
About Homework

• Homework 1 will be posted after today’s class and is due on Feb 4

• You should clearly justify your answer to each question. It is insufficient to 
only give the final result

• You may discuss homework problems with your classmates. However, what 
you turn in must be your own
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Discrete Probability: a brief review

CMPS 4750/6750: Computer Networks

2



Applications of Probability in Computer Science

• Information theory

• Networking

• Machine learning

• Algorithms

• Combinatorics

• Cryptography
• …
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Sample Space

• Experiment: a procedure that yields one of a given set of possible outcomes
− Ex: flip a coin,  roll two dice, draw five cards from a deck, etc.

• Sample space Ω: the set of possible outcomes
− We focus on countable sample space: Ω is finite or countably infinite

− In many applications, Ω is uncountable (e.g., a subset of ℝ)

• Event: a subset of the sample space  
− Probability is assigned to events

− For an event 𝐴 ⊆ Ω, its probability is denoted by P(𝐴)
• Describes beliefs about likelihood of outcomes
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Discrete Probability

• Discrete Probability Law
− A function P:𝒫 Ω → [0,1] that assigns probability to events such that:

• 0 ≤ P 𝑠 ≤ 1 for all 𝑠 ∈ Ω

• P 𝐴 = ∑3∈4 P( 𝑠 ) for all 𝐴 ⊆ Ω
• P Ω = ∑3∈7P 𝑠 = 1

• Discrete uniform probability law:  Ω = 𝑛, P 𝐴 = |4|
: ∀ 𝐴 ⊆ Ω
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(Nonnegativity)

(Additivity)

(Normalization)



Examples

• Ex. 1: consider rolling a pair of 6-sided fair dice

− Ω = { 𝑖, 𝑗 : 𝑖, 𝑗 = 1, 2, 3, 4, 5, 6}, each outcome has the same probability of 1/36 

− P the sum of the rolls is even =

• Ex. 2: consider rolling a 6-sided biased (loaded) die

− Assume  P 3 = R
S
, P 1 = P 2 = P 4 = P 5 = P 6 = T

S

− 𝐴 = {1,3,5},  P 𝐴 =

6

1
7
+
2
7
+
1
7
=
4
7

18/36 = 1/2



Properties of Probability Laws

• Consider a probability law, and let 𝐴, 𝐵, and 𝐶 be events

− If 𝐴 ⊆ 𝐵, then P 𝐴 ≤ P 𝐵

− P 𝐴 = 1 − P 𝐴

− P(𝐴 ∪ 𝐵) = P 𝐴 + P 𝐵 − P(𝐴 ∩ 𝐵)

− P(𝐴 ∪ 𝐵) = P 𝐴 + P 𝐵 if 𝐴 and 𝐵 are disjoint, i.e., 𝐴 ∩ 𝐵 = ∅
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Conditional Probability

• Conditional probability provides us with a way to reason about the outcome 
of an experiment, based on partial information

• Ex. 3:  roll a six-sided fair die. Suppose we are told that the outcome is even. 
What is the probability that the outcome is 6?  
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𝐵
𝐴

P(𝐴 ∩ 𝐵) =
1
6 P(𝐵) =

1
2

P 𝐴 𝐵 =
P 𝐴 ∩ 𝐵
P 𝐵

=
1
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Independence

• We say that event 𝐴 is independent of event 𝐵 if P 𝐴 | 𝐵 = P(𝐴)

• Two events 𝐴 and 𝐵 are independent if and only if P 𝐴 ∩ 𝐵 = P 𝐴 P(𝐵)

• We say that the events 𝐴T, 𝐴R, …𝐴: are (mutually) independent if and only if 

P(⋂a∈b 𝐴a) = ∏a∈b 𝑃(𝐴a), for every subset 𝑆 of  {1, 2, … , 𝑛}
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Bernoulli Trials

• Bernoulli Trial: an experiment with two possible outcomes
− E.g., flip a coin results in two possible outcomes: head (𝐻) and tail (𝑇)

• Independent Bernoulli Trials: a sequence of Bernoulli trails that are mutually independent

• Ex.4: Consider an experiment involving five independent tosses of a biased coin, in which the 
probability of heads is 𝑝. 

− What is the probability of the sequence HHHTT?
• 𝐴a = {𝑖−th toss is a head}

• P 𝐴T ∩ 𝐴R ∩ 𝐴i ∩ 𝐴j ∩ 𝐴k =

− What is the probability that exactly three heads come up? 

• P exactly three heads come up = k
i 𝑝

i 1 − 𝑝 R
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P 𝐴T P 𝐴R P 𝐴i P 𝐴j P 𝐴k = 𝑝i 1 − 𝑝 R



Random Variables

• A random variable (r.v.) is a real-valued function of the experimental outcome.

• Ex. 5:  Consider an experiment involving three independent tosses of a fair coin. 
− Ω = 𝐻𝐻𝐻, 𝐻𝐻𝑇, 𝐻𝑇𝐻, 𝐻𝑇𝑇, 𝑇𝐻𝐻, 𝑇𝐻𝑇, 𝑇𝑇𝐻, 𝑇𝑇𝑇

− 𝑋 𝑠 = the number of heads that appear for 𝑠 ∈ Ω. 

