Statistical Multiplexing and Queues

CMPS 4750/6750: Computer Networks

Outline

- Statistical multiplexing (3.2)
- The Chernoff bound (3.1)
- Discrete-time Markov chains (3.3)
- Delay and packet loss analysis (3.4)

Statistical multiplexing

- Example:
- 10 Mbps link
- each user:
- active with a probability 0.1
- 100 kbps when "active"

- How many users can be supported?
-1 . allocation according to peak rate (e.g., circuit switching): $10 \mathrm{Mbps} / 100 \mathrm{kpbs}=100$
-2. statistical multiplexing: allow $n \geq 100$ users to share the link
- What is the overflow probability?
- i.e., what's the probability that at least 101 users become active simultaneously?

Statistical multiplexing

- Allow $n>100$ users to share the link
- For each user i, let $X_{i}=1$ if user i is active, $X_{i}=0$ otherwise
- Assume X_{i} 's are i.i.d., $X_{i} \sim \operatorname{Bernoulli(0.1)}$
- Overflow probability:

Each user: active with prob 0.1 100 kbps when active

$$
\operatorname{Pr}\left(\sum_{i=1}^{n} X_{i} \geq 101\right)=\sum_{k=101}^{n}\binom{n}{k} 0.1^{k}(1-0.1)^{n-k}
$$

Markov's inequality

Lemma 3.1.1 (Markov's inequality) For a positive r.v. X, the following inequality holds for any $\epsilon>0$:

$$
\operatorname{Pr}(X \geq \epsilon) \leq \frac{E(X)}{\epsilon}
$$

Proof Define a r.v. Y such that $Y=\epsilon$ if $X \geq \epsilon$ and $Y=0$ otherwise. So

$$
\begin{aligned}
E(X) & \geq E(Y) \\
& =\epsilon \operatorname{Pr}(Y=\epsilon) \\
& =\epsilon \operatorname{Pr}(X \geq \epsilon)
\end{aligned}
$$

The Chernoff bound

Theorem 3.1.2 (the Chernoff bound) Consider a sequence of independently and identically distributed (i.i.d.) random variables $\left\{X_{i}\right\}$. For any constant x, the following inequality holds:

$$
\operatorname{Pr}\left(\sum_{i=1}^{n} X_{i} \geq n x\right) \leq e^{-n \sup _{\theta \geq 0}\{\theta x-\log M(\theta)\}}
$$

where $M(\theta)=\mathrm{E}\left(e^{\theta X_{1}}\right)$ is the moment generation function of X_{1}
If $X_{i} \sim \operatorname{Bernoulli}(p)$, and $p \leq x \leq 1$, then

$$
\operatorname{Pr}\left(\sum_{i=1}^{n} X_{i} \geq n x\right) \leq e^{-n D(x \| p)}
$$

where $D(x \| p)=x \log \frac{x}{p}+(1-x) \log \frac{1-x}{1-p}$ (Kullback-Leibler divergence between Bernoulli r.v.s)

Proving the Chernoff bound

$$
\begin{array}{rlrl}
\operatorname{Pr}\left(\sum_{i=1}^{n} X_{i} \geq n x\right) & \leq \operatorname{Pr}\left(e^{\theta \sum_{i=1}^{n} X_{i}} \geq e^{\theta n x}\right) & \forall \theta \geq 0 \\
\text { Markov inequality } & \leq \frac{\mathrm{E}\left[e^{\theta \sum_{i=1}^{n} x_{i}}\right]}{e^{\theta n x}} & \forall \theta \geq 0, \operatorname{Pr}\left(\sum_{i=1}^{n} X_{i} \geq n x\right) \leq e^{-n(\theta x-\log M(\theta))} \\
& =\frac{E\left[\prod_{i=1}^{n} e^{\theta x_{i}}\right]}{e^{\theta n x}} & \Rightarrow \operatorname{Pr}\left(\sum_{i=1}^{n} X_{i} \geq n x\right) \leq \inf _{\theta \geq 0}^{-n(\theta x-\log M(\theta))} \\
& =e^{-n \sup _{\theta \geq 0}\{\theta x-\log M(\theta)\}}
\end{array}
$$

$$
\begin{aligned}
\text { Identical dist. } & =\frac{[M(\theta)]^{n}}{e^{\theta n x}} \\
& =e^{-n(\theta x-\log M(\theta))}
\end{aligned}
$$

