About Homework

- Homework 1 will be posted after today's class and is due on Feb 4
- You should clearly justify your answer to each question. It is insufficient to only give the final result
- You may discuss homework problems with your classmates. However, what you turn in must be your own

Discrete Probability: a brief review

CMPS 4750/6750: Computer Networks

Applications of Probability in Computer Science

- Information theory
- Networking
- Machine learning
- Algorithms
- Combinatorics
- Cryptography
-...

Sample Space

- Experiment: a procedure that yields one of a given set of possible outcomes
- Ex: flip a coin, roll two dice, draw five cards from a deck, etc.
- Sample space Ω : the set of possible outcomes
- We focus on countable sample space: Ω is finite or countably infinite
- In many applications, Ω is uncountable (e.g., a subset of \mathbb{R})
- Event: a subset of the sample space
- Probability is assigned to events
- For an event $A \subseteq \Omega$, its probability is denoted by $\mathrm{P}(A)$
- Describes beliefs about likelihood of outcomes

Discrete Probability

- Discrete Probability Law
- A function $\mathrm{P}: \mathcal{P}(\Omega) \rightarrow[0,1]$ that assigns probability to events such that:
- $0 \leq \mathrm{P}(\{s\}) \leq 1$ for all $s \in \Omega$
- $\mathrm{P}(A)=\sum_{s \in A} \mathrm{P}(\{s\})$ for all $A \subseteq \Omega$
- $\mathrm{P}(\Omega)=\sum_{s \in \Omega} \mathrm{P}(\{s\})=1$
(Nonnegativity)
(Additivity)
(Normalization)
- Discrete uniform probability law: $|\Omega|=n, \mathrm{P}(A)=\frac{|A|}{n} \forall A \subseteq \Omega$

Examples

- Ex. 1: consider rolling a pair of 6 -sided fair dice
$-\Omega=\{(i, j): i, j=1,2,3,4,5,6\}$, each outcome has the same probability of $1 / 36$
$-\mathrm{P}(\{$ the sum of the rolls is even $\})=18 / 36=1 / 2$
- Ex. 2: consider rolling a 6-sided biased (loaded) die
- Assume $\mathrm{P}(3)=\frac{2}{7}, \mathrm{P}(1)=\mathrm{P}(2)=\mathrm{P}(4)=\mathrm{P}(5)=\mathrm{P}(6)=\frac{1}{7}$
$-A=\{1,3,5\}, \mathrm{P}(A)=\frac{1}{7}+\frac{2}{7}+\frac{1}{7}=\frac{4}{7}$

Properties of Probability Laws

- Consider a probability law, and let A, B, and C be events
- If $A \subseteq B$, then $\mathrm{P}(A) \leq \mathrm{P}(B)$
$-\mathrm{P}(\bar{A})=1-\mathrm{P}(A)$
$-\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B)$
$-\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)$ if A and B are disjoint, i.e., $A \cap B=\varnothing$

Conditional Probability

- Conditional probability provides us with a way to reason about the outcome of an experiment, based on partial information
- Ex. 3: roll a six-sided fair die. Suppose we are told that the outcome is even. What is the probability that the outcome is 6 ?
$\mathrm{P}(A \cap B)=\frac{1}{6} \quad \mathrm{P}(B)=\frac{1}{2}$
$\mathrm{P}(A \mid B)=\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)}=\frac{1}{3}$

Independence

- We say that event A is independent of event B if $\mathrm{P}(A \mid B)=\mathrm{P}(A)$
- Two events A and B are independent if and only if $\mathrm{P}(A \cap B)=\mathrm{P}(A) \mathrm{P}(B)$
- We say that the events $A_{1}, A_{2}, \ldots A_{n}$ are (mutually) independent if and only if

$$
\mathrm{P}\left(\bigcap_{i \in S} A_{i}\right)=\prod_{i \in S} P\left(A_{i}\right), \text { for every subset } S \text { of }\{1,2, \ldots, n\}
$$

Bernoulli Trials

- Bernoulli Trial: an experiment with two possible outcomes
- E.g., flip a coin results in two possible outcomes: head (H) and tail (T)
- Independent Bernoulli Trials: a sequence of Bernoulli trails that are mutually independent
- Ex.4: Consider an experiment involving five independent tosses of a biased coin, in which the probability of heads is p.
- What is the probability of the sequence $H H H T T$?
- $A_{i}=\{i-$ th toss is a head $\}$
- $\mathrm{P}\left(A_{1} \cap A_{2} \cap A_{3} \cap \bar{A}_{4} \cap \bar{A}_{5}\right)=\mathrm{P}\left(A_{1}\right) \mathrm{P}\left(A_{2}\right) \mathrm{P}\left(A_{3}\right) \mathrm{P}\left(\bar{A}_{4}\right) \mathrm{P}\left(\bar{A}_{5}\right)=p^{3}(1-p)^{2}$
- What is the probability that exactly three heads come up?
- $\mathrm{P}($ exactly three heads come up $)=\binom{5}{3} p^{3}(1-p)^{2}$

Random Variables

- A random variable (r.v.) is a real-valued function of the experimental outcome.
- Ex. 5: Consider an experiment involving three independent tosses of a fair coin.
$-\Omega=\{H H H, H H T, H T H, H T T, T H H, T H T, T T H, T T T\}$
$-X(s)=$ the number of heads that appear for $s \in \Omega$.
$-\mathrm{P}(X=2)=\mathrm{P}(\{H H T, H T H, T H H\})=3 / 8$
$-\mathrm{P}(X<2)=\mathrm{P}(\{H T T, T H T, T T H, T T T\})=4 / 8=1 / 2$
- A discrete random variable is a real-valued function of the outcome of the experiment that can take a finite or countably infinite number of values

Probability Mass Functions

- Let X be a discrete r.v. Then the probability mass function (PMF), $p_{X}(\cdot)$ of X, is defined as:

$$
\begin{aligned}
& \left.\quad p_{X}(x)=\mathrm{P}(X=x)=\mathrm{P}(s \in \Omega: X(s)=x)\right) \\
& -\sum_{x} P_{X}(x)=1 \\
& -\mathrm{P}(X \in S)=\sum_{x \in S} p_{X}(x)
\end{aligned}
$$

- The cumulative distribution function (CDF) of X is defined as

$$
F_{X}(a)=\mathrm{P}(X \leq a)=\sum_{x \leq a} p_{X}(x)
$$

Bernoulli Distribution

- Consider a Bernoulli trial with probability of success p. Let X be a r.v. where $X=1$ if "success" and $X=0$ if "failure"

$$
X= \begin{cases}1 & \text { w/prob } p \\ 0 & \text { otherwise }\end{cases}
$$

We write $X \sim \operatorname{Bernoulli}(p)$. The PMF of X is defined as:

$$
\begin{aligned}
& p_{X}(1)=p \\
& p_{X}(0)=1-p
\end{aligned}
$$

Binomial Distribution

- Consider an experiment of n independent Bernoulli trials, with the probability of success p. Let the r.v. X be the number of successes in the n trials.
- The PMF of X is defined as:

$$
\begin{aligned}
p_{X}(k) & =\mathrm{P}(X=k) \\
& =\binom{n}{k} p^{k}(1-p)^{n-k}, \text { where } k=0,1,2, \ldots, n
\end{aligned}
$$

We write $X \sim \operatorname{Binomial}(n, p)$.

Geometric Distribution

- Consider an experiment of independent Bernoulli trials, with probability of success p. Let X be the number of trials to get one success.
- Then the PMF of X is:

$$
\mathrm{P}(X=k)=(1-p)^{k-1} p, \text { where } k=1,2,3 \ldots
$$

We write $X \sim \operatorname{Geometric}(p)$.

Expected Value

- The expected value (also called the expectation or the mean) of a random variable X on the sample space Ω is equal to

$$
\begin{aligned}
\mathrm{E}(X) & =\sum_{s \in \Omega} X(s) \mathrm{P}(\{s\}) \\
& =\sum_{x} x p_{X}(x)
\end{aligned}
$$

Ex. 6: If $X \sim \operatorname{Bernoulli}(p), \mathrm{E}(X)=1 \cdot p+0 \cdot(1-p)=p$
Ex. 7: If $X \sim \operatorname{Geometric}(p), \mathrm{E}(X)=\sum_{k=1}^{\infty} k(1-p)^{k-1} p=\frac{1}{p}$

Linearity of Expectations

- If $X_{i}, i=1,2, \ldots, n$ are random variables on Ω, and a and b are real numbers, then

$$
\begin{aligned}
& -\mathrm{E}\left(X_{1}+X_{2}+\cdots X_{n}\right)=\mathrm{E}\left(X_{1}\right)+\mathrm{E}\left(X_{2}\right)+\cdots+\mathrm{E}\left(X_{n}\right) \\
& -\mathrm{E}(a X+b)=a \mathrm{E}(X)+b
\end{aligned}
$$

- Ex. 8: $X \sim \operatorname{Binomial}(n, p)$

$$
-\mathrm{E}(X)=\sum_{k=0}^{n} k\binom{n}{k} p^{k}(1-p)^{n-k}=n p
$$

Variance

- The variance of a random variable X on the sample space Ω is equal to

$$
\begin{aligned}
\operatorname{Var}(X) & =\mathrm{E}\left[(X-\mathrm{E}(X))^{2}\right] \\
& =\mathrm{E}\left(X^{2}\right)-\mathrm{E}(X)^{2}
\end{aligned}
$$

- The variance provides a measure of dispersion of X around its mean
- Another measure of dispersion is the standard deviation of X :

$$
\sigma(X)=\sqrt{\operatorname{Var}(X)}
$$

Moment-Generating Functions

- The moment-generating function of a r.v. X is

$$
\begin{aligned}
& M_{X}(t)=\mathrm{E}\left(e^{t X}\right), t \in \mathbb{R} \\
& e^{t X}=1+t X+\frac{t^{2} X^{2}}{2!}+\frac{t^{3} X^{3}}{3!}+\cdots+\frac{t^{n} X^{n}}{n!}+\cdots \\
\Rightarrow & M_{X}(t)=1+t \mathrm{E}(X)+\frac{t^{2} \mathrm{E}\left(X^{2}\right)}{2!}+\frac{t^{3} \mathrm{E}\left(X^{3}\right)}{3!}+\cdots+\frac{t^{n} \mathrm{E}\left(X^{n}\right)}{n!}+\cdots \\
\Rightarrow & \frac{d^{n} M_{X}(0)}{d t}=\mathrm{E}\left(X^{n}\right)
\end{aligned}
$$

Joint Probability and Independence

- The joint probability mass function between discrete r.v.'s X and Y is defined by

$$
p_{X, Y}(x, y)=\mathrm{P}\{X=x \text { and } Y=y\}
$$

- We say two discrete r.v.'s X and Y are independent if

$$
p_{X, Y}(x, y)=p_{X}(x) \cdot p_{Y}(y), \forall x, y
$$

- Theorem: If two r.v.'s X and Y are independent, then $\mathrm{E}(X Y)=\mathrm{E}(X) \mathrm{E}(Y)$