− P 𝑋 = 2 =

− P 𝑋 < 2 =

• A discrete random variable is a real-valued function of the outcome of the experiment 
that can take a finite or countably infinite number of values
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P 𝐻𝑇𝑇, 𝑇𝐻𝑇, 𝑇𝑇𝐻, 𝑇𝑇𝑇 = 4/8 = 1/2

P({𝐻𝐻𝑇,𝐻𝑇𝐻,𝑇𝐻𝐻}) = 3/8



Probability Mass Functions

• Let 𝑋 be a discrete r.v. Then the probability mass function (PMF), 𝑝n ⋅ of 𝑋, is 
defined as:

𝑝n 𝑥 = P 𝑋 = 𝑥 = P(𝑠 ∈ Ω: 𝑋(𝑠) = 𝑥))

−∑q𝑃n 𝑥 = 1

− P 𝑋 ∈ 𝑆 = ∑q∈ b 𝑝n 𝑥

• The cumulative distribution function (CDF) of 𝑋 is defined as  

𝐹n 𝑎 = P 𝑋 ≤ 𝑎 = ∑qtu 𝑝n 𝑥
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Bernoulli Distribution

• Consider a Bernoulli trial with probability of success 𝑝. Let 𝑋 be a r.v. 
where 𝑋 = 1 if “success” and 𝑋 = 0 if “failure”

𝑋 = v1 w/prob 𝑝
0 otherwise

We write 𝑋~ Bernoulli(𝑝). The PMF of 𝑋 is defined as:

𝑝n 1 = 𝑝

𝑝n 0 = 1 − 𝑝
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Binomial Distribution

• Consider an experiment of 𝑛 independent Bernoulli trials, with the 
probability of success 𝑝. Let the r.v. 𝑋 be the number of successes in the 𝑛
trials. 

• The PMF of 𝑋 is defined as: 

𝑝n 𝑘 = P 𝑋 = 𝑘

= :
| 𝑝

| 1 − 𝑝 :}| ,	where	𝑘 = 0, 1, 2, … , 𝑛

We write 𝑋~ Binomial(𝑛, 𝑝).
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Geometric Distribution

• Consider an experiment of independent Bernoulli trials, with probability 
of success 𝑝. Let X be the number of trials to get one success. 

• Then the PMF of 𝑋 is: 

P 𝑋 = 𝑘 = 1 − 𝑝 |}T𝑝,  where 𝑘 = 1, 2, 3…

We write 𝑋~ Geometric(𝑝).
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Expected Value

• The expected value (also called the expectation or the mean) of a random 
variable 𝑋 on the sample space Ω is equal to

E 𝑋 = ∑3 ∈7 𝑋 𝑠 P {𝑠}

= ∑q 𝑥𝑝n 𝑥

Ex. 6:  If 𝑋~ Bernoulli(𝑝),  E 𝑋 =

Ex. 7:  If 𝑋~ Geometric(𝑝),  E 𝑋 =
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1 ⋅ 𝑝 + 0 ⋅ 1 − 𝑝 = 𝑝
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Linearity of Expectations

• If 𝑋a, 𝑖 = 1,2, … , 𝑛 are random variables on Ω, and 𝑎 and 𝑏 are real numbers, then
− E 𝑋T + 𝑋R +⋯𝑋: = E 𝑋T + E 𝑋R +⋯+ E 𝑋:
− E 𝑎𝑋 + 𝑏 = 𝑎E 𝑋 + 𝑏

• Ex. 8: 𝑋~ Binomial(𝑛, 𝑝)

− E 𝑋 =
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= 𝑛𝑝�
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Variance

• The variance of a random variable 𝑋 on the sample space Ω is equal to

Var 𝑋 = E 𝑋 − E 𝑋 R

= E 𝑋R − E 𝑋 R

− The variance provides a measure of dispersion of 𝑋 around its mean

− Another measure of dispersion is the standard deviation of 𝑋:  

𝜎 𝑋 = Var(𝑋)
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Moment-Generating Functions

• The moment-generating function of a r.v. 𝑋 is

𝑀n 𝑡 = E 𝑒�n , 𝑡 ∈ ℝ

𝑒�n = 1 + 𝑡𝑋 + ��n�

R!
+ ��n�

i!
+ ⋯+ ��n�

:!
+ ⋯

⇒ 𝑀n 𝑡 = 1 + 𝑡E 𝑋 + ���(n�)
R!

+ ���(n�)
i!

+ ⋯+ ���(n�)
:!

+ ⋯

⇒ ���� �
��

= E 𝑋:
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Joint Probability and Independence

• The joint probability mass function between discrete r.v.’s 𝑋 and 𝑌 is 
defined by

𝑝n,� 𝑥, 𝑦 = P 𝑋 = 𝑥 and 𝑌 = 𝑦

• We say two discrete r.v.’s 𝑋 and 𝑌 are independent if

𝑝n,� 𝑥, 𝑦 = 𝑝n 𝑥 ⋅ 𝑝�(𝑦),  ∀𝑥, 𝑦

• Theorem: If two r.v.’s 𝑋 and 𝑌 are independent, then E 𝑋𝑌 = E 𝑋 E(𝑌)
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