
Statistical Multiplexing and Queues

CMPS 4750/6750: Computer Networks
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Outline

• Statistical multiplexing (3.2)
• The Chernoff bound (3.1)
• Discrete-time Markov chains (3.3)
• Delay and packet loss analysis (3.4)

2



Statistical multiplexing

• Example: 
− 10 Mbps link
− each user:

• active with a probability 0.1
• 100 kbps when “active”

• How many users can be supported?
− 1. allocation according to peak rate (e.g., circuit switching): 10Mbps/100kpbs = 100

− 2. statistical multiplexing: allow 𝑛 ≥ 100 users to share the link

• What is the overflow probability? 
• i.e., what’s the probability that at least 101 users become active simultaneously?

3

n users

10 Mbps link

…
..

Each user: active with prob 𝑝 = 0.1
100 kbps when active



Statistical multiplexing
• Allow 𝑛 > 100 users to share the link

− For each user 𝑖, let 𝑋( = 1 if	user	𝑖 is	active,	𝑋( = 0
otherwise	

− Assume 𝑋(’s are i.i.d., 𝑋( ~ Bernoulli(0.1)

− Overflow probability:
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Markov’s inequality

Lemma 3.1.1 (Markov’s inequality) For a positive r. v. 𝑋, the following inequality 
holds for any 𝜖 > 0:

Pr 𝑋 ≥ 𝜖 ≤ E F
G

Proof Define a r.v. 𝑌 such that 𝑌 = 𝜖 if 𝑋 ≥ 𝜖 and 𝑌 = 0 otherwise. So 

𝐸 𝑋 ≥ 𝐸 𝑌

= 𝜖 Pr 𝑌 = 𝜖

= 𝜖 Pr 𝑋 ≥ 𝜖
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The Chernoff bound
Theorem 3.1.2 (the Chernoff bound) Consider a sequence of independently and identically 
distributed (i.i.d.) random variables 𝑋( . For any constant 𝑥, the following inequality holds:

Pr &
(:;

=

𝑋( ≥ 𝑛𝑥 ≤𝑒
>= JKL

MNO
PQ>RST U P

where 𝑀 𝜃 = E(𝑒PFV) is the moment generation function of 𝑋;

If 𝑋( ~ Bernoulli(𝑝), and 𝑝 ≤ 𝑥 ≤ 1, then 

Pr &
(:;

=

𝑋( ≥ 𝑛𝑥 ≤𝑒>=W(Q∥Z)

where 𝐷 𝑥 ∥ 𝑝 = 𝑥 log Q
Z
+ 1 − 𝑥 log ;>Q

;>Z
(Kullback-Leibler divergence between Bernoulli r.v.s)
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Proving the Chernoff bound 

Pr &
(:;

=

𝑋( ≥ 𝑛𝑥 ≤Pr 𝑒P ∑]^V
_ F] ≥ 𝑒P=Q ∀𝜃 ≥ 0

≤
` aM ∑]^V

_ b]

aM_c

= E ∏]^V
_ aMb]
aM_c

= ∏]^V
_ `(aMb])
aM_c

= U P _

aM_c

= 𝑒>= PQ>RSTU P
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∀𝜃 ≥ 0, Pr ∑(:;= 𝑋( ≥ 𝑛𝑥 ≤ 𝑒>= PQ>RST U P

⇒ Pr ∑(:;= 𝑋( ≥ 𝑛𝑥 ≤ inf
Pf<

𝑒>= PQ>RST U P

= 𝑒
>= JKL

MNO
PQ>RST U P

Markov inequality

Independent dist. 

Identical dist. The Bernoulli case is left as an exercise



Statistical multiplexing
• Allow 𝑛 > 100 users to share the link

− For each user 𝑖, let 𝑋( = 1 if	user	𝑖 is	active,	𝑋( = 0
otherwise	

− Assume 𝑋(’s are i.i.d., 𝑋( ~ Bernoulli(0.1)

− Overflow probability

• Pr(∑(:;= 𝑋( ≥ 101) = ∑9:;<;= =
9 0.1

9 1 − 0.1 =>9

• Using the Chernoff bound:

Pr i
(:;

=

𝑋( ≥ 101 = Pr i
(:;

=

𝑋( ≥ 𝑛
101
𝑛

≤ 𝑒>=W
VOV
_ ∥<.;
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Outline

• Statistical multiplexing (3.2)
• The Chernoff bound (3.1)
• Discrete-time Markov chains (3.3)
• Delay and packet loss analysis (3.4)
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Discrete-time stochastic processes

• Let 𝑋9, 𝑘 ∈ ℕ be discrete-time stochastic process with a countable state space
− For each 𝑘 ∈ ℕ,  𝑋9 is a random variable 
−𝑋9 is considered as the state of the process in time-slot 𝑘
−𝑋9 takes on values in a countable set 𝑆
− Any realization of 𝑋9 is called a sample path

