
Application Layer

CMPS 4750/6750: Computer Networks

1

Agenda

§ Principles of Network Applications

§ Case Studies
• Web and HTTP
• Domain Name System (DNS)
• Peer-to-Peer File Sharing

§ Socket Programming with UDP and TCP

2

application

transport

network

link

physical

Creating a network app
§ write programs that:

• run on (different) end systems
• communicate over network
• e.g., web server software communicates

with browser software

§ no need to write software for network-core
devices

• network-core devices do not run user
applications

• applications on end systems allows for
rapid app development, propagation

3

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

Some network apps

4

§ e-mail
§ web
§ text messaging
§ remote login
§ P2P file sharing
§ multi-user network

games

§ streaming stored video
(YouTube, Hulu, Netflix)

§ voice over IP (e.g., Skype)
§ real-time video conferencing
§ social networking
§ search
§ …

Application architectures

possible structure of applications:

§ client-server

§ peer-to-peer (P2P)

5

Client-server architecture

6

client/server

server:
• always-on host
• permanent IP address
• data centers for scaling

clients:
• communicate with server
• may be intermittently connected
• may have dynamic IP addresses
• do not communicate directly

with each other

Peer-to-peer (P2P) architecture

7

peer-peer§ no always-on server

§ arbitrary end systems directly
communicate

§ peers request service from other peers,
provide service in return to other peers

• self scalability – new peers bring
new service capacity, as well as new
service demands

§ peers are intermittently connected and
change IP addresses

• complex management

Processes communicating

process: program running within a host

§ within same host, two processes
communicate using inter-process
communication (defined by OS)

§ processes in different hosts
communicate by exchanging messages

8

§ aside: in a P2P application,
a process can be both a
client process & a server
process

client process: process that
initiates communication

server process: process that
waits to be contacted

clients, servers

Addressing processes

9

§ to receive messages, process
must have identifier

§ host device has unique 32-
bit IP address

§ Q: does IP address of host on
which process runs suffice
for identifying the process?

§ identifier includes both IP
address and port numbers
associated with process on host.

§ example port numbers:
• HTTP server: 80
• mail server: 25

§ to send HTTP message to
cs.tulane.edu web server:

• IP address: 129.81.226.25
• port number: 80

§ more on addressing shortly…

§ A: no, many processes
can be running on same
host

Socket
§ process sends/receives messages to/from its socket

§ socket analogous to door
• sending process shoves message out door
• sending process relies on transport infrastructure on other side of door to

deliver message to socket at receiving process

10

Internet

controlled
by OS

controlled by
app developer

transport

application

physical
link

network

process

transport

application

physical
link

network

process
socket

What transport service does an app need?

11

reliable data transfer
§ some apps (e.g., file transfer,

web transactions) require
100% reliable data transfer

§ other apps (e.g., audio) can
tolerate some loss

timing
§ some apps (e.g., Internet

telephony, interactive
games) require low delay
to be “effective”

throughput
§ some apps (e.g., multimedia)

require minimum amount of
throughput to be “effective”

§ other apps (“elastic apps”)
make use of whatever
throughput they get

security
§ encryption, data integrity,

authentication

Transport service requirements: common apps

12

application

file transfer
e-mail

Web documents
real-time audio/video

stored audio/video
interactive games

text messaging

data loss

no loss
no loss
no loss
loss-tolerant

loss-tolerant
loss-tolerant
no loss

throughput

elastic
elastic
elastic
audio: 5kbps-1Mbps
video:10kbps-5Mbps
same as above
few kbps up
elastic

time sensitive

no
no
no
yes, 100s of msec

yes, few secs
yes, 100s of msec
yes and no

Internet transport protocols services

TCP service:
§ reliable transport between sending

and receiving process

§ congestion control: throttle sender
when network overloaded

§ connection-oriented: setup required
between client and server
processes

§ does not provide: timing, minimum
throughput guarantee, security

13

UDP service:
• unreliable data transfer

between sending and
receiving process

• does not provide: reliability,
congestion control,
timing, throughput
guarantee, security, or
connection setup

Internet apps: application, transport protocols

14

application

e-mail
remote terminal access

Web
file transfer

streaming multimedia

Internet telephony

application
layer protocol

SMTP [RFC 2821]
Telnet [RFC 854]
HTTP [RFC 2616]
FTP [RFC 959]
HTTP (e.g., YouTube),
RTP [RFC 1889]
SIP, RTP, proprietary
(e.g., Skype)

underlying
transport protocol

TCP
TCP
TCP
TCP
TCP or UDP

TCP or UDP

Agenda

§ Principles of Network Applications

§ Case Studies
• Web and HTTP
• Domain Name System (DNS)
• Peer-to-Peer File Sharing

§ Socket Programming with UDP and TCP

15

Web and HTTP

First, a review…

§ web page consists of objects

§ object can be HTML file, JPEG image, Java applet, audio file,…

§ web page consists of a base HTML-file and several referenced objects

§ each object is addressable by a URL, e.g.,

16

www.someschool.edu/someDept/pic.gif

host name path name

HTTP overview

HTTP: HyperText Transfer Protocol
§ Web’s application layer protocol

§ client/server model
• client: browser that requests,

receives, (using HTTP protocol) and
“displays” Web objects

• server: Web server sends (using
HTTP protocol) objects in response
to requests

§ RFC 2068, RFC 2616, RFC 7230

17

PC running
Firefox browser

server
running

Apache Web
server

iPhone running
Safari browser

HTTP requestHTTP response

HTTP request

HTTP response

HTTP overview (continued)

uses TCP:

§ client initiates TCP connection to server, port 80

§ server accepts TCP connection from client

§ HTTP messages (application-layer protocol messages) exchanged
between browser (HTTP client) and Web server (HTTP server)

§ TCP connection closed

18

Non-persistent HTTP
suppose user enters URL: (contains text, references to 10 jpeg images)

www.someSchool.edu/someDepartment/home.index

19

1a. HTTP client initiates TCP connection
to HTTP server (process) at
www.someSchool.edu on port 80

2. HTTP client sends HTTP request
message (containing URL) into TCP
connection socket. Message
indicates that client wants object
someDepartment/home.index

1b. HTTP server at host
www.someSchool.edu waiting for TCP
connection at port 80. “accepts”
connection, notifying client

3. HTTP server receives request
message, forms response message
containing requested object, and
sends message into its sockettime

Non-persistent HTTP (cont.)

20

5. HTTP client receives response
message containing html file,
displays html. Parsing html file,
finds 10 referenced jpeg objects

6. Steps 1-5 repeated for each of
10 jpeg objects

4. HTTP server closes TCP
connection.

time

Non-persistent HTTP: response time

RTT (round-trip time): time for a small packet to
travel from client to server and back

HTTP response time:

§ one RTT to initiate TCP connection

§ one RTT for HTTP request and first few bytes
of HTTP response to return

§ non-persistent HTTP response time =
2RTT+ file transmission time

21

time to
transmit
file

initiate TCP
connection

RTT
request
file

RTT

file
received

time time

Non-persistent HTTP with parallel TCP connections

§ What is the total time to retrieve a webpage that consists of a base HTML
file and and 10 JPEG images?

• Assume the objects are very small and ignore transmission time

§ uses serial TCP connections: 11 ⋅ 2RTT

§ use 5 parallel TCP connections:

2-22

3 ⋅ 2RTT

Persistent HTTP

§ server leaves connection open after sending response

§ subsequent HTTP messages between same client/server sent over open
connection

§ client sends requests as soon as it encounters a referenced object
(pipelining)

§ What is the total time to retrieve a webpage that consists of a base HTML
file and and 10 JPEG images using persistent HTTP? (ignore transmission
time)

23

2RTT+RTT = 3RTT

HTTP request message
§ two types of HTTP messages: request, response
§ HTTP request message:

• ASCII (human-readable format)

24

request line
(GET, POST,
HEAD commands)

header
lines

carriage return,
line feed at start
of line indicates
end of header lines

GET /index.html HTTP/1.1\r\n
Host: www-net.cs.umass.edu\r\n
User-Agent: Firefox/3.6.10\r\n
Accept-Language: en-us,en;q=0.5\r\n
Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n
Keep-Alive: 115\r\n
Connection: keep-alive\r\n
\r\n

carriage return character
line-feed character

HTTP request message: general format

25

request
line

header
lines

body

method sp sp cr lfversionURL

cr lfvalueheader field name

cr lfvalueheader field name

~~ ~~

cr lf

entity body~~ ~~

Uploading form input

web page often includes form input

POST method:

§ input is uploaded to server in entity body

GET method:

§ input is uploaded in URL field of request line:

26

www.somesite.com/animalsearch?monkeys&banana

HTTP response message

27

status line
(protocol
status code
status phrase)

header
lines

data, e.g.,
requested
HTML file

HTTP/1.1 200 OK\r\n
Date: Sun, 26 Sep 2010 20:09:20 GMT\r\n
Server: Apache/2.0.52 (CentOS)\r\n
Last-Modified: Tue, 30 Oct 2007 17:00:02 GMT\r\n
ETag: "17dc6-a5c-bf716880"\r\n
Accept-Ranges: bytes\r\n
Content-Length: 2652\r\n
Keep-Alive: timeout=10, max=100\r\n
Connection: Keep-Alive\r\n
Content-Type: text/html; charset=ISO-8859-1\r\n
\r\n
data data data data data ...

HTTP response status codes

§ status code appears in 1st line in server-to-client response message.

§ some sample codes:

28

200 OK
• request succeeded, requested object later in this msg

301 Moved Permanently
• requested object moved, new location specified later in this msg

(Location:)
400 Bad Request

• request msg not understood by server
404 Not Found

• requested document not found on this server
505 HTTP Version Not Supported

Cookies: keeping “state”

29

client server

usual http response msg

usual http response msg

cookie file

one week later:

usual http request msg
cookie: 1678 cookie-

specific
action

access

ebay 8734 usual http request msg Amazon server
creates ID

1678 for user create
entry

usual http response
set-cookie: 1678ebay 8734

amazon 1678

usual http request msg
cookie: 1678 cookie-

specific
action

access
ebay 8734
amazon 1678

Cookies (continued)

30

what cookies can be used for:
§ authorization
§ shopping carts
§ recommendations
§ user session state (Web e-mail)

cookies and privacy:
§ cookies permit sites to

learn a lot about you
§ you may supply name and

e-mail to sites

aside

how to keep “state”:
§ cookies: http messages carry state
§ protocol endpoints: maintain state at

sender/receiver over multiple transactions

Web caches (proxy server)

§ goal: satisfy client request without involving origin server

31

§ user sets browser: Web
accesses via cache

§ browser sends all HTTP
requests to cache

• object in cache: cache
returns object

• else cache requests object
from origin server, then
returns object to client

client

proxy
server

client

HTTP request

HTTP response

HTTP request HTTP request

origin
server

origin
server

HTTP response HTTP response

Conditional GET

32

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.1

304 Not Modified

object
not

modified
before
<date>

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.1 200 OK

<data>

object
modified

after
<date>

proxy server

HTTP request msg

HTTP response
HTTP/1.1

Last-Modified: <date>

More about Web caching

§ cache acts as both client and server
• server for original requesting client
• client to origin server

§ typically cache is installed by ISP (university, company, residential ISP)

why Web caching?

§ reduce response time for client request

§ reduce traffic on an institution’s access link

§ reduce Internet traffic as a whole

33

Agenda

§ Principles of Network Applications

§ Case Studies
• Web and HTTP
• Domain Name System (DNS)
• Peer-to-Peer File Sharing

§ Socket Programming with UDP and TCP

34

Socket programming

§ goal: learn how to build client/server applications that communicate
using sockets

35

Internet

controlled
by OS

controlled by
app developer

transport

application

physical
link

network

process

transport

application

physical
link

network

process
socket

Socket programming

36

Application Example:

1. client reads a line of characters (data) from its keyboard and
sends data to server

2. server receives the data and converts characters to uppercase

3. server sends modified data to client

4. client receives modified data and displays line on its screen

Socket programming with UDP

UDP: no “connection” between client & server

§ no handshaking before sending data

§ sender explicitly attaches IP destination address and port # to each packet

§ receiver extracts sender IP address and port# from received packet

UDP: transmitted data may be lost or received out-of-order
Application viewpoint:

§ UDP provides unreliable transfer of groups of bytes (“datagrams”)
between client and server

37

Client/server socket interaction: UDP

38

close clientSocket

read datagram from clientSocket

create socket:
clientSocket =
socket(AF_INET,SOCK_DGRAM)

create datagram with server IP and
port=x; send datagram via
clientSocket

create socket, port= x:
serverSocket =
socket(AF_INET,SOCK_DGRAM)

read datagram from serverSocket

write reply to serverSocket
specifying client address,
port number

server (running on serverIP) client

Example app: Python UDPClient

39

from socket import *

serverName = ‘hostname’

serverPort = 12000

clientSocket = socket(AF_INET, SOCK_DGRAM)

message = raw_input(’Input lowercase sentence:’)

clientSocket.sendto(message.encode(), (serverName, serverPort))

modifiedMessage, serverAddress = clientSocket.recvfrom(2048)

print modifiedMessage.decode()

clientSocket.close()

include Python’s socket
library

create UDP socket

get user keyboard input

Attach server name, port to
message; send into socket

print out received string
and close socket

read reply characters from
socket

Example app: Python UDPServer

40

from socket import *

serverPort = 12000

serverSocket = socket(AF_INET, SOCK_DGRAM)

serverSocket.bind(('', serverPort))

print (“The server is ready to receive”)

while True:

message, clientAddress = serverSocket.recvfrom(2048)

modifiedMessage = message.decode().upper()

serverSocket.sendto(modifiedMessage.encode(), clientAddress)

create UDP socket

bind socket to local port
number 12000

loop forever
read from UDP socket into
message, getting client’s
address (client IP and port)

send upper case string back
to this client

Socket programming with TCP

41

client must contact server
§ server process must first be running
§ server must have created socket

(door) that welcomes client’s
contact

client contacts server by:
§ creating TCP socket, specifying IP

address, port number of server process

§ client TCP establishes connection to
server TCP

• when contacted by client, server TCP
creates new socket for server process to
communicate with that particular client

• allows server to talk with multiple
clients

• source IP addresses/port numbers
used to distinguish clients

TCP provides reliable, in-order
byte-stream transfer (“pipe”)
between client and server

application viewpoint:

Client/server socket interaction: TCP

42

wait for incoming
connection request
connectionSocket =
serverSocket.accept()

create socket,
port=x, for incoming request:
serverSocket = socket()

create socket,
connect to serverIP, port=x
clientSocket = socket()

server (running on serverIP) client

send request using
clientSocketread request from

connectionSocket

write reply to
connectionSocket

TCP
connection setup

close
connectionSocket

read reply from
clientSocket

close
clientSocket

Example app: Python TCPClient

43

from socket import *
serverName = ‘servername’
serverPort = 12000
clientSocket = socket(AF_INET, SOCK_STREAM)
clientSocket.connect((serverName,serverPort))
sentence = raw_input(‘Input lowercase sentence:’)
clientSocket.send(sentence.encode())
modifiedSentence = clientSocket.recv(1024)
print (‘From Server:’, modifiedSentence.decode())
clientSocket.close()

create TCP socket

No need to attach server
name, port

connect to server, remote
port 12000

Example app: Python TCPServer

44

from socket import *
serverPort = 12000
serverSocket = socket(AF_INET,SOCK_STREAM)
serverSocket.bind((‘’,serverPort))
serverSocket.listen(1)
print ‘The server is ready to receive’
while True:

connectionSocket, addr = serverSocket.accept()

sentence = connectionSocket.recv(1024).decode()
capitalizedSentence = sentence.upper()
connectionSocket.send(capitalizedSentence.encode())
connectionSocket.close()

create TCP welcoming
socket

server begins listening for
incoming TCP requests

loop forever
server waits on accept()
for incoming requests, new
socket created on return
read bytes from socket (but
not address as in UDP)

close connection to this
client (but not welcoming
socket)

Agenda

§ Principles of Network Applications

§ Case Studies
• Web and HTTP
• Domain Name System (DNS)
• Peer-to-Peer File Sharing

§ Socket Programming with UDP and TCP

45

DNS: domain name system

46

people: many identifiers:
• SSN, name, passport #

Internet hosts, routers:
• IP address (32 bit) - used for

addressing datagrams
• “name”, e.g., www.yahoo.com

- used by humans

Q: how to map between IP address
and name, and vice versa ?

Domain Name System:
• distributed database implemented in

hierarchy of many name servers
• application-layer protocol: hosts,

name servers communicate to resolve
names (address/name translation)

• note: core Internet function,
implemented as application-layer
protocol

• complexity at network’s “edge”

DNS: services, structure

47

DNS services
§ hostname to IP address translation

§ host aliasing
• canonical name: relay1.west-

coast.enterprise. com
• alias names: enterprise.com,

www.enterprise.com

§ mail server aliasing
• E.g., bob@hotmail.com
• relay1.west-coast.hotmail.com

§ load distribution
• replicated Web servers: many IP

addresses correspond to one name

http://hotmail.com

DNS: a distributed, hierarchical database

48

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

poly.edu
DNS servers

umass.edu
DNS serversyahoo.com

DNS servers
amazon.com
DNS servers

pbs.org
DNS servers

client wants IP for www.amazon.com; 1st approximation:
• client queries root server to find com DNS server
• client queries .com DNS server to get amazon.com DNS server
• client queries amazon.com DNS server to get IP address for

www.amazon.com

… …

top-level domain (TLD) servers

authoritative DNS servers

DNS: root name servers

49

13 logical root name “servers”
worldwide
each “server” replicated many times

a. Verisign, Los Angeles CA
(5 other sites)

b. USC-ISI Marina del Rey, CA
l. ICANN Los Angeles, CA

(41 other sites)

e. NASA Mt View, CA
f. Internet Software C.
Palo Alto, CA (and 48 other
sites)

i. Netnod, Stockholm (37 other sites)

k. RIPE London (17 other sites)

m. WIDE Tokyo
(5 other sites)

c. Cogent, Herndon, VA (5 other sites)
d. U Maryland College Park, MD
h. ARL Aberdeen, MD
j. Verisign, Dulles VA (69 other sites)

g. US DoD Columbus,
OH (5 other sites)

DNS: a distributed, hierarchical database

50

why not centralize DNS?
• single point of failure
• traffic volume
• distant centralized database
• maintenance: huge database, frequent update

A: doesn’t scale!

DNS name resolution example

51

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
3

4

5

6

authoritative DNS server
dns.cs.umass.edu

78

TLD DNS server
§ host at cis.poly.edu wants IP

address for gaia.cs.umass.edu

iterative query:
§ contacted server replies with

name of server to contact
§ “I don’t know this name, but

ask this server”

§ All DNS query and replay
messages are sent within UDP
datagrams to port 53

DNS name resolution example

52

recursive query:
§ puts burden of name

resolution on contacted
name server

§ heavy load at upper levels
of hierarchy?

45

6

3

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
7

authoritative DNS server
dns.cs.umass.edu

8

TLD DNS
server

DNS: caching, updating records

§ once (any) name server learns mapping, it caches mapping
• cache entries timeout (disappear) after some time (Time to live, or TTL)
• TLD servers typically cached in local name servers

• thus root name servers not often visited

§ cached entries may be out-of-date (best effort name-to-address translation!)
• if name host changes IP address, may not be known Internet-wide until all TTLs

expire

§ update/notify mechanisms proposed IETF standard
• RFC 2136

53

DNS records

54

DNS: distributed database storing resource records (RR)

type=NS
• name is domain (e.g.,

foo.com)
• value is hostname of

authoritative name
server for this domain

RR format: (name, value, type, ttl)

type=A
§ name is hostname
§ value is IP address

type=CNAME
§ name is alias name for some

“canonical” (the real) name
§ www.ibm.com is really

servereast.backup2.ibm.com

§ value is canonical name

type=MX
§ value is canonical name of a mail

server associated with alias name

Inserting records into DNS

§ example: new startup “Network Utopia”

§ register name networkuptopia.com at DNS registrar (e.g., Network
Solutions)

• provide names, IP addresses of authoritative name server (primary and secondary)
• registrar inserts two RRs into .com TLD server:

(networkutopia.com, dns1.networkutopia.com, NS)
(dns1.networkutopia.com, 212.212.212.1, A)

§ create authoritative server type A record for www.networkuptopia.com;
type A and type MX records for mail.networkutopia.com

55

Agenda

§ Principles of Network Applications [KR 2.1]

§ Case Studies
• Web and HTTP [KR 2.2]
• Domain Name System (DNS) [KR 2.4]
• Peer-to-Peer File Sharing [KR 2.5] [SY 8.2-8.3]

§ Socket Programming with UDP and TCP [KR 2.7]

56

Pure P2P architecture

§ no always-on server

§ arbitrary end systems directly
communicate

§ peers are intermittently connected
and change IP addresses

examples:
• file distribution (BitTorrent)
• Streaming (KanKan)
• VoIP (Skype)

57

P2P file distribution: BitTorrent

§ file divided into 256KB chunks
§ peers in torrent send/receive file chunks

58

tracker: tracks peers
participating in torrent

torrent: group of peers
exchanging chunks of a file

Alice arrives …
… obtains list
of peers from tracker
… and begins exchanging
file chunks with peers in torrent

P2P file distribution: BitTorrent

§ peer joining torrent:
• has no chunks, but will accumulate them over time from

other peers
• registers with tracker to get list of peers, connects to

subset of peers (“neighbors”)

§ while downloading, peer uploads chunks to other peers
§ peer may change peers with whom it exchanges chunks
§ churn: peers may come and go
§ once peer has entire file, it may (selfishly) leave or

(altruistically) remain in torrent

59

BitTorrent: requesting, sending file chunks

requesting chunks:

§ at any given time, different peers
have different subsets of file chunks

§ periodically, Alice asks each peer for
list of chunks that they have

§ Alice requests missing chunks from
peers, rarest first

60

sending chunks: tit-for-tat
§ Alice sends chunks to those four

peers currently sending her chunks
at highest rate
• other peers are choked by Alice

• re-evaluate top 4 every 10 secs

§ every 30 secs: randomly select
another peer, starts sending
chunks
• “optimistically unchoke” this peer
• newly chosen peer may join top 4

BitTorrent: tit-for-tat

61

(1) Alice “optimistically unchokes” Bob
(2) Alice becomes one of Bob’s top-four providers; Bob reciprocates
(3) Bob becomes one of Alice’s top-four providers

higher upload rate: find better
trading partners, get file faster !

File distribution: client-server vs P2P

62

Question: how much time to distribute file (size F) from one server to N peers?
• peer upload/download capacity is limited resource

us: server upload
capacity

ui: peer i upload
capacity

di: peer i download
capacityus

uN

dN

server

network (with abundant
bandwidth)

file, size F u2 d2
u1 d1

di

ui

File distribution time: client-server

63

§ server transmission: must
sequentially send (upload) 𝑁
file copies:

• time to send one copy: 𝐹/𝑢(
• time to send 𝑁 copies: 𝑁𝐹/𝑢(

§ client: each client must
download file copy

• 𝑑min = min client download rate
• min client download time: 𝐹/𝑑min

us

network
di

ui

F

time to distribute F
to N clients using

client-server approach
𝐷𝑐𝑠 ≥ max 34

56
, 4
89:;

Ø The lower bound is achievable assuming a fluid model

File distribution time: client-server

64

Proof (lower bound is achievable)

Case 1: 56
3
≤ 𝑑=>?. The server

sends the file to each client, in

parallel, at a rate of a rate of 5(
3

⇒ 𝐷 = 𝑁𝐹/𝑢(

Case 2: 56
3
≥ 𝑑=>?. The server

sends the file to each client, in
parallel, at a rate of dmin
⇒ 𝐷 = 𝐹/𝑑=>?

us

network
di

ui

F

increases linearly in 𝑁

time to distribute F
to N clients using

client-server approach
𝐷𝑐𝑠 = max

𝑁𝐹
𝑢(

,
𝐹

𝑑=>?

File distribution time: P2P

65

§ server transmission: must upload
at least one copy

• time to send one copy: 𝐹/𝑢(

§ client: each client must download file
copy

• min client download time: 𝐹/𝑑min

§ clients: as aggregate must download
NF bits

• max upload rate (limiting max
download rate) is 𝑢(+ ∑DEF3 𝑢D

us

network
di

ui

F

… but so does this, as each peer brings service capacity

increases linearly in N …
Ø The lower bound is achievable

assuming a fluid model

time to distribute F to N clients using P2P approach

𝐷𝑃2𝑃 ≥ max 4
56
, 4
89:;

, 34
5(I∑JKL

M 5J

Client-server vs. P2P: example

66

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35

N

M
in

im
um

 D
is

tri
bu

tio
n

Ti
m

e P2P
Client-Server

client upload rate = u, F/u = 1 hour, us = 10u, dmin ≥ us

Structured P2P File Sharing

§ One source node 𝑠, 𝑁 other nodes.

§ File sharing using a set of spanning trees rooted at 𝑠
• spanning trees: 𝑇F, 𝑇O, … , 𝑇Q
• 𝑟S: rate transmitted over tree 𝑇S

§ Optimization formulation

67

The three spanning trees in
a three-node network X

S

𝑟S ≤ 𝑑D ∀𝑖 ∈ 1,2, … , 𝑁

X
S

𝑐S 𝑗 𝑟S ≤ 𝑢] ∀𝑗 ∈ 𝑠 ∪ {1,2, …𝑁}

max X
S

𝑟S

s.t.

𝑐S 𝑗 : number of children of node 𝑗 in tree 𝑡

Structured P2P File Sharing

Theorem: 𝐷𝑃2𝑃 = max 4
56
, 4
89:;

, 34
5(I∑JKL

M 5J

Proof :

Case 1: 𝑢(≤ min 𝑑=>?,
5(I∑JKL

M 5J
3

Consider 𝑁 spanning trees with 𝑟D =
5J

∑bKL
M 5b

𝑢(

Case 2: 5(I
∑JKL
M 5J
3

≤ min 𝑑=>?, 𝑢(

Consider 𝑁 + 1 spanning trees with 𝑟D =
5J
3cF

for 𝑖 = 1,… ,𝑁, 𝑟3IF=
F
3

𝑢(−
∑bKL
M 5b
3cF

Case 3: 𝑑=>? ≤ min 𝑢(,
5(I∑JKL

M 5J
3

(see [Srikant and Yin 8.3])
68

Chapter 2: summary

69

§ application architectures
• client-server
• P2P

§ application service requirements:
• reliability, bandwidth, delay

§ Internet transport service model
• connection-oriented, reliable: TCP
• unreliable, datagrams: UDP

§ specific protocols:
• HTTP
• DNS
• P2P

§ socket programming:
TCP, UDP sockets

Lab 1

§ Develop a simple web server that is able to
• accept and parse one HTTP GET request, get the requested file from the

server’s file system and create an HTTP response message.

• if the requested file is not present in your server, return a ‘404 Not Found’
error message

• using multithreading to serve multiple requests simultaneously

ü skeleton code in Python is provided

§ Hand in: complete code and screen shots of client browser

70

