• • • • • • • • • • •

Value Function Approximation

CMPS 4660/6660: Reinforcement Learning

Acknowledgement: slides adapted from David Silver's <u>RL course</u>

Agenda

- Introduction
- Incremental Methods
- Batch Methods

Large-Scale Reinforcement Learning

- Reinforcement learning can be used to solve large problems, e.g.
 - Backgammon: 10^{20} states
 - Computer Go: 10^{170} states
 - Helicopter: continuous state space
- How can we scale up the model-free methods for prediction and control?

Value Function Approximation

- So far we have represented value function by a lookup table (tabular setting)
 - Every state s has an entry V(s)
 - Or every state-action pair s, a has an entry Q(s, a)
- Problems with large MDPs
 - There are too many states and/or actions to store in memory
 - It is too slow to learn the value of each state individually

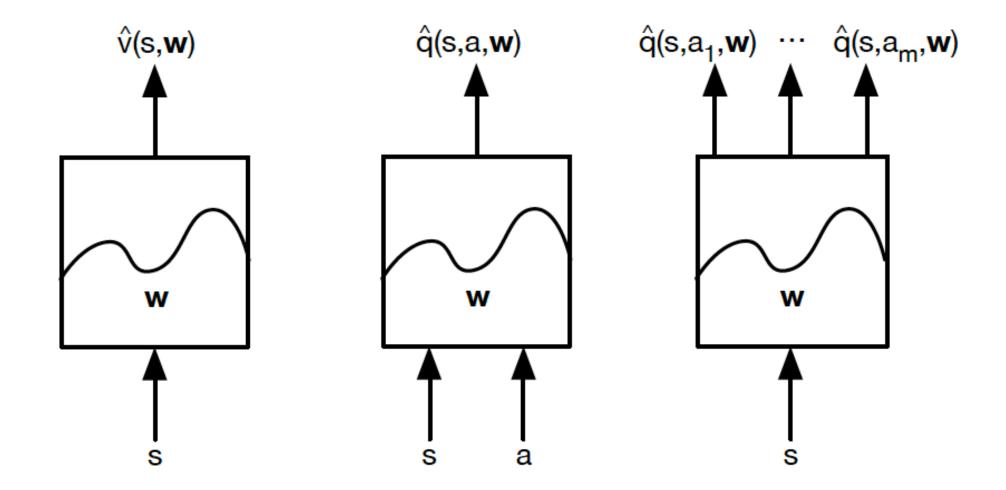
Value Function Approximation

- Solution for large MDPs:
 - Estimate value function with *function approximation*

 $\hat{v}(s, \mathbf{w}) \approx v_{\pi}(s)$ or $\hat{q}(s, a, \mathbf{w}) \approx q_{\pi}(s, a)$

- Generalize from seen states to unseen states
- Update parameter w using MC or TD learning

Types of Value Function Approximation

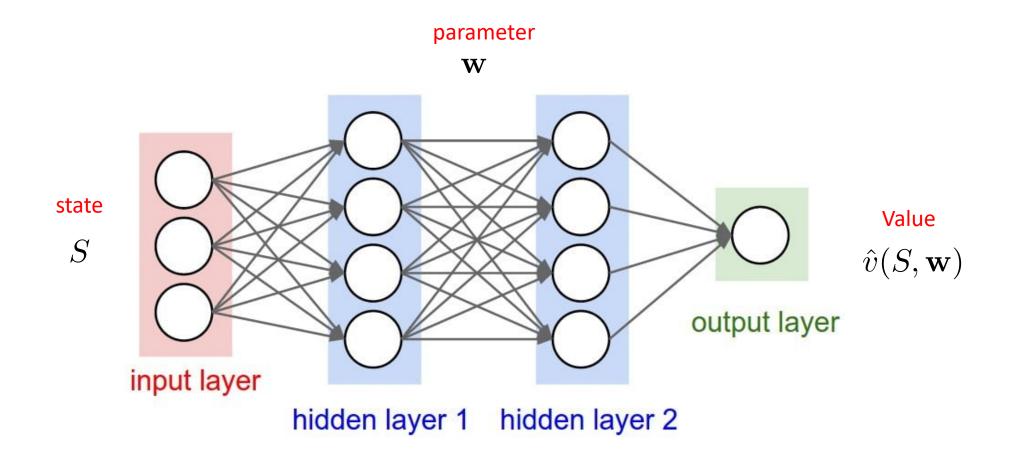


Which Function Approximator?

- There are many function approximators, e.g.
 - Linear combinations of features
 - Neural network
 - Decision tree
 - Nearest neighbor
 - Fourier / wavelet bases
 - ...

Nonlinear Value Function Approximation

• Use artificial neural networks



Which Function Approximator?

- We consider differentiable function approximators, e.g.
 - Linear combinations of features
 - Neural network
 - Decision tree
 - Nearest neighbor
 - Fourier / wavelet bases
 - ...
- Furthermore, we require a training method that is suitable for non-stationary, non-iid data

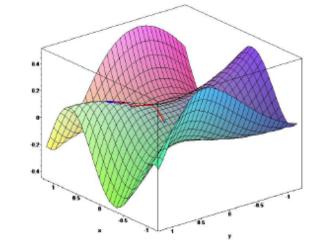
Agenda

- Introduction
- Incremental Methods
 - On-policy prediction with value function approximation
 - On-policy control with value function approximation
 - Off-policy methods with approximation
- Batch Methods

Gradient Descent

- Let $J(\mathbf{w})$ be a differentiable function of parameter vector \mathbf{w}
- Define the gradient of $J(\mathbf{w})$ to be

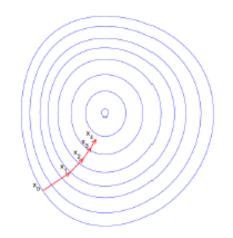
$$\nabla_{\mathbf{w}} J(\mathbf{w}) = \begin{pmatrix} \frac{\partial J(\mathbf{w})}{\partial \mathbf{w}_1} \\ \vdots \\ \frac{\partial J(\mathbf{w})}{\partial \mathbf{w}_n} \end{pmatrix}$$



To find a local minimum of J(w), adjust w in direction of negative gradient

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \frac{1}{2} \alpha \nabla_{\mathbf{w}} J(\mathbf{w}_t) \quad \Delta \mathbf{w} = -\frac{1}{2} \alpha \nabla_{\mathbf{w}} J(\mathbf{w})$$

where α is a step-size parameter



Gradient Descent

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \frac{1}{2} \alpha \nabla_{\mathbf{w}} J(\mathbf{w}_t)$$

$$\Leftrightarrow \mathbf{w}_{t+1} = \operatorname{argmin}_{\mathbf{w}} \frac{1}{2} \| \mathbf{w} - (\mathbf{w}_t - \alpha \nabla_{\mathbf{w}} J(\mathbf{w}_t)) \|_2^2$$

$$= \operatorname{argmin}_{\mathbf{w}} \alpha \langle \mathbf{w} - \mathbf{w}_t, \nabla_{\mathbf{w}} J(\mathbf{w}_t), \rangle + \frac{1}{2} \| \mathbf{w} - \mathbf{w}_t \|_2^2$$

$$= \operatorname{argmin}_{\mathbf{w}} \alpha [J(\mathbf{w}_t) + \langle \mathbf{w} - \mathbf{w}_t, \nabla_{\mathbf{w}} J(\mathbf{w}_t) \rangle] + \frac{1}{2} \| \mathbf{w} - \mathbf{w}_t \|_2^2$$

$$= \operatorname{argmin}_{\mathbf{w}} \alpha \langle \mathbf{w}, \nabla_{\mathbf{w}} J(\mathbf{w}_t), \rangle + \frac{1}{2} \| \mathbf{w} - \mathbf{w}_t \|_2^2$$