• E.g., Let 𝑋9, 𝑘 ∈ ℕ be an i.i.d. Bernoulli process with parameter 𝑝

− 𝑋9~Bernoulli(𝑝), i.i.d. over 𝑘
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Discrete-time Markov chains
• Let 𝑋9, 𝑘 ∈ ℕ be a discrete-time stochastic process with a countable state space. 
𝑋9 is called a Discrete-Time Markov Chain (DTMC) if

Pr 𝑋9n; = 𝑗 | 𝑋9 = 𝑖, 𝑋9>; = 𝑖9>;,…, 𝑋< = 𝑖< =

= P(p

− P(p: the probability of moving to state 𝑗 on the next transition, given that the 
current state is 𝑖
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Pr 𝑋9n; = 𝑗 | 𝑋9 = 𝑖 (Markovian Property)

(“time homogeneous”)



Transition probability matrix

• Transition probability matrix of a DTMC

− a matrix 𝐏 whose (𝑖, 𝑗)-th element is P(p

−∑p 𝑃(p = 1, ∀𝑖

− Ex: for an i.i.d. Bernoulli process with parameter 𝑝,	𝐏 =

12

(each row of 𝐏 summing to 1 -- row stochastic)
𝑝 1 − 𝑝
𝑝 1 − 𝑝

𝑝

1 − 𝑝

𝑝

1 − 𝑝

0 1



Discrete-time Markov chains 

Repair facility problem: a machine is either working or is 
in the repair center, with the transition probability matrix:

Assume Pr 𝑋< = “Working” = 0.8, Pr 𝑋< = “Broken” = 0.2 

What is Pr 𝑋; = “Working” ?
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W            B

W
B𝐏 = 0.95 0.05

0.40 0.60

Pr 𝑋; = “W” = Pr 𝑋< = “W” ∩ 𝑋;= “W” +Pr 𝑋< = “B” ∩ 𝑋;= “W”

= Pr(𝑋< = “W”) Pr(𝑋; = “W”|𝑋< = “W”) +Pr(𝑋< = “B”) Pr(𝑋; = “W”|𝑋< = “B”)

= Pr 𝑋< = “W” 𝑃�� + Pr 𝑋< = “B” 𝑃��
= 0.8 × 0.95 + 0.2×0.4 = 0.84

0.95

0.05

0.40

0.60



Discrete-time Markov chains 
In general, we have 

§ Pr 𝑋9 = 𝑗 = ∑(∈� Pr 𝑋9>; = 𝑖 𝑃(p

§ Let 𝑝p 𝑘 = Pr(𝑋9 = 𝑗) , 𝑝 𝑘 = 𝑝; 𝑘 , 𝑝� 𝑘 , … . Then

𝑝 𝑘 = 𝑝 𝑘 − 1 𝐏

§ A DTMC is completely captured by 𝑝[0] and 𝐏

14



𝑛-step Transition Probabilities

Let 𝐏= = 𝐏 ⋅ 𝐏⋯𝐏, multiplied n times.  Let 𝑃(p
(=) denote 𝐏= (p

Theorem Pr 𝑋= = 𝑗 | 𝑋< = 𝑖 = 𝑃(p
(=)

Proof (by induction):  𝑛 = 1, we have Pr 𝑋= = 𝑗 | 𝑋< = 𝑖 = 𝑃(p = 𝑃(p
(;)

Assume the result holds for any 𝑛,	we have

Pr 𝑋=n; = 𝑗 | 𝑋< = 𝑖 = ∑9 Pr 𝑋=n; = 𝑗, 𝑋= = 𝑘| 𝑋< = 𝑖

= ∑9 Pr 𝑋=n; = 𝑗|𝑋= = 𝑘, 𝑋< = 𝑖 Pr 𝑋= = 𝑘 | 𝑋< = 𝑖

= ∑9 𝑃9p 𝑃(9
(=) = ∑9 𝑃(9

(=)𝑃9p= 𝑃(p
(=n;)
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Limiting distributions

• Repair facility problem: a machine is either working or is 
in the repair center, with the transition probability matrix:

• Q: What fraction of time does the  machine spend in the 
repair shop? 
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W            B

W
B𝐏 = 1 − 𝑎 𝑎

𝑏 1 − 𝑏

0 < 𝑎 < 1, 0 < b < 1

𝐏= =
�n� ;>�>� _

�n�
�>� ;>�>� _

�n�
�>� ;>�>� _

�n�
�n� ;>�>� _

�n�

lim=→� 𝐏= =
�

�n�
�

�n�
�

�n�
�

�n�

A probability distribution 𝜋 = 𝜋;, 𝜋�, … is 
called a limiting distribution of the DTMS 
with transition matrix 𝑃 if 