The Bernoulli case is left as an exercise

Statistical multiplexing

- Allow $n>100$ users to share the link
- For each user i, let $X_{i}=1$ if user i is active, $X_{i}=0$ otherwise
- Assume X_{i} 's are i.i.d., $X_{i} \sim \operatorname{Bernoulli(0.1)}$
- Overflow probability
- $\operatorname{Pr}\left(\sum_{i=1}^{n} X_{i} \geq 101\right)=\sum_{k=101}^{n}\binom{n}{k} 0.1^{k}(1-0.1)^{n-k}$
- Using the Chernoff bound:

$$
\begin{aligned}
\operatorname{Pr}\left(\sum_{i=1}^{n} X_{i} \geq 101\right) & =\operatorname{Pr}\left(\sum_{i=1}^{n} X_{i} \geq n \frac{101}{n}\right) \\
& \leq e^{-n D\left(\frac{101}{n} \| 0.1\right)}
\end{aligned}
$$

Outline

- Statistical multiplexing (3.2)
- The Chernoff bound (3.1)
- Discrete-time Markov chains (3.3)
- Delay and packet loss analysis (3.4)

Discrete-time stochastic processes

- Let $\left\{X_{k}, k \in \mathbb{N}\right\}$ be discrete-time stochastic process with a countable state space
- For each $k \in \mathbb{N}, X_{k}$ is a random variable
$-X_{k}$ is considered as the state of the process in time-slot k
- X_{k} takes on values in a countable set S
- Any realization of $\left\{X_{k}\right\}$ is called a sample path
- E.g., Let $\left\{X_{k}, k \in \mathbb{N}\right\}$ be an i.i.d. Bernoulli process with parameter p
$-X_{k} \sim \operatorname{Bernoulli}(p)$, i.i.d. over k

Discrete-time Markov chains

- Let $\left\{X_{k}, k \in \mathbb{N}\right\}$ be a discrete-time stochastic process with a countable state space. $\left\{X_{k}\right\}$ is called a Discrete-Time Markov Chain (DTMC) if

$$
\operatorname{Pr}\left(X_{k+1}=j \mid X_{k}=i, X_{k-1}=i_{k-1, \ldots, .}, X_{0}=i_{0}\right)=\operatorname{Pr}\left(X_{k+1}=j \mid X_{k}=i\right) \quad \text { (Markovian Property) }
$$

$$
=P_{i j} \quad \text { ("time homogeneous") }
$$

$-\mathrm{P}_{i j}$: the probability of moving to state j on the next transition, given that the current state is i

Transition probability matrix

- Transition probability matrix of a DTMC
- a matrix \mathbf{P} whose (i, j)-th element is $\mathrm{P}_{i j}$
$-\sum_{j} P_{i j}=1, \forall i \quad$ (each row of \mathbf{P} summing to $1-$ row stochastic)
- Ex: for an i.i.d. Bernoulli process with parameter $p, \mathbf{P}=\left(\begin{array}{ll}p & 1-p \\ p & 1-p\end{array}\right)$

Discrete-time Markov chains

Repair facility problem: a machine is either working or is in the repair center, with the transition probability matrix:

$$
\mathbf{P}=\begin{gathered}
\\
W \\
B
\end{gathered}\left(\begin{array}{cc}
W & B \\
0.95 & 0.05 \\
0.40 & 0.60
\end{array}\right)
$$

Assume $\operatorname{Pr}\left(X_{0}=\right.$ "Working" $)=0.8, \operatorname{Pr}\left(X_{0}=\right.$ "Broken" $)=0.2$

$$
\text { What is } \operatorname{Pr}\left(X_{1}=\text { "Working" }\right) \text { ? }
$$

$$
\begin{aligned}
\operatorname{Pr}\left(X_{1}=" \mathrm{~W} "\right) & =\operatorname{Pr}\left(X_{0}={ }^{\prime} \mathrm{W} " \cap X_{1}=" \mathrm{~W} "\right)+\operatorname{Pr}\left(X_{0}=" \mathrm{~B} " \cap X_{1}=" \mathrm{~W} "\right) \\
& =\operatorname{Pr}\left(X_{0}={ }^{\prime} \mathrm{W} "\right) \underline{\operatorname{Pr}\left(X_{1}=" \mathrm{~W} " \mid X_{0}=" \mathrm{~W} "\right)}+\operatorname{Pr}\left(X_{0}=" \mathrm{~B} "\right) \operatorname{Pr}\left(X_{1}=" \mathrm{~W} " \mid X_{0}=" \mathrm{~B} "\right) \\
& =\operatorname{Pr}\left(X_{0}={ }^{\prime} \mathrm{W} "\right) P_{W W}+\operatorname{Pr}\left(X_{0}=" \mathrm{~B} "\right) P_{B W} \\
& =0.8 \times 0.95+0.2 \times 0.4=0.84
\end{aligned}
$$

