Yim =M pt =1

. 1 .
" [fp <1, Zip‘=E >my=1—p, w;=p"(l—p)

= Ifp >1,myY,; p' = 1 never holds

26



Geo/Geo/1 queue

Assume p < 1, then ; = p'(1 — p)
The average queue length 1s
E(q) =X;ip'(1-p)

=1 —-ppY;ip-?

What 1s the average waiting time of a packet?

27



Little’s law

“the long-term average number L of customers in a stationary system 1s

equal to the long-term average effective arrival rate A multiplied by the
average time W that a customer spends 1n the system”

L=AW

-- Wikipedia

* first given by John Little without proof in 1954

* holds for very general arrival processes and service disciplines



Geo/Geo/1 queue

Assume p < 1, then ; = p'(1 — p)
The average queue length 1s

L= E(q) =YX;ip'(1—p)

p

1-p

p

. . . L
The mean waiting time of a packet W = 1= 10-p)
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Geo/Geo/1/B queue

* Same setting as Geo/Geo/l except that the buffer size 1s B < o0

(04 (04 (04 o
GO @ Cees L
1-a B ' p ' B B 1-5

1-a-p 1—0-p

—q(t) 1s an 1rreducible and aperiodic DTMC with a finite state space

30



Geo/Geo/1/B queue

OO X L Ceee GO
1-a B ' B ' B B 1-5

1-a-p 1-a-p
* Same setting as Geo/Geo/l except that the buffer size 1s B < o0
—q(t) 1s a irreducible and aperiodic DTMC with a finite state space

ﬁTl’i+1=CZT[i fOI'O<i<B—1

— T _a_ A0-p)
= Tj,1 = PT; wherep—ﬁ ey
>m; =plny for0<i<B, ,

R PP el NS el AT SO
:T[Oziz()p — T[O_l_pB+1 l 1_pB+1 ) y Ly aeey

for0<i<B-1,

* What is the fraction of arriving packets that are dropped?
—pa = Pr(q(t) = Bla(t) = 1) =Pr(q(t) = B) =3
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