𝜋p = lim
=→�

𝑃(p
(=), ∀𝑖, 𝑗



Stationary distributions 

• A probability distribution 𝜋 = (𝜋;, 𝜋�, … ) is said to be stationary for the DTMS if 

𝜋 ⋅ 𝐏 = 𝜋

− 𝜋 ⋅ 𝐏 = 𝜋 ⇔ ∑( 𝜋( 𝑃(p = 𝜋p ∀ 𝑗
− If 𝑝 0 = 𝜋, then 𝑝 𝑘 = 𝜋 for all 𝑘

• Theorem If a DTMS has a limiting distribution 𝜋, then 𝜋 is also a stationary 
distribution and there is no other stationary distribution 

• Q1: under what conditions, does the limiting distribution exist? 

• Q2: how to find a stationary distribution?
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Irreducible Markov chains

• Ex: A Markov chain with two states 𝑎 and 𝑏 and the transition probability matrix 
given by: 

− If the chain started in one state, it remained in the same state forever
− lim=→� 𝐏= = 𝐏
− 𝜋 ⋅ 𝐏 = 𝜋 for any distribution 𝜋 (not unique)

• State 𝑗 is said to be reachable from state 𝑖 if there exists 𝑛 ≥ 1 so that 𝑃(p
(=) > 0

• A Markov chain is said to be irreducible if any state 𝑗 is reachable from any other 
state 𝑖
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𝐏 = 1 0
0 1



Aperiodic Markov chains
• Ex: A Markov chain with two states 𝑎 and 𝑏 and the transition probability matrix 

given by: 

− 𝜋 ⋅ 𝐏 = 𝜋

− lim
=→�

𝑃pp
(=) does not exist for any 𝑗

• Period of state 𝑗: 𝑑p = gcd{𝑛 > 0: 𝑃pp
(=) > 0}

− State 𝑗 is said to be aperiodic if 𝑑p=1

• A Markov chain is said to be aperiodic if all states are aperiodic

• Theorem Every state in an irreducible Markov chain has the same period. 
19

𝐏 = 0 1
1 0

⇒ 𝜋 = (0.5, 0.5)

(a state is only visited every other time step.)



Big Theorem 

Consider a DTMC that is irreducible and aperiodic

§ If the chain has a finite state-space, it always has a limiting distribution.

§ There must be a positive vector 𝜋 such that 𝜋 = 𝜋𝐏 (an invariant measure)

§ If ∑( 𝜋( = 1, then 𝜋 is the unique stationary distribution and lim
=→�

𝑃(p
(=) = 𝜋p

§ If ∑( 𝜋( = ∞, a stationary distribution does not exist and lim
=→�

𝑃(p
(=) = 0
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• Ex: given the transition matrix P of a 
DTMC, find its stationary distribution.

How to find stationary distributions? 

• Using the definition: 

𝜋p = ∑( 𝜋( 𝑃(p ∀𝑗

⟺ 𝜋p = ∑(�p 𝜋( 𝑃(p + 𝜋p𝑃pp ∀𝑗

⟺ 𝜋p 1 − 𝑃pp = ∑(�p 𝜋( 𝑃(p ∀𝑗

⟺ 𝜋p ∑(�p 𝑃p( = ∑(�p 𝜋( 𝑃(p ∀𝑗

(global balance equations)
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𝐏 =
0 1 0
 
¡ 0 ;

¡
1 0 0
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How to find stationary distributions? 

• Using the definition: 

𝜋p = ∑( 𝜋( 𝑃(p ∀𝑗

⟺ 𝜋p = ∑(�p 𝜋( 𝑃(p + 𝜋p𝑃pp ∀𝑗

⟺ 𝜋p 1 − 𝑃pp = ∑(�p 𝜋( 𝑃(p ∀𝑗

⟺ 𝜋p ∑(�p 𝑃p( = ∑(�p 𝜋( 𝑃(p ∀𝑗

(global balance equations)
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• Using the local balance equations:

𝜋p𝑃p( = 𝜋(𝑃(p ∀𝑖, 𝑗

⟹ ∑( 𝜋p𝑃p( = ∑( 𝜋( 𝑃(p ∀𝑗

⟹ 𝜋p ∑(�p 𝑃p( = ∑(�p 𝜋( 𝑃(p ∀𝑗



Geo/Geo/1 queue
• A single server queue with infinite buffer size

• 𝑎 𝑘 - number of packets that arrive in time-slot 𝑘

− 𝑎 𝑘 ~Bernoulli(𝜆), i.i.d. over 𝑘

• 𝑠 𝑘 - number of packets served in time-slot 𝑘

− 𝑠 𝑘 ~Bernoulli(𝜇), i.i.d. over 𝑘

− 𝑠 𝑘 and 𝑎 𝑘 are independent processes

• 𝑞 𝑘 - number of packets in the queue at the beginning of time-slot 𝑘 (before packet arrivals occur)

• Queueing dynamics:   𝑞 𝑘 + 1 = 𝑞 𝑘 + 𝑎 𝑘 − 𝑠 𝑘 n

− Arrival occurs before any departure in each time-slot
− 𝑞 𝑘 includes the packet that is being processed
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buffer with infinite size

⇒ inter-arrival time ?