Value Function Approx. By Stochastic Gradient Descent

• Goal: find parameter vector **w** minimizing mean-squared error between approximate value function $\hat{v}(s, \mathbf{w})$ and true value function $v_{\pi}(s)$

$$J(\mathbf{w}) = \sum_{s \in \mathcal{S}} \mu(s) \left[v_{\pi}(s) - \hat{v}(s, w) \right]^2$$

$$=\mathbb{E}_{\pi}\left[(v_{\pi}(S)-\hat{v}(S,\mathbf{w}))^{2}
ight]$$

- $\mu(s) \ge 0$, $\sum_{s \in \mathcal{S}} \mu(s) = 1$
- Often $\mu(s)$ is chosen to be the fraction of time spent in s, i.e., μ is the stationary distribution of states under policy π

Stationary distribution of states under policy π

• Recall that given an MDP $\langle S, A, P, r, \gamma \rangle$ and a stationary policy, the state sequence S_0, S_1, \dots is a Markov chain $\langle S, P^{\pi} \rangle$, where

$$P_{ss'}^{\pi} = \sum_{a \in \mathcal{A}(s)} \pi(a|s) P_{ss'}(a)$$

- Given a Markov chain (S, P), a probability distribution $\{\mu(s): s \in S\}$ is called
 - a limiting distribution if $\mu_{s'} = \lim_{n \to \infty} P_{ss'}^{(n)}, \forall s, s'$
 - a stationary distribution if $\mu \cdot P = \mu$
- Theorem: If a finite state Markov chain is irreducible and aperiodic, it must have a limiting distribution, which is also stationary and is unique (such a chain is called ergodic).

Value Function Approx. By Stochastic Gradient Descent

• Goal: find parameter vector ${\boldsymbol w}$ minimizing

$$J(\mathbf{w}) = \mathbb{E}_{\pi}\left[(v_{\pi}(S) - \hat{v}(S, \mathbf{w}))^2\right]$$

• Gradient descent finds a local minimum

$$\Delta \mathbf{w} = -\frac{1}{2} \alpha \nabla_{\mathbf{w}} J(\mathbf{w}) = \alpha \mathbb{E}_{\pi} \left[(v_{\pi}(S) - \hat{v}(S, \mathbf{w})) \nabla_{\mathbf{w}} \hat{v}(S, \mathbf{w}) \right]$$

• Stochastic gradient descent samples the gradient

 $\Delta \mathbf{w} = \alpha(\mathbf{v}_{\pi}(S) - \hat{\mathbf{v}}(S, \mathbf{w})) \nabla_{\mathbf{w}} \hat{\mathbf{v}}(S, \mathbf{w})$

• Expected update is equal to full gradient update

Feature Vectors

• Represent state by a *n* dimensional *feature vector*

$$\mathbf{x}(S) = \begin{pmatrix} \mathbf{x}_1(S) \\ \vdots \\ \mathbf{x}_d(S) \end{pmatrix}$$

- Typically, $d \leq |\mathcal{S}|$
- For example:
 - Distance of robot from landmarks
 - Trends in the stock market
 - Piece and pawn configurations in chess

Linear Value Function Approximation

• Represent value function by a linear combination of features

$$\hat{v}(S, \mathbf{w}) = \mathbf{x}(S)^{\top} \mathbf{w} = \sum_{i=1}^{a} \mathbf{x}_{i}(S) \mathbf{w}_{i}$$

Objective function is quadratic in parameters w

$$J(\mathbf{w}) = \mathbb{E}_{\pi}\left[(v_{\pi}(S) - \mathbf{x}(S)^{\top}\mathbf{w})^{2}\right]$$

- Stochastic gradient descent converges on global optimum
- Update rule is particularly simple

$$\nabla_{\mathbf{w}} \hat{v}(S, \mathbf{w}) = \mathbf{x}(S)$$
$$\Delta \mathbf{w} = \alpha (v_{\pi}(S) - \hat{v}(S, \mathbf{w}))\mathbf{x}(S)$$

Update = step-size × prediction error × feature value

Linear Value Function Approximation

$$\hat{\mathbf{v}}(S, \mathbf{w}) = \mathbf{x}(S)^{\top} \mathbf{w} = \sum_{j=1}^{d} \mathbf{x}_j(S) \mathbf{w}_j$$

$$X = \begin{pmatrix} -x(s_1) & - \\ -x(s_2) & - \\ \vdots \end{pmatrix} = \begin{pmatrix} x_1(s_1) & x_2(s_1) \dots & x_d & (s_1) \\ x_1(s_2) & x_2(s_2) \dots & x_d & (s_2) \\ \vdots & & & \end{vmatrix} = \begin{pmatrix} | & & | \\ x_1 & \dots & x_d \\ | & & & | \end{pmatrix}$$

$$\hat{v}(\mathbf{w}) = \begin{pmatrix} \hat{v}(s_1, \mathbf{w}) \\ \hat{v}(s_2, \mathbf{w}) \\ \vdots \end{pmatrix} = \mathbf{X}\mathbf{w}$$

Table Lookup Features

- Table lookup is a special case of linear value function approximation
- Using table lookup features, where $d = |\mathcal{S}|$

$$\mathbf{x}^{table}(S) = \begin{pmatrix} \mathbf{1}(S = s_1) \\ \vdots \\ \mathbf{1}(S = s_d) \end{pmatrix}$$

• Parameter vector w gives value of each individual state

$$\hat{v}(S, \mathbf{w}) = \begin{pmatrix} \mathbf{1}(S = s_1) \\ \vdots \\ \mathbf{1}(S = s_d) \end{pmatrix}^{\mathsf{T}} \cdot \begin{pmatrix} \mathbf{w}_1 \\ \vdots \\ \mathbf{w}_d \end{pmatrix}$$

Incremental Prediction Algorithms

- Have assumed true value function $v_{\pi}(s)$ given by supervisor
- But in RL there is no supervisor, only rewards
- In practice, we substitute a *target* for $v_{\pi}(s)$
 - For MC, the target is the return G_t

 $\Delta \mathbf{w} = \alpha (\mathbf{G}_t - \hat{\mathbf{v}}(S_t, \mathbf{w})) \nabla_{\mathbf{w}} \hat{\mathbf{v}}(S_t, \mathbf{w})$

• For TD(0), the target is the TD target $R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w})$

$$\Delta \mathbf{w} = \alpha (\mathbf{R}_{t+1} + \gamma \hat{\mathbf{v}}(S_{t+1}, \mathbf{w}) - \hat{\mathbf{v}}(S_t, \mathbf{w})) \nabla_{\mathbf{w}} \hat{\mathbf{v}}(S_t, \mathbf{w})$$

• For TD(λ), the target is the return $G_t^{\lambda} = \Delta \mathbf{w} = \alpha (G_t^{\lambda} - \hat{\mathbf{v}}(S_t, \mathbf{w})) \nabla_{\mathbf{w}} \hat{\mathbf{v}}(S_t, \mathbf{w})$

Monte-Carlo with Value Function Approximation

- Return G_t is an unbiased, noisy sample of true value $v_{\pi}(S_t)$
- Can therefore apply supervised learning to "training data":

 $\langle S_1, G_1 \rangle, \langle S_2, G_2 \rangle, ..., \langle S_T, G_T \rangle$

• For example, using linear Monte-Carlo policy evaluation

 $\Delta \mathbf{w} = \alpha (\mathbf{G}_t - \hat{\mathbf{v}}(S_t, \mathbf{w})) \nabla_{\mathbf{w}} \hat{\mathbf{v}}(S_t, \mathbf{w})$ $= \alpha (\mathbf{G}_t - \hat{\mathbf{v}}(S_t, \mathbf{w})) \mathbf{x}(S_t)$

- Monte-Carlo evaluation converges to (using a decreasing α)
 - a global optimum using linear function approximation
 - a local optimum when using non-linear value function approximation

Gradient Monte Carlo Algorithm for Estimating $\hat{v} \approx v_{\pi}$

Input: the policy π to be evaluated Input: a differentiable function $\hat{v} : \mathbb{S} \times \mathbb{R}^d \to \mathbb{R}$ Algorithm parameter: step size $\alpha > 0$ Initialize value-function weights $\mathbf{w} \in \mathbb{R}^d$ arbitrarily (e.g., $\mathbf{w} = \mathbf{0}$) Loop forever (for each episode): Generate an episode $S_0, A_0, R_1, S_1, A_1, \dots, R_T, S_T$ using π Loop for each step of episode, $t = 0, 1, \dots, T - 1$: $\mathbf{w} \leftarrow \mathbf{w} + \alpha [G_t - \hat{v}(S_t, \mathbf{w})] \nabla \hat{v}(S_t, \mathbf{w})$

TD Learning with Value Function Approximation

- The TD-target $R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w})$ is a biased sample of true value $v_{\pi}(S_t)$
- Can still apply supervised learning to "training data":

 $\langle S_1, R_2 + \gamma \hat{v}(S_2, \mathbf{w}) \rangle, \langle S_2, R_3 + \gamma \hat{v}(S_3, \mathbf{w}) \rangle, ..., \langle S_{T-1}, R_T \rangle$

• For example, using linear TD(0)

$$\Delta \mathbf{w} = \alpha (\mathbf{R} + \gamma \hat{\mathbf{v}}(S', \mathbf{w}) - \hat{\mathbf{v}}(S, \mathbf{w})) \nabla_{\mathbf{w}} \hat{\mathbf{v}}(S, \mathbf{w})$$
$$= \alpha \delta \mathbf{x}(S)$$

• A semi-gradient method: w in $\hat{v}(S', w)$ is ignored when taking the gradient

TD Learning with Value Function Approximation

- TD(0) converges to \mathbf{w}_{TD} such that $J(\mathbf{w}_{\text{TD}}) \leq \frac{1}{(1-\gamma)^2} \min_{\mathbf{w}} J(\mathbf{w})$ (w.p.1) when
 - linear function approximation is adopted
 - the Markov chain $\langle S, P^{\pi} \rangle$ is ergodic
 - step size follows the Robbins-Monro's conditions

See Tsitsiklis and van Roy, "An Analysis of Temporal-Difference Learning with Function Approximation", 1997

Convergence of Linear TD(0)

• Update at time *t*:

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha \Big(R_{t+1} + \gamma \mathbf{w}_t^\top \mathbf{x}_{t+1} - \mathbf{w}_t^\top \mathbf{x}_t \Big) \mathbf{x}_t \quad \text{where} \quad \mathbf{x}_t = \mathbf{x}(S_t)$$
$$= \mathbf{w}_t + \alpha \Big(R_{t+1} \mathbf{x}_t - \mathbf{x}_t \big(\mathbf{x}_t - \gamma \mathbf{x}_{t+1} \big)^\top \mathbf{w}_t \Big),$$

• Once the system reaches steady state at time *t*:

$$\mathbb{E}[\mathbf{w}_{t+1}|\mathbf{w}_t] = \mathbf{w}_t + \alpha(\mathbf{b} - \mathbf{A}\mathbf{w}_t),$$

$$\mathbf{b} \doteq \mathbb{E}[R_{t+1}\mathbf{x}_t] \in \mathbb{R}^d \text{ and } \mathbf{A} \doteq \mathbb{E}\left[\mathbf{x}_t(\mathbf{x}_t - \gamma \mathbf{x}_{t+1})^\top\right] \in \mathbb{R}^d \times \mathbb{R}^d$$

- If the system converges, it must converge to w_{TD} where

Convergence of Linear TD(0)

• Once the system reaches steady state at time *t*:

$$\mathbb{E}[\mathbf{w}_{t+1}|\mathbf{w}_t] = \mathbf{w}_t + \alpha(\mathbf{b} - \mathbf{A}\mathbf{w}_t)$$

$$\Leftrightarrow \mathbb{E}[\mathbf{w}_{t+1}|\mathbf{w}_t] = (\mathbf{I} - \alpha \mathbf{A})\mathbf{w}_t + \alpha \mathbf{b}$$

 \Rightarrow w_t converges if A is positive definite and α is small enough

TD Fixed Point

• Recall

$$X = \begin{pmatrix} -x(s_1) & - \\ -x(s_2) & - \\ \vdots & - \end{pmatrix} = \begin{pmatrix} | & | \\ x_1 & \dots & x_d \\ | & | \end{pmatrix}$$

- Assume that x₁, x₁, ..., x_d are linearly independent
- Define Π as the projection of v on $\{X\mathbf{w}: \mathbf{w} \in \mathbb{R}^d\}$

$$\Pi v = \operatorname{argmin}_{\bar{v} \in \{X \mathbf{w}: \mathbf{w} \in \mathbb{R}^d\}} \sum_{s \in \mathcal{S}} \mu(s) \left[v(s) - \bar{v}(s) \right]^2$$

• Then $v_0 \doteq X \mathbf{w_{TD}}$ is a fixed point of $\Pi T^{\pi}(\cdot)$, i.e., $\Pi T^{\pi}(v_0) = v_0$

Projected Bellman Operator

Least-Squares TD (LSTD)

• Recall TD fixed point: $\mathbf{w}_{TD} = \mathbf{A}^{-1}\mathbf{b}$,

$$\mathbf{A} \doteq \mathbb{E} [\mathbf{x}_t (\mathbf{x}_t - \gamma \mathbf{x}_{t+1})^\top] \text{ and } \mathbf{b} \doteq \mathbb{E} [R_{t+1} \mathbf{x}_t].$$

• Least-squares TD computing estimates of A and b, and then directly computing the TD fixed point

$$\widehat{\mathbf{A}}_t \doteq \sum_{k=0}^{t-1} \mathbf{x}_k (\mathbf{x}_k - \gamma \mathbf{x}_{k+1})^\top + \varepsilon \mathbf{I} \quad \text{and} \quad \widehat{\mathbf{b}}_t \doteq \sum_{k=0}^{t-1} R_{k+1} \mathbf{x}_k, \quad \mathbf{w}_t \doteq \widehat{\mathbf{A}}_t^{-1} \widehat{\mathbf{b}}_t.$$

- Most data efficient form of linear TD(0)
- $O(d^2)$ computational and memory complexity per time step

$TD(\lambda)$ with Value Function Approximation

- The λ -return G_t^{λ} is also a biased sample of true value $v_{\pi}(S_t)$
- Can again apply supervised learning to "training data":

$$\left\langle S_1, G_1^{\lambda} \right\rangle, \left\langle S_2, G_2^{\lambda} \right\rangle, ..., \left\langle S_{T-1}, G_{T-1}^{\lambda} \right\rangle$$

• Forward view linear TD(λ) $\Delta \mathbf{w} = \alpha (\mathbf{G}_t^{\lambda} - \hat{\mathbf{v}}(S_t, \mathbf{w})) \nabla_{\mathbf{w}} \hat{\mathbf{v}}(S_t, \mathbf{w})$ = $\alpha (\mathbf{G}_t^{\lambda} - \hat{\mathbf{v}}(S_t, \mathbf{w})) \mathbf{x}(S_t)$

• Backward view linear TD(λ) $\delta_t = R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w}) - \hat{v}(S_t, \mathbf{w})$ $E_t = \gamma \lambda E_{t-1} + \mathbf{x}(S_t)$ $\Delta \mathbf{w} = \alpha \delta_t E_t$

• Forward view and backward view linear $TD(\lambda)$ (with offline updates) are equivalent

How to Design Features?

- Use prior domain knowledge to design features for RL
 - Graphic objects: shape, color, size
 - Mobile Robot: location, battery level, sensing reading
- Linear value function approximation

$$\hat{v}(S, \mathbf{w}) = \mathbf{x}(S)^T \mathbf{w} = \sum_{j=1}^d \mathbf{x}_j(S) \mathbf{w}_j$$

- i.e., pole-balancing:
- High angular velocity can be good or bad depending on angle
- Linear value function could not represent this if angle and angular velocity are two different features
- One should design features to combine state dimensions

Feature Construction for Linear Methods

- Polynomials
- Fourier Basis
- Coarse Coding
- Tile Coding
- Radial Basis Functions

• ...

Polynomials

- Let s_1 and s_2 be the two dimensions of state s
 - Is $\mathbf{x}(s) = (s_1, s_2)^T$ a good feature representation?
- Design a feature vector $\mathbf{x}(s) = (1, s_1, s_2, s_1s_2)^T$
 - Allow the value to be non-zero if s_1 and s_2 are zero
 - Consider the interaction between dimensions

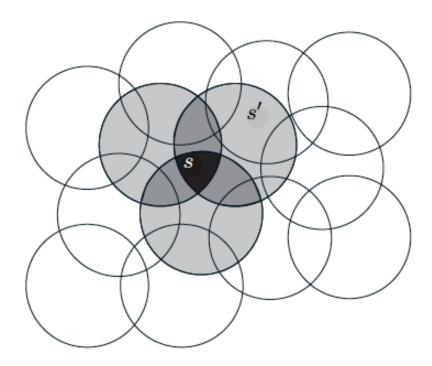
Suppose each state s corresponds to k numbers, $s_1, s_2, ..., s_k$, with each $s_i \in \mathbb{R}$. For this k-dimensional state space, each order-n polynomial-basis feature x_i can be written as

$$x_i(s) = \prod_{j=1}^k s_j^{c_{i,j}},\tag{9.17}$$

where each $c_{i,j}$ is an integer in the set $\{0, 1, \ldots, n\}$ for an integer $n \ge 0$. These features make up the order-*n* polynomial basis for dimension *k*, which contains $(n+1)^k$ different features.

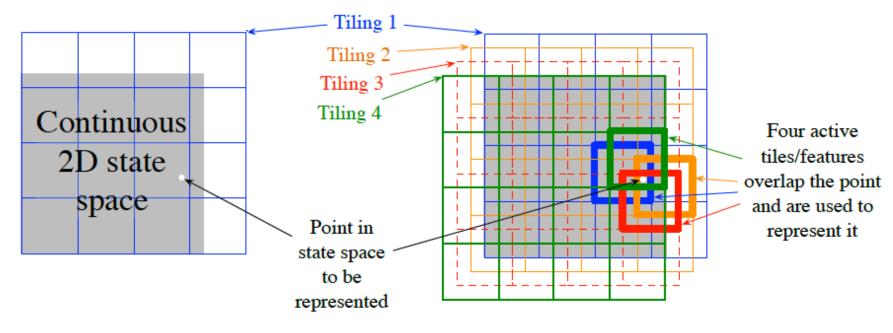
Coarse Coding

- A set of binary features
- Given a state, which binary features are present indicate within which circles the state lies
- Generalization from state s to state s' depends on the number of their features whose receptive fields (i.e., circles) overlap
 - generalization determined by size, shape, and density



Tile Coding

• a form of coarse coding for multi-dimensional continuous spaces



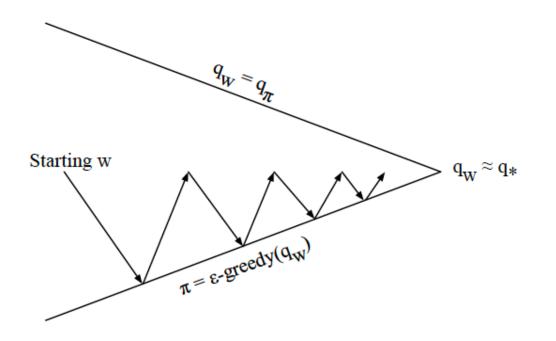
¹ feature (with 16 values)

⁴ features (each with 16 values)

Agenda

- Introduction
- Incremental Methods
 - On-policy prediction with value function approximation
 - On-policy control with value function approximation
 - Off-policy methods with approximation
- Batch Methods

Control with Value Function Approximation



- Policy evaluation Approximate policy evaluation, $\hat{q}(\cdot, \cdot, \mathbf{w}) \approx q_{\pi}$
- Policy improvement ϵ -greedy policy improvement

Action-Value Function Approximation

• Approximate the action-value function

 $\hat{q}(s, a, \mathbf{w}) \approx q_{\pi}(s, a)$

• Minimize mean-squared error between approximate action-value function $\hat{q}(s, a, \mathbf{w})$ and true value function $q_{\pi}(s, a)$

$$J(\mathbf{w}) = \mathbb{E}_{\pi} \left[(q_{\pi}(S, A) - \hat{q}(S, A, \mathbf{w}))^2 \right]$$

- Is minimizing mean-squared error the right performance objective for policy optimization?
- Use stochastic gradient descent to find a local minimum

$$-\frac{1}{2}\nabla_{\mathbf{w}}J(\mathbf{w}) = (q_{\pi}(S,A) - \hat{q}(S,A,\mathbf{w}))\nabla_{\mathbf{w}}\hat{q}(S,A,\mathbf{w})$$
$$\Delta \mathbf{w} = \alpha(q_{\pi}(S,A) - \hat{q}(S,A,\mathbf{w}))\nabla_{\mathbf{w}}\hat{q}(S,A,\mathbf{w})$$

Linear Action-Value Function Approximation

• Represent state and action by a feature vector

$$\mathbf{x}(S,A) = \begin{pmatrix} \mathbf{x}_1(S,A) \\ \vdots \\ \mathbf{x}_d(S,A) \end{pmatrix}$$

• Represent action-value function by linear combination of features

$$\hat{q}(S, A, \mathbf{w}) = \mathbf{x}(S, A)^{\top} \mathbf{w} = \sum_{j=1}^{d} \mathbf{x}_{j}(S, A) \mathbf{w}_{j}$$

• Stochastic gradient descent update

$$\nabla_{\mathbf{w}} \hat{q}(S, A, \mathbf{w}) = \mathbf{x}(S, A)$$
$$\Delta \mathbf{w} = \alpha (q_{\pi}(S, A) - \hat{q}(S, A, \mathbf{w}))\mathbf{x}(S, A)$$

Incremental Control Algorithms

- Like prediction, we must substitute a target for $q_{\pi}(S, A)$
- For MC, the target is the return G_t

 $\Delta \mathbf{w} = \alpha (\mathbf{G}_t - \hat{q}(S_t, A_t, \mathbf{w})) \nabla_{\mathbf{w}} \hat{q}(S_t, A_t, \mathbf{w})$

• For TD(0), the target is the TD target $R_{t+1} + \gamma \hat{q}(S_{t+1}, A_{t+1})$

 $\Delta \mathbf{w} = \alpha(R_{t+1} + \gamma \hat{q}(S_{t+1}, A_{t+1}, \mathbf{w}) - \hat{q}(S_t, A_t, \mathbf{w})) \nabla_{\mathbf{w}} \hat{q}(S_t, A_t, \mathbf{w})$

• For forward-view TD(λ), the target is the action-value λ -return

 $\Delta \mathbf{w} = \alpha (\mathbf{q}_t^{\lambda} - \hat{q}(S_t, A_t, \mathbf{w})) \nabla_{\mathbf{w}} \hat{q}(S_t, A_t, \mathbf{w})$

• For backward-view TD(λ), the target is the action-value λ -return

$$\delta_{t} = R_{t+1} + \gamma \hat{q}(S_{t+1}, A_{t+1}, \mathbf{w}) - \hat{q}(S_{t}, A_{t}, \mathbf{w})$$
$$E_{t} = \gamma \lambda E_{t-1} + \nabla_{\mathbf{w}} \hat{q}(S_{t}, A_{t}, \mathbf{w})$$
$$\Delta \mathbf{w} = \alpha \delta_{t} E_{t}$$

Episodic Semi-gradient Sarsa for Estimating $\hat{q} \approx q_*$

Input: a differentiable action-value function parameterization $\hat{q} : \mathbb{S} \times \mathcal{A} \times \mathbb{R}^d \to \mathbb{R}$ Algorithm parameters: step size $\alpha > 0$, small $\varepsilon > 0$ Initialize value-function weights $\mathbf{w} \in \mathbb{R}^d$ arbitrarily (e.g., $\mathbf{w} = \mathbf{0}$) Loop for each episode: $S, \mathcal{A} \leftarrow$ initial state and action of episode (e.g., ε -greedy) Loop for each step of episode: Take action \mathcal{A} , observe $\mathcal{R}, \mathcal{S}'$

If S' is terminal:

 $\mathbf{w} \leftarrow \mathbf{w} + \alpha [R - \hat{q}(S, A, \mathbf{w})] \nabla \hat{q}(S, A, \mathbf{w})$

Go to next episode

Choose A' as a function of $\hat{q}(S', \cdot, \mathbf{w})$ (e.g., ε -greedy) $\mathbf{w} \leftarrow \mathbf{w} + \alpha [R + \gamma \hat{q}(S', A', \mathbf{w}) - \hat{q}(S, A, \mathbf{w})] \nabla \hat{q}(S, A, \mathbf{w})$ $S \leftarrow S'$

 $A \leftarrow A'$

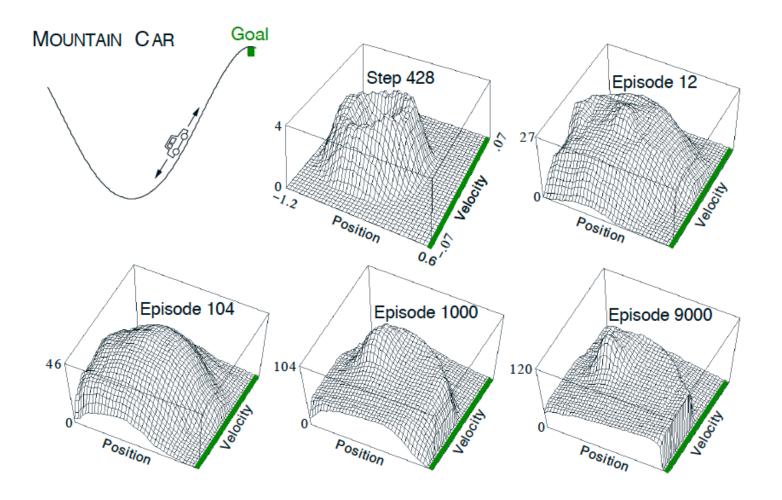
Mountain Car Example

- Continuous states $(x_t, \dot{x_t})$
- Three actions:
 - full throttle forward (+1),
 - full throttle reverse (-1),
 - zero throttle (0)
- Reward is -1 per unit time until reaching the goal

$$x_{t+1} \doteq bound [x_t + \dot{x}_{t+1}]$$

$$\dot{x}_{t+1} \doteq bound [\dot{x}_t + 0.001A_t - 0.0025\cos(3x_t)]$$

Linear Sarsa(λ) with Tile Coding in Mountain Car



- 8 tilings
- Initially, $oldsymbol{q}=oldsymbol{0}$

•
$$\epsilon = 0$$

Agenda

- Introduction
- Incremental Methods
 - On-policy prediction with value function approximation
 - On-policy control with value function approximation
 - Off-policy methods with approximation
- Batch Methods

Semi-Gradient Methods with Importance Sampling

- π : target policy, μ : behavior policy
- per-step importance sampling ratio: $\rho_t = \frac{\pi(A_t|S_t)}{\mu(A_t|S_t)}$
- Off-policy TD(0) update:

 $\delta_t \doteq R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w}_t) - \hat{v}(S_t, \mathbf{w}_t),$ $\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha \rho_t \delta_t \nabla \hat{v}(S_t, \mathbf{w}_t),$

The Deadly Triad

- The danger of instability and divergence arises whenever we combine all of the following:
 - Function approximation
 - Bootstrapping
 - Off-policy training
- Instability arises even in the simpler prediction case, such as offpolicy TD(0)

Convergence of Prediction Algorithms

$\overline{On/Off-Policy}$	Algorithm	Table Lookup	Linear	Non-Linear
On Deliev	MC	✓	✓	✓
On-Policy	TD(0)	\checkmark	1	×
	$TD(\lambda)$	\checkmark	1	×
Off Daliay	MC	1	1	✓
Off-Policy	TD(0)	\checkmark	×	×
	$TD(\lambda)$	✓	×	×

Gradient Temporal-Difference Learning

- TD does not follow the gradient of any objective function
- This is why TD can diverge when off-policy or using non-linear function approximation
- Gradient TD follows true gradient of projected Bellman error

$$\overline{\delta}(\mathbf{w}) = T^{\pi} \hat{v}(\mathbf{w}) - \hat{v}(\mathbf{w}) \quad \overline{\text{PBE}}(\mathbf{w}) = \left\| \Pi \overline{\delta}(\mathbf{w}) \right\|_{\mu}$$

$\overline{On/Off-Policy}$	Algorithm	Table Lookup	Linear	Non-Linear
On Policy	MC	✓	1	✓
On-Policy	TD	\checkmark	1	×
	Gradient TD	1	1	1
Off Daliau	MC	1	1	✓
Off-Policy	TD	1	×	×
	Gradient TD	1	1	1

Convergence of Control Algorithms

Algorithm	Table Lookup	Linear	Non-Linear
Monte-Carlo Control	✓	(•	×
Sarsa	✓	(✔)	×
Q-learning	✓	×	×
Gradient Q-learning	✓	1	×

 (\checkmark) = chatters around near-optimal value function

Agenda

- Introduction
- Incremental Methods
- Batch Methods

Batch Reinforcement Learning

- Gradient descent is simple and appealing
- But it is not sample efficient
- Batch methods seek to find the best fitting value function
- Given the agent's experience ("training data")

Least Squares Prediction

- Given value function approximation $\hat{v}(s, \mathbf{w}) \approx v_{\pi}(s)$
- And *experience* D consisting of (state, value) pairs

 $\mathcal{D} = \{ \langle s_1, v_1^{\pi} \rangle, \langle s_2, v_2^{\pi} \rangle, ..., \langle s_T, v_T^{\pi} \rangle \}$

- Which parameters w give the best fitting value $\hat{v}(s, \mathbf{w})$?
- Least squares algorithms find parameter vector \mathbf{w} minimizing sum-squared error between $\hat{v}(s_t, \mathbf{w})$ and target values v_t^{π} ,

$$\mathcal{L}S(\mathbf{w}) = \sum_{t=1}^{T} (v_t^{\pi} - \hat{v}(s_t, \mathbf{w}))^2$$

= $\mathbb{E}_{\mathcal{D}} \left[(v^{\pi} - \hat{v}(s, \mathbf{w}))^2 \right]$

Stochastic Gradient Descent with Experience Replay

Given experience consisting of (state, value) pairs

$$\mathcal{D} = \{ \langle s_1, v_1^{\pi} \rangle, \langle s_2, v_2^{\pi} \rangle, ..., \langle s_T, v_T^{\pi} \rangle \}$$

Repeat:

1 Sample state, value from experience

 $\langle s, v^{\pi} \rangle \sim \mathcal{D}$

2 Apply stochastic gradient descent update

$$\Delta \mathbf{w} = \alpha (\mathbf{v}^{\pi} - \hat{\mathbf{v}}(s, \mathbf{w})) \nabla_{\mathbf{w}} \hat{\mathbf{v}}(s, \mathbf{w})$$

Converges to least squares solution

$$\mathbf{w}^{\pi} = \underset{\mathbf{w}}{\operatorname{argmin}} LS(\mathbf{w})$$
 52

Experience Replay in Deep Q-Networks (DQN)

DQN uses experience replay and fixed Q-targets

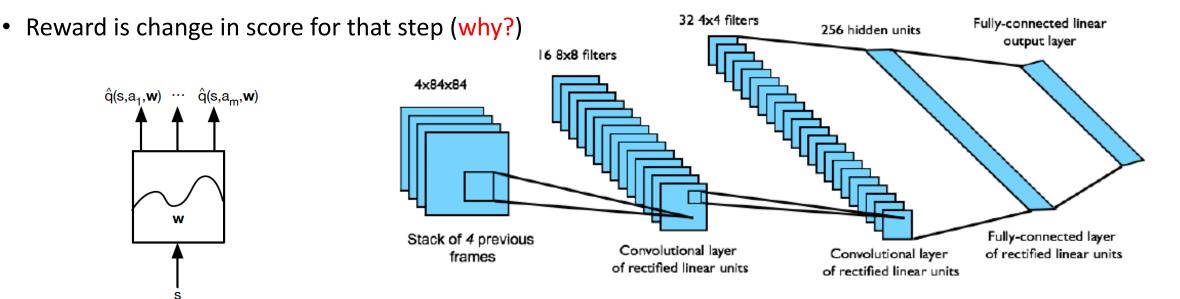
- Take action a_t according to ϵ -greedy policy
- Store transition $(s_t, a_t, r_{t+1}, s_{t+1})$ in replay memory \mathcal{D}
- Sample random mini-batch of transitions (s, a, r, s') from \mathcal{D}
- Compute Q-learning targets w.r.t. old, fixed parameters w^-
- Optimize MSE between Q-network and Q-learning targets

$$\mathcal{L}_{i}(w_{i}) = \mathbb{E}_{s,a,r,s'\sim\mathcal{D}_{i}}\left[\left(r + \gamma \max_{a'} Q(s',a';w_{i}^{-}) - Q(s,a;w_{i})\right)^{2}\right]$$

• Using variant of stochastic gradient descent

DQN in Atari

- End-to-end learning of values Q(s, a) from pixels s
- Input state *s* is stack of raw pixels from last 4 frames
- Output is Q(s, a) for 18 joystick/button positions
 - Compute Q-values for all possible actions in a given state with only a single forward pass through the network.

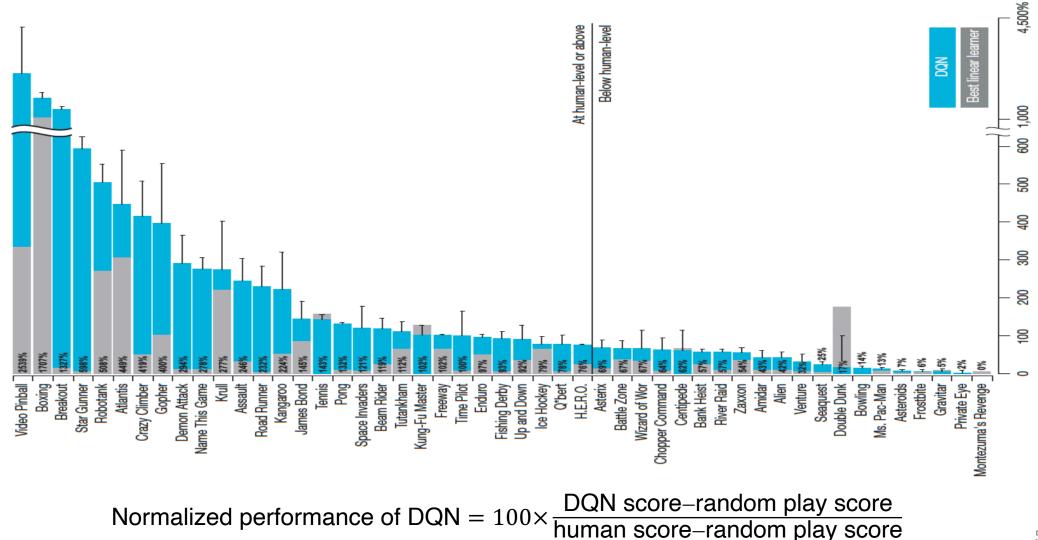


Network architecture and hyperparameters fixed across all games

Algorithm 1: deep Q-learning with experience replay. Initialize replay memory D to capacity NInitialize action-value function Q with random weights θ Initialize target action-value function Q with weights $\theta^- = \theta$ For episode = 1, M do Initialize sequence $s_1 = \{x_1\}$ and preprocessed sequence $\phi_1 = \phi(s_1)$ For t = 1,T do With probability ε select a random action a_t otherwise select $a_t = \operatorname{argmax}_a Q(\phi(s_t), a; \theta)$ Execute action a_t in emulator and observe reward r_t and image x_{t+1} Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$ Store transition $(\phi_{t}, a_{t}, r_{t}, \phi_{t+1})$ in D Sample random minibatch of transitions $(\phi_{j}, a_{j}, r_{j}, \phi_{j+1})$ from D if episode terminates at step j+1Set $y_j =$ $+\gamma \max_{a'} \tilde{Q}(\phi_{j+1}, a)$ otherwise with respect to the Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))$ network parameters θ Every C steps reset $\hat{Q} = Q$ End For End For

 Mnih, et al., "<u>Human-level</u> <u>control through deep</u> <u>reinforcement learning</u>", Nature, 2015

DQN Results in Atari



How much does DQN help?

	Replay	Replay	No replay	No replay
	Fixed-Q	Q-learning	Fixed-Q	Q-learning
Breakout	316.81	240.73	10.16	3.17
Enduro	1006.3	831.25	141.89	29.1
River Raid	7446.62	4102.81	2867.66	1453.02
Seaquest	2894.4	822.55	1003	275.81
Space Invaders	1088.94	826.33	373.22	301.99

Double DQN

• Double Q-learning target

$$Y_t^{\text{DoubleQ}} \equiv R_{t+1} + \gamma Q(S_{t+1}, \operatorname{argmax}_a Q(S_{t+1}, a; \theta_t); \theta_t')$$

• Double DQN target

$$Y_t^{\text{DoubleDQN}} \equiv R_{t+1} + \gamma Q(S_{t+1}, \operatorname{argmax} Q(S_{t+1}, a; \theta_t), \theta_t^-)$$

 DQN
 Double DQN

 Median
 93.5%
 114.7%

 Mean
 241.1%
 330.3%

Normalized performance up to 5 minutes of play on 49 Atari games

 van Hasselt, et al., "<u>Deep Reinforcement Learning with Double</u> <u>Q-learning</u>", AAAI, 2016

DQN with Prioritized Experience Replay

- An RL agent can learn more effectively from some transitions than from others.
 - Transitions may be more or less surprising, redundant, or task-relevant
 - Some transitions may not be immediately useful, but might become so when the agent competence increases
- TD-error prioritization: transitions with higher TD-error δ_i are replayed more frequently
 - p_i priority of transition *i*: (a) $p_i = |\delta_i|$; (b) $p_i = |\delta_i| + \epsilon$; (c) $p_i = \frac{1}{\operatorname{rank}(i)}$
- Stochastic Prioritization
 - Probability of sampling transition $i: P(i) = \frac{p_i^{\alpha}}{\sum_{\nu} p_{\nu}^{\alpha}}$
- Annealing the Bias
 - Q-learning update with weighted importance-sampling with weight $w_i = \left(\frac{1}{N} \cdot \frac{1}{P(i)}\right)^{\beta}$
 - Linearly anneal β from β_0 to 1: the unbiased nature of the updates is most important near convergence at the end of training

Algorithm 1 Double DQN with proportional prioritization

- 1: Input: minibatch k, step-size η , replay period K and size N, exponents α and β , budget T.
- 2: Initialize replay memory $\mathcal{H} = \emptyset$, $\Delta = 0$, $p_1 = 1$
- 3: Observe S_0 and choose $A_0 \sim \pi_{\theta}(S_0)$
- 4: for t = 1 to T do
- 5: Observe S_t, R_t, γ_t
- 6: Store transition $(S_{t-1}, A_{t-1}, R_t, \gamma_t, S_t)$ in \mathcal{H} with maximal priority $p_t = \max_{i < t} p_i$
- 7: if $t \equiv 0 \mod K$ then
- 8: for j = 1 to k do
- 9: Sample transition $j \sim P(j) = p_j^{\alpha} / \sum_i p_i^{\alpha}$
- 10: Compute importance-sampling weight $w_j = (N \cdot P(j))^{-\beta} / \max_i w_i$
- 11: Compute TD-error $\delta_j = \bar{R}_j + \gamma_j Q_{\text{target}} (S_j, \arg \max_a Q(S_j, a)) Q(S_{j-1}, A_{j-1})$
- 12: Update transition priority $p_j \leftarrow |\delta_j|$
- 13: Accumulate weight-change $\Delta \leftarrow \Delta + w_j \cdot \delta_j \cdot \nabla_{\theta} Q(S_{j-1}, A_{j-1})$
- 14: end for
- 15: Update weights $\theta \leftarrow \theta + \eta \cdot \Delta$, reset $\Delta = 0$
- 16: From time to time copy weights into target network $\theta_{\text{target}} \leftarrow \theta$
- 17: end if
- 18: Choose action $A_t \sim \pi_{\theta}(S_t)$

19: end for

Least Squares Prediction

• And experience ${\mathcal D}$ consisting of (state, value) pairs

 $\mathcal{D} = \{ \langle s_1, v_1^{\pi} \rangle, \langle s_2, v_2^{\pi} \rangle, ..., \langle s_T, v_T^{\pi} \rangle \}$

Least squares algorithms find parameter vector w minimizing

$$LS(\mathbf{w}) = \sum_{t=1}^{T} (v_t^{\pi} - \hat{v}(s_t, \mathbf{w}))^2$$

- Experience replay finds least squares solution, but it may take many iterations
- Using *linear* value function approximation $\hat{v}(s, \mathbf{w}) = \mathbf{x}(s)^{\mathrm{T}}\mathbf{w}$
- We can solve the least squares solution directly

Linear Least Squares Prediction (2)

• At minimum of $LS(\mathbf{w})$, the expected update must be zero

$$\mathbb{E}_{\mathcal{D}} [\Delta \mathbf{w}] = 0$$

$$\alpha \sum_{t=1} \mathbf{x}(s_t) (\mathbf{v}_t^{\pi} - \mathbf{x}(s_t)^{\top} \mathbf{w}) = 0$$

$$\sum_{t=1}^{T} \mathbf{x}(s_t) \mathbf{v}_t^{\pi} = \sum_{t=1}^{T} \mathbf{x}(s_t) \mathbf{x}(s_t)^{\top} \mathbf{w}$$

$$\mathbf{w} = \left(\sum_{t=1}^{T} \mathbf{x}(s_t) \mathbf{x}(s_t)^{\top}\right)^{-1} \sum_{t=1}^{T} \mathbf{x}(s_t) \mathbf{v}_t^{\pi}$$

- For N features, direct solution time is $O(N^3)$
- Incremental solution time is $O(N^2)$ using Shermann-Morrison

Linear Least Squares Prediction Algorithms

- We do not know true values v_t^{π}
- In practice, our "training data" must use noisy or biased samples of v

LSMC Least Squares Monte-Carlo uses return $v_t^{\pi} \approx G_t$

LSTD Least Squares Temporal-Difference uses TD target $v_t^{\pi} \approx R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w})$

LSTD(λ) Least Squares TD(λ) uses λ -return $v_t^{\pi} \approx \frac{G_t^{\lambda}}{C_t}$

• In each case solve directly for fixed point of MC / TD / TD(λ)

Linear Least Squares Prediction Algorithms (2)

L

LSMC

$$0 = \sum_{t=1}^{T} \alpha(G_t - \hat{v}(S_t, \mathbf{w}))\mathbf{x}(S_t)$$

$$\mathbf{w} = \left(\sum_{t=1}^{T} \mathbf{x}(S_t)\mathbf{x}(S_t)^{\top}\right)^{-1} \sum_{t=1}^{T} \mathbf{x}(S_t)G_t$$
LSTD

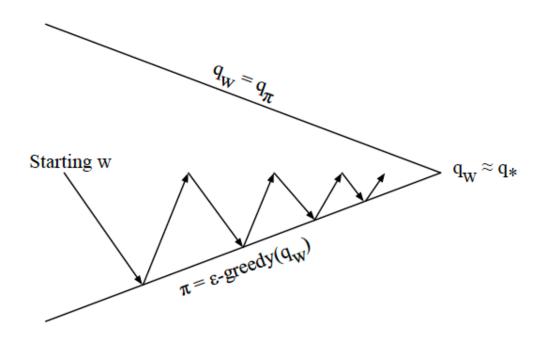
$$0 = \sum_{t=1}^{T} \alpha(R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w}) - \hat{v}(S_t, \mathbf{w}))\mathbf{x}(S_t)$$

$$\mathbf{w} = \left(\sum_{t=1}^{T} \mathbf{x}(S_t)(\mathbf{x}(S_t) - \gamma \mathbf{x}(S_{t+1}))^{\top}\right)^{-1} \sum_{t=1}^{T} \mathbf{x}(S_t)R$$
-STD(λ)

$$0 = \sum_{t=1}^{T} \alpha \delta_t E_t$$

$$\mathbf{w} = \left(\sum_{t=1}^{T} E_t(\mathbf{x}(S_t) - \gamma \mathbf{x}(S_{t+1}))^{\top}\right)^{-1} \sum_{t=1}^{T} E_t R_{t+1}$$

Least Squares Policy Iteration



- Policy evaluation Policy evaluation by least squares Q-learning
- Policy improvement Greedy policy improvement

Least Squares Action-Value Function Approximation

- Approximate action-value function $q_{\pi}(s, a)$
- using linear combinations of features $\mathbf{x}(s, a)$

 $\hat{q}(s, a, \mathbf{w}) = \mathbf{x}(s, a)^{\mathrm{T}} \mathbf{w} \approx q_{\pi}(s, a)$

- Minimize least squares error between $\hat{q}(s, a, \mathbf{w})$ and $q_{\pi}(s, a)$
- from experience generated using policy π
- consisting of ((state,action), value) pairs

$$\mathcal{D} = \{ \langle (s_1, a_1), v_1^{\pi} \rangle, \langle (s_2, a_2), v_2^{\pi} \rangle, ..., \langle (s_T, a_T), v_T^{\pi} \rangle \}$$

Least Squares Q-Learning

• Consider the following linear Q-learning update

$$\delta = R_{t+1} + \gamma \hat{q}(S_{t+1}, \pi(S_{t+1}), \mathbf{w}) - \hat{q}(S_t, A_t, \mathbf{w})$$
$$\Delta \mathbf{w} = \alpha \delta \mathbf{x}(S_t, A_t)$$

• LSTDQ algorithm: solve for total update = zero

$$0 = \sum_{t=1}^{T} \alpha(R_{t+1} + \gamma \hat{q}(S_{t+1}, \pi(S_{t+1}), \mathbf{w}) - \hat{q}(S_t, A_t, \mathbf{w}))\mathbf{x}(S_t, A_t)$$
$$\mathbf{w} = \left(\sum_{t=1}^{T} \mathbf{x}(S_t, A_t)(\mathbf{x}(S_t, A_t) - \gamma \mathbf{x}(S_{t+1}, \pi(S_{t+1})))^{\top}\right)^{-1} \sum_{t=1}^{T} \mathbf{x}(S_t, A_t)R_{t+1}$$

Least Squares Policy Iteration (LSPI)

function LSPI-TD(\mathcal{D}, π_0) $\pi' \leftarrow \pi_0$ repeat $\pi \leftarrow \pi'$ $Q \leftarrow \mathsf{LSTDQ}(\pi, \mathcal{D})$ for all $s \in S$ do $\pi'(s) \leftarrow \operatorname{argmax} Q(s, a)$ a∈A end for until $(\pi \approx \pi')$ return π end function