Discrete-time Markov chains

In general, we have

- $\operatorname{Pr}\left(X_{k}=j\right)=\sum_{i \in S} \operatorname{Pr}\left(X_{k-1}=i\right) P_{i j}$
- Let $p_{j}[k]=\operatorname{Pr}\left(X_{k}=j\right), p[k]=\left(p_{1}[k], p_{2}[k], \ldots\right)$. Then

$$
p[k]=p[k-1] \mathbf{P}
$$

- A DTMC is completely captured by $p[0]$ and \mathbf{P}

n-step Transition Probabilities

Let $\mathbf{P}^{n}=\mathbf{P} \cdot \mathbf{P} \cdots \mathbf{P}$, multiplied n times. Let $P_{i j}^{(n)}$ denote $\left(\mathbf{P}^{n}\right)_{i j}$
Theorem $\operatorname{Pr}\left(X_{n}=j \mid X_{0}=i\right)=P_{i j}^{(n)}$
Proof (by induction): $n=1$, we have $\operatorname{Pr}\left(X_{n}=j \mid X_{0}=i\right)=P_{i j}=P_{i j}^{(1)}$
Assume the result holds for any n, we have

$$
\begin{aligned}
\operatorname{Pr}\left(X_{n+1}=j \mid X_{0}=i\right) & =\sum_{k} \operatorname{Pr}\left(X_{n+1}=j, X_{n}=k \mid X_{0}=i\right) \\
& =\sum_{k} \operatorname{Pr}\left(X_{n+1}=j \mid X_{n}=k, \frac{K_{0}}{}=i\right) \operatorname{Pr}\left(X_{n}=k \mid X_{0}=i\right) \\
& =\sum_{k} P_{k j} P_{i k}^{(n)}=\sum_{k} P_{i k}^{(n)} P_{k j}=P_{i j}^{(n+1)}
\end{aligned}
$$

Limiting distributions

- Repair facility problem: a machine is either working or is in the repair center, with the transition probability matrix:

$$
\begin{aligned}
\mathbf{P}= & { }_{B}^{W}\left(\begin{array}{cc}
1-a & a \\
b & 1-b
\end{array}\right) \\
& 0<a<1,0<\mathrm{b}<1
\end{aligned}
$$

- Q : What fraction of time does the machine spend in the repair shop?

$$
\begin{aligned}
& \mathbf{P}^{n}=\left(\begin{array}{ll}
\frac{b+a(1-a-b)^{n}}{a+b} & \frac{a-a(1-a-b)^{n}}{a+b} \\
\frac{b-b(1-a-b)^{n}}{a+b} & \frac{a+b(1-a-b)^{n}}{a+b}
\end{array}\right) \\
& \lim _{n \rightarrow \infty} \mathbf{P}^{n}=\left(\begin{array}{ll}
\frac{b}{a+b} & \frac{a}{a+b} \\
\frac{b}{a+b} & \frac{a}{a+b}
\end{array}\right)
\end{aligned}
$$

A probability distribution $\pi=\left(\pi_{1}, \pi_{2}, \ldots\right)$ is called a limiting distribution of the DTMS with transition matrix P if

$$
\pi_{j}=\lim _{n \rightarrow \infty} P_{i j}^{(n)}, \forall i, j
$$

Stationary distributions

- A probability distribution $\pi=\left(\pi_{1}, \pi_{2}, \ldots\right)$ is said to be stationary for the DTMS if

$$
\begin{gathered}
\pi \cdot \mathbf{P}=\pi \\
-\pi \cdot \mathbf{P}=\pi \Leftrightarrow \sum_{i} \pi_{i} P_{i j}=\pi_{j} \forall j \\
- \text { If } p[0]=\pi \text {, then } p[k]=\pi \text { for all } k
\end{gathered}
$$

- Theorem If a DTMS has a limiting distribution π, then π is also a stationary distribution and there is no other stationary distribution
- Q1: under what conditions, does the limiting distribution exist?
- Q2: how to find a stationary distribution?

Irreducible Markov chains

- Ex: A Markov chain with two states a and b and the transition probability matrix given by:

$$
\mathbf{P}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

- If the chain started in one state, it remained in the same state forever
$-\lim _{n \rightarrow \infty} \mathbf{P}^{n}=\mathbf{P}$
$-\pi \cdot \mathbf{P}=\pi$ for any distribution π (not unique)
- State j is said to be reachable from state i if there exists $n \geq 1$ so that $P_{i j}^{(n)}>0$
- A Markov chain is said to be irreducible if any state j is reachable from any other state i

Aperiodic Markov chains

- Ex: A Markov chain with two states a and b and the transition probability matrix given by:

$$
\mathbf{P}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

$$
-\pi \cdot \mathbf{P}=\pi \Rightarrow \pi=(0.5,0.5)
$$

$-\lim _{n \rightarrow \infty} P_{j j}^{(n)}$ does not exist for any j (a state is only visited every other time step.)

- Period of state $j: d_{j}=\operatorname{gcd}\left\{n>0: P_{j j}^{(n)}>0\right\}$
- State j is said to be aperiodic if $d_{j}=1$
- A Markov chain is said to be aperiodic if all states are aperiodic
- Theorem Every state in an irreducible Markov chain has the same period.

Big Theorem

Consider a DTMC that is irreducible and aperiodic

- If the chain has a finite state-space, it always has a limiting distribution.
- There must be a positive vector π such that $\pi=\pi \mathbf{P}$ (an invariant measure)
- If $\sum_{i} \pi_{i}=1$, then π is the unique stationary distribution and $\lim _{n \rightarrow \infty} P_{i j}^{(n)}=\pi_{j}$
- If $\sum_{i} \pi_{i}=\infty$, a stationary distribution does not exist and $\lim _{n \rightarrow \infty} P_{i j}^{(n)}=0$

How to find stationary distributions?

- Using the definition:

$$
\begin{aligned}
& \pi_{j}=\sum_{i} \pi_{i} P_{i j} \forall j \\
\Leftrightarrow & \pi_{j}=\sum_{i \neq j} \pi_{i} P_{i j}+\pi_{j} P_{j j} \quad \forall j \\
\Leftrightarrow & \pi_{j}\left(1-P_{j j}\right)=\sum_{i \neq j} \pi_{i} P_{i j} \quad \forall j \\
\Leftrightarrow & \pi_{j} \sum_{i \neq j} P_{j i}=\sum_{i \neq j} \pi_{i} P_{i j} \quad \forall j
\end{aligned}
$$

(global balance equations)

- Ex: given the transition matrix P of a DTMC, find its stationary distribution.

$$
\begin{aligned}
& \mathbf{P}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
\frac{3}{4} & 0 & \frac{1}{4} \\
1 & 0 & 0
\end{array}\right) \\
& \pi=\left(\frac{4}{9}, \frac{4}{9}, \frac{1}{9}\right)
\end{aligned}
$$

How to find stationary distributions?

- Using the definition:

$$
\begin{aligned}
& \pi_{j}=\sum_{i} \pi_{i} P_{i j} \forall j \\
\Leftrightarrow & \pi_{j}=\sum_{i \neq j} \pi_{i} P_{i j}+\pi_{j} P_{j j} \\
\Leftrightarrow & \pi_{j}\left(1-P_{j j}\right)=\sum_{i \neq j} \pi_{i} P_{i j} \\
\Leftrightarrow & \forall j \\
\Leftrightarrow & \pi_{j} \sum_{i \neq j} P_{j i}=\sum_{i \neq j} \pi_{i} P_{i j}
\end{aligned} \quad \forall j
$$

(global balance equations)

- Using the local balance equations:

$$
\begin{aligned}
& \pi_{j} P_{j i}=\pi_{i} P_{i j} \quad \forall i, j \\
\Rightarrow & \sum_{i} \pi_{j} P_{j i}=\sum_{i} \pi_{i} P_{i j} \quad \forall j \\
\Rightarrow & \pi_{j} \sum_{i \neq j} P_{j i}=\sum_{i \neq j} \pi_{i} P_{i j} \forall j
\end{aligned}
$$

Geo/Geo/1 queue

- A single server queue with infinite buffer size
- $a(k)$ - number of packets that arrive in time-slot k

buffer with infinite size
$-a(k) \sim \operatorname{Bernoulli}(\lambda)$, i.i.d. over $k \quad \Rightarrow$ inter-arrival time ? Geometric (λ)
- $s(k)$ - number of packets served in time-slot k
$-s(k) \sim \operatorname{Bernoulli}(\mu)$, i.i.d. over $k \quad \Rightarrow$ service time \sim Geometric (μ)
$-s(k)$ and $a(k)$ are independent processes
- $q(k)$ - number of packets in the queue at the beginning of time-slot k (before packet arrivals occur)
- Queueing dynamics: $q(k+1)=[q(k)+a(k)-s(k)]^{+} \quad(x)^{+}=\max (x, 0)$
- Arrival occurs before any departure in each time-slot
$-q(k)$ includes the packet that is being processed

Geo/Geo/1 queue

$q(k)$ is an infinite state Markov chain

$$
\begin{aligned}
& P_{i, i+1}=\lambda(1-\mu) \\
& P_{i+1, i}=\mu(1-\lambda) \\
& P_{i, i}=\lambda \mu+(1-\lambda)(1-\mu) \forall i>0 \\
& P_{0,0}=1-\lambda(1-\mu)
\end{aligned}
$$

Let $\alpha=\lambda(1-\mu)=\operatorname{Pr}(1$ arrival, no departure $)$

$$
\beta=\mu(1-\lambda)=\operatorname{Pr}(\text { no arrival, } 1 \text { departure })
$$

We will assume $0<\lambda, \mu<1$ which implies $0<\alpha, \beta<1$

Geo/Geo/1 queue

- The Markov chain $q(k)$ is
- irreducible: any state is reachable from any other state
- aperiodic: $P_{00}>0$

Geo/Geo/1 queue

To find the stationary distribution, apply the local balance equation:

$$
\left.\begin{array}{rl}
& \beta \pi_{i+1}=\alpha \pi_{i} \\
\Rightarrow & \pi_{i+1}=\rho \pi_{i} \text { where } \rho=\frac{\alpha}{\beta}=\frac{\lambda(1-\mu)}{(1-\lambda) \mu} \\
\Rightarrow & \pi_{i}=\rho^{i} \pi_{0} \\
& \sum_{i} \pi_{i}=1
\end{array}\right] \Rightarrow \sum_{i} \pi_{i}=\pi_{0} \sum_{i} \rho^{i}=1
$$

The Markov chain has a stationary distribution iff $\rho<1$, or equivalently $\lambda<\mu$

- If $\rho<1, \sum_{i} \rho^{i}=\frac{1}{1-\rho} \Rightarrow \pi_{0}=1-\rho, \pi_{i}=\rho^{i}(1-\rho)$
- If $\rho \geq 1, \pi_{0} \sum_{i} \rho^{i}=1$ never holds

Geo/Geo/1 queue

Assume $\rho<1$, then $\pi_{i}=\rho^{i}(1-\rho)$
The average queue length is

$$
\begin{aligned}
E(q) & =\sum_{i} i \rho^{i}(1-\rho) \\
& =(1-\rho) \rho \sum_{i} i \rho^{i-1} \\
& =(1-\rho) \rho \frac{1}{(1-\rho)^{2}} \\
& =\frac{\rho}{1-\rho}
\end{aligned}
$$

What is the average waiting time of a packet?

Little's law

"the long-term average number L of customers in a stationary system is equal to the long-term average effective arrival rate λ multiplied by the average time W that a customer spends in the system"
-- Wikipedia

$$
L=\lambda W
$$

- first given by John Little without proof in 1954
- holds for very general arrival processes and service disciplines

Geo/Geo/1 queue

Assume $\rho<1$, then $\pi_{i}=\rho^{i}(1-\rho)$
The average queue length is

$L=E(q)=\sum_{i} i \rho^{i}(1-\rho)$

$$
=\frac{\rho}{1-\rho}
$$

The mean waiting time of a packet $W=\frac{L}{\lambda}=\frac{\rho}{\lambda(1-\rho)}$

Geo/Geo/1/B queue

- Same setting as Geo/Geo/1 except that the buffer size is $B<\infty$

$-q(t)$ is an irreducible and aperiodic DTMC with a finite state space

Geo/Geo/1/B queue

- Same setting as Geo/Geo/1 except that the buffer size is $B<\infty$
$-q(t)$ is a irreducible and aperiodic DTMC with a finite state space

$$
\beta \pi_{i+1}=\alpha \pi_{i} \quad \text { for } 0 \leq i \leq B-1,
$$

$\Rightarrow \pi_{i+1}=\rho \pi_{i}$ where $\rho=\frac{\alpha}{\beta}=\frac{\lambda(1-\mu)}{(1-\lambda) \mu}$ for $0 \leq i \leq B-1$,
$\Rightarrow \pi_{i}=\rho^{i} \pi_{0} \quad$ for $0 \leq i \leq B$,
$\Rightarrow \pi_{0} \sum_{i=0}^{B} \rho^{i}=1 \Rightarrow \pi_{0}=\frac{1-\rho}{1-\rho^{B+1}} \Rightarrow \pi_{i}=\frac{(1-\rho) \rho^{i}}{1-\rho^{B+1}}, i=0,1, \ldots, B$

- What is the fraction of arriving packets that are dropped?

$$
-p_{d}=\operatorname{Pr}(q(t)=B \mid a(t)=1)=\operatorname{Pr}(q(t)=B)=\pi_{B}
$$