⇒ service time ~ Geometric (𝜇)

𝑥 n = max(𝑥, 0)

Geometric (𝜆)



Geo/Geo/1 queue

𝑞 𝑘 is an infinite state Markov chain

Let 𝛼 = 𝜆 1 − 𝜇 = Pr(1 arrival, no departure)
𝛽 = 𝜇 1 − 𝜆 = Pr(no arrival, 1 departure)

24

We will assume 0 < 𝜆, 𝜇 < 1
which implies 0 < 𝛼, 𝛽 < 1

𝑃(,( =

𝑃<,< =

𝑃(n;,( =

𝑃(,(n; = 𝜆(1 − 𝜇)

𝜇(1 − 𝜆)

𝜆𝜇 + 1 − 𝜆 1 − 𝜇 ∀𝑖 > 0

1 − 𝜆(1 − 𝜇)



Geo/Geo/1 queue

• The Markov chain 𝑞 𝑘 is 

− irreducible: any state is reachable from any other state

− aperiodic:

25

𝑃<< > 0
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To find the stationary distribution, apply the local 
balance equation:

𝛽𝜋(n; = 𝛼𝜋(
⇒ 𝜋(n; = 𝜌𝜋( where 𝜌 = ¬

­
= ® ;>¯

;>® ¯

⇒ 𝜋( = 𝜌(𝜋<
∑( 𝜋( = 1

§ If 𝜌 < 1, ∑( 𝜌( =
;

;>°

§ If 𝜌 ≥ 1, 𝜋<∑( 𝜌( = 1 never holds

Geo/Geo/1 queue

⇒ ∑( 𝜋( = 𝜋<∑( 𝜌( = 1

The Markov chain has a 
stationary distribution iff
𝜌 < 1, or equivalently 𝜆 < 𝜇

⇒ 𝜋< = 1 − 𝜌, 𝜋( = 𝜌((1 − 𝜌)



Geo/Geo/1 queue

Assume 𝜌 < 1, then 𝜋( = 𝜌( 1 − 𝜌

The average queue length is 

𝐸 𝑞 = ∑( 𝑖𝜌((1 − 𝜌)

= 1 − 𝜌 𝜌∑( 𝑖𝜌(>;

= 1 − 𝜌 𝜌 ;
;>° ²

= °
;>°

What is the average waiting time of a packet?
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Little’s law

“the long-term average number 𝐿 of customers in a stationary system is 
equal to the long-term average effective arrival rate 𝜆multiplied by the 
average time 𝑊 that a customer spends in the system”

𝐿 = 𝜆 𝑊

• first given by John Little without proof in 1954

• holds for very general arrival processes and service disciplines
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-- Wikipedia



Geo/Geo/1 queue

Assume 𝜌 < 1, then 𝜋( = 𝜌( 1 − 𝜌

The average queue length is 

𝐿 = 𝐸 𝑞 = ∑( 𝑖𝜌((1 − 𝜌)

= °
;>°

The mean waiting time of a packet 𝑊 = µ
® =

°
® ;>°
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Geo/Geo/1/B queue

• Same setting as Geo/Geo/1 except that the buffer size is 𝐵 < ∞

− 𝑞(𝑡) is an irreducible and aperiodic DTMC with a finite state space
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Geo/Geo/1/B queue

• Same setting as Geo/Geo/1 except that the buffer size is 𝐵 < ∞
− 𝑞(𝑡) is a irreducible and aperiodic DTMC with a finite state space

𝛽𝜋(n; = 𝛼𝜋( for 0 ≤ 𝑖 ≤ 𝐵 − 1, 
⇒ 𝜋(n; = 𝜌𝜋( where 𝜌 = ¬

­
= ® ;>¯

;>® ¯
for 0 ≤ 𝑖 ≤ 𝐵 − 1, 

⇒ 𝜋( = 𝜌(𝜋< for 0 ≤ 𝑖 ≤ 𝐵, 

• What is the fraction of arriving packets that are dropped?
− 𝑝¸ = Pr 𝑞 𝑡 = 𝐵 𝑎 𝑡 = 1 =

31

⇒ 𝜋<&
(:<

�
𝜌( = 1 ⇒ 𝜋< =

1 − 𝜌
1 − 𝜌�n;

⇒ 𝜋( =
1 − 𝜌 𝜌(

1 − 𝜌�n; , 𝑖 = 0, 1, … , 𝐵

Pr 𝑞 𝑡 = 𝐵 = 𝜋�


