• • • • • • • • • • •

Model-Free Prediction

CMPS 4660/6660: Reinforcement Learning

Acknowledgement: slides adapted from David Silver's <u>RL course</u>

Agenda

- Monte Carlo Method –
- TD(0)
- n-step TD
- TD(λ)

 Temporal-difference (TD) learning

Model-free reinforcement learning

- Planning by dynamic programming
 - Solve a *known* MDP
- Model-free prediction
 - Estimate the value function of an *unknown* MDP
- Model-free control
 - Optimize the value function of an *unknown* MDP

Monte-Carlo Reinforcement Learning

- MC methods learn directly from episodes of experience
 - Sample sequences of states, action, rewards from actual or simulated interaction with an environment
 - Model-free: no knowledge of MDP transitions/rewards
- MC uses the simplest possible idea: value = mean return
- MC learns from complete episodes
 - no bootstrapping
 - only applies to episodic MDPs that always terminate

Monte-Carlo Policy Evaluation

• Goal: learn v_{π} from episodes of experience under a stationary policy π

$$S_0, A_0, R_1, \dots, S_{T-1}, A_{T-1}, R_T \sim \pi$$

• Recall that the *return* is the total discounted reward:

$$G_t \doteq R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-1} R_T$$

• Recall that the value function is the expected return:

$$\nu_{\pi}(s) \doteq \mathbb{E}_{\pi}(G_t | S_t = s)$$

- Monte-Carlo policy evaluation uses empirical mean return
 - instead of expected return (which is unknown)

First-Visit Monte-Carlo Policy Evaluation

- To evaluate state *s*
- The first time-step t that state s is visited in an episode
- Increment counter $N(s) \leftarrow N(s) + 1$
- Increment total return $S(s) \rightarrow S(s) + G_t$
- Value is estimated by mean return $V(s) \leftarrow S(s)/N(s)$
- By law of large numbers, $V(s) \rightarrow v_{\pi}(s)$ as $N(s) \rightarrow \infty$
 - $E(V(s)) = v_{\pi}(s)$: V(s) is an unbiased estimate of $v_{\pi}(s)$
 - $\sqrt{\operatorname{Var}(V(s))} = \sigma/\sqrt{N(s)}$: rate of convergence is $1/\sqrt{N(s)}$

First-Visit Monte-Carlo Policy Evaluation

Input: a policy π to be evaluated

Initialize:

 $V(s) \in \mathbb{R}$, arbitrarily, for $s \in S$ $Return(s) \leftarrow$ an empty list for for $s \in S$

Loop forever (for each episode):

Generate an episode following $\pi: S_0, A_0, R_1, \dots, S_{T-1}, A_{T-1}, R_T$ $G \leftarrow 0$

Loop for each step of episode, t = T - 1, T - 2, ..., 0:

 $G \leftarrow \gamma G + R_{t+1}$ Unless S_t appears in S_0, S_1, \dots, S_{t-1} : Append G to $Return(S_t)$ $V(S_t) \leftarrow average(Return(S_t))$

Every-Visit Monte-Carlo Policy Evaluation

- To evaluate state *s*
- Every time-step t that state s is visited in an episode
- Increment counter $N(s) \leftarrow N(s) + 1$
- Increment total return $S(s) \rightarrow S(s) + G_t$
- Again $V(s) \rightarrow v_{\pi}(s)$ as $N(s) \rightarrow \infty$
 - See Singh and Sutton, "Reinforcement learning with replacing eligibility traces", 1996

Incremental Mean

- Let $(X_n)_{n\geq 0}$ be an *i*. *i*. *d*. sequence of random variables with mean $\mu = E[X_0]$
- Let θ_n be the empirical mean of X_1, X_2, \dots, X_n
- θ_n can be computed incrementally

Incremental Monte-Carlo Updates

- Update V(s) after each episode S_0 , A_0 , R_1 , ..., S_{T-1} , A_{T-1} , R_T
- For each state S_t with return G_t :

 $N(S_t) \leftarrow N(S_t) + 1$

$$V(S_t) \leftarrow V(S_t) + \frac{1}{N(S_t)} (G_t - V(S_t))$$

- Constant- α MC: $V(S_t) = V(S_t) + \alpha (G_t V(S_t))$
 - Useful in non-stationary problems to track a running mean, i.e. forget old episodes
 - A special case of Widrow-Hoff learning rule (1960)
- MC with a general stepsize: $V(S_t) = V(S_t) + \alpha (N(S_t)) (G_t V(S_t))$

Estimation of Mean

- Let $(X_n)_{n\geq 0}$ be an *i*. *i*. *d*. sequence of random variables with mean $\mu = E[X_0]$ and a bounded variance
- Consider the estimator: $\theta_{n+1} = \theta_n + \alpha_n (X_{n+1} \theta_n)$
- Theorem: if $\sum_{n\geq 0} \alpha_n = \infty$ and $\sum_{n\geq 0} \alpha_n^2 < \infty$, then $\theta_n \to \mu$ almost surely, that is, $\Pr\left(\lim_{n\to\infty} \theta_n = \mu\right) = 1.$
 - A common example: $\alpha_n = \frac{1}{n^a}$ with $\frac{1}{2} < a \le 1$
- For constant stepsize α that is small enough, $\limsup_{n \to \infty} \Pr(\|\theta_n \mu\| > \epsilon) \le b(\epsilon) \cdot \alpha$, with $b(\epsilon) < \infty$.

Estimation of Mean as Stochastic Approximation

$$\begin{aligned} \theta_{n+1} &= \theta_n + \alpha_n (X_{n+1} - \theta_n) \\ &= \theta_n + \alpha_n [\mu + (X_{n+1} - \mu) - \theta_n] \\ &= \theta_n + \alpha_n [\mu + \omega_n - \theta_n] \\ &= \theta_n + \alpha_n [\mu - \theta_n + \omega_n] \\ &= \theta_n + \alpha_n [\mu - \theta_n + \omega_n] \\ &= \theta_n + \alpha_n [h(\theta_n) + \omega_n] \end{aligned}$$

Want to find θ^* such that $h(\theta^*) = 0$ from noisy observations $h(\theta_n) + \omega_n$, $n \ge 0$

Stochastic Approximation

 Stochastic Approximation Methods: a family of iterative stochastic optimization algorithms that attempt to find zeroes or extrema of functions which cannot be computed directly, but only estimated via noisy observations.

• The first and prototypical algorithms of this kind are: *Robbins-Monro* (1951) and *Kiefer-Wolfowitz* (1952) algorithms

Robbins-Monro Stochastic Approximation

- We have a function $h(\theta)$ and want to find θ^* such that $h(\theta^*) = 0$
- But only have noisy observations $Y_n = h(\theta_n) + \omega_n$
- SA algorithm: $\theta_{n+1} = \theta_n + \alpha_n Y_n$ $= \theta_n + \alpha_n [h(\theta_n) + \omega_n], \qquad n \ge 0$
- The same framework applies to MC, TD, Q-learning, and other RL algorithms
 - MC: $h(\theta) \doteq \mu \theta$
 - TD(0): $h(\theta) \doteq T^{\pi}(\theta) \theta$

Function Minimization via Stochastic Approximation

- Suppose we wish to minimize a (convex) function $f(\theta)$. Define $h(\theta) = -\nabla f(\theta) = -\frac{\partial f}{\partial \theta}$, we need to solve $h(\theta) = 0$.
- The basic iteration is

$$\theta_{n+1} = \theta_n + \alpha_n [-\nabla f(\theta) + \omega_n], \quad n \ge 0$$

• This is a "noisy" version of gradient descent algorithm.

Stochastic Approximation and ODE

• A common approach to prove the convergence of SA algorithms is to consider the ordinary differential equation (ODE):

$$\frac{d}{dt}\theta(t) = h(\theta(t))$$
 or $\dot{\theta} = h(\theta)$

- Under suitable conditions on h(θ), {ω_n} and diminishing {α_n}, {θ_n} asymptotically "track" a trajectory {θ(t)} of the ODE and converge to a stationary point θ*: h(θ*) = 0 of the ODE
- References:
 - <u>https://webee.technion.ac.il/shimkin/LCS11/ch5_SA.pdf</u>
 - H. Kushner and G. Yin, Stochastic Approximation Algorithms and Applications, Springer, 1997.
 - V. Borkar, Stochastic Approximation: A Dynamic System Viewpoint, Hindustan, 2008 16

Stochastic Approximation (constant stepsize)

• The Robbins-Monro algorithm:

 $\theta_{n+1} = \theta_n + \alpha_n Y_n = \theta_n + \alpha_n [h(\theta_n) + \omega_n]$

- For constant stepsize $\alpha_n = \alpha$, $\{\theta_n\}$ is a Markov chain. If it is stable, one can only hope $\{\theta_n\}$ has a stationary distribution that assigns a high probability to a neighborhood of θ .
- What can be expected? For all $\epsilon > 0$,

 $\limsup_{n \to \infty} \Pr(||\theta_n - \theta^*|| > \epsilon) \le \alpha \cdot b(\epsilon) \text{, with } b(\epsilon) < \infty$

• constant stepsize is more appropriate for nonstationary environment

Improvements of Monte Carlo Method

- Quasi-Monte Carlo method
 - uses non-*i.i.d.* sequence
 - rate of convergence close to $\frac{1}{n}$
 - may have issues for high dimensional random vectors
- Importance Sampling
 - estimates expected values under one distribution given samples from another
 - reduces variance
 - explained later

Agenda

- Monte Carlo Method
- TD(0)
- n-step TD
- TD(λ)

Temporal-Difference Learning

- TD methods learn directly from episodes of experience
- TD is model-free: no knowledge of MDP transitions / rewards
- TD learns from incomplete episodes, by bootstrapping
- TD updates a guess towards a guess

Expressions of Value Function

• Conditional expectation of return:

$$v_{\pi}(s) = \mathbb{E}_{\pi}(G_t | S_t = s)$$

• Bellman Equation:

...

$$v_{\pi}(s) = \mathbb{E}_{\pi} (R_{t+1} + \gamma v_{\pi}(S_{t+1}) | S_t = s)$$

$$v_{\pi}(s) = \mathbb{E}_{\pi} (R_{t+1} + \gamma R_{t+2} + \gamma^2 v_{\pi}(S_{t+2}) | S_t = s)$$

$$v_{\pi}(s) = \mathbb{E}_{\pi} (R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 v_{\pi}(S_{t+3}) | S_t = s)$$

MC and TD

- Goal: learn v_{π} from episodes of experience under policy π
- Incremental every-visit Monte-Carlo
 - Update value $V(S_t)$ toward *actual* return G_t

$$V(S_t) \leftarrow V(S_t) + \alpha \left(\frac{G_t}{G_t} - V(S_t) \right)$$

- Simplest temporal-difference learning algorithm: TD(0)
 - Update value $V(S_t)$ toward *estimated* return $R_{t+1} + \gamma V(S_{t+1})$

$$V(S_t) \leftarrow V(S_t) + \alpha \left(\frac{R_{t+1}}{1 + \gamma V(S_{t+1})} - V(S_t) \right)$$

- $R_{t+1} + \gamma V(S_{t+1})$ is called the *TD target*
- $\delta_t = R_{t+1} + \gamma V(S_{t+1}) V(S_t)$ is called the *TD error*

Tabular TD(0) for estimating v_{π}

```
Input: \pi (policy to be evaluated), \alpha \in (0,1] (step size)
```

```
Initialize V(s) for s \in S^+, arbitrarily except V(s^*) = 0
```

```
Loop for each episode:
```

```
Initizlize S
```

```
Loop for each step of epsiode:
```

```
Choose A \sim \pi(\cdot | S)

Take action A, observe R, S'

V(S) \leftarrow V(S) + \alpha [R + \gamma V(S') - V(S)]

S \leftarrow S'
```

```
until S is terminal
```

MC vs. TD

- TD can learn *before* knowing the final outcome
 - TD can learn online after every step
 - MC must wait until end of episode before return is known

- TD can learn *without* the final outcome
 - TD can learn from incomplete sequences
 - MC can only learn from complete sequences
 - TD works in continuing (non-terminating) environments
 - MC only works for episodic (terminating) environments

Driving Home Example

State	Elapsed Time (minutes)	Predicted Time to Go	Predicted Total Time
leaving office, friday at 6	0	30	30
reach car, raining	5	35	40
exiting highway	20	15	35
2ndary road, behind truck	30	10	40
entering home street	40	3	43
arrive home	43	0	43

Driving Home Example: MC vs. TD

Changes recommended by Monte Carlo methods (α =1) Changes recommended by TD methods (α =1)

TD(0) as Stochastic Approximation

Rewrite $V(S_t) \leftarrow V(S_t) + \alpha [R_{t+1} + \gamma V_t(S_{t+1}) - V_t(s)]$ as

 $V_{n+1}(s) = V_n(s) + \alpha_n(s) \left[\frac{R_{n+1} + \gamma V_n(S_{n+1}) - V_n(s)}{\alpha_n(s)} \right] \quad \alpha_n(s) = 0 \text{ if } s \neq S_n$

 $= V_n(s) + \alpha_n(s)[Z(s, V_n) - V_n(s)] \text{ where } Z(s, V_n) \doteq R_{n+1} + \gamma V_n(S_{n+1}) \text{ for } S_n = s$

 $= V_n(s) + \alpha_n(s) \left[E_{\pi}(Z(s, V_n)) - V_n(s) + Z(s, V_n) - E_{\pi}(Z(s, V_n)) \right]$

 $= V_n(s) + \alpha_n(s)[h(s, V_n) + \omega_n(s)]$

TD(0) as Stochastic Approximation

Rewrite $V(S_t) \leftarrow V(S_t) + \alpha[R_{t+1} + \gamma V(S_{t+1}) - V(S_t)]$ as $V_{n+1}(s) = V_n(s) + \alpha_n(s)[h(s, V_n) + \omega_n(s)]$ where $h(s, V_n) \doteq E_{\pi}(Z(s, V_n)) - V_n(s)$ $= E_{\pi}[R_{n+1} + \gamma V_n(S_{n+1})] - V_n(s)$ $= (T^{\pi}V_n)(s) - V_n(s)$ $\omega_n(s) = Z(s, V_n) - E_{\pi}(Z(s, V_n))$: zero mean but depend on V_n

TD(0) is an example of asynchronous SA

Theorem: If $\sum_{n\geq 0} \alpha_n(s) = \infty$ and $\sum_{n\geq 0} \alpha_n^2(s) < \infty$ for all $s, \{V_n\}$ converge to the unique solution of $H(V) \doteq T^{\pi}V - V = 0$

• For the conditions on α to hold, each state should be visited "relatively often"

Bias/Variance Trade-Off

- Return $G_t \doteq R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots + \gamma^{T-t-1} R_T$ is unbiased estimate of $v_{\pi}(S_t)$
- True TD target $R_{t+1} + \gamma v_{\pi}(S_{t+1})$ is unbiased estimate of $v_{\pi}(S_t)$
- TD target $R_{t+1} + \gamma V(S_{t+1})$ is biased estimate of $v_{\pi}(S_t)$
- TD target is much lower variance than the return:
 - Return depends on *many* random actions, transitions, rewards
 - TD target depends on *one* random action, transition, reward

MC vs. TD (2)

- MC has high variance, zero bias
 - Good convergence properties
 - (even with function approximation)
 - Not very sensitive to initial value
 - Very simple to understand and use

TD has low variance, some bias Usually more efficient than MC TD(0) converges to $v_{\pi}(s)$ (but not always with function approximation) More sensitive to initial value

Random Walk Example

Random Walk Example

Values learned after various no. of episodes in TD(0)

Batch MC and TD

- MC and TD converge: $V(s) \rightarrow v_{\pi}(s)$ as experience $\rightarrow \infty$
- But what about batch solution for finite experience?

$$s_{0}^{1}, a_{0}^{1}, r_{1}^{1}, \dots, S_{T_{1}}^{1}$$
$$\vdots$$
$$s_{0}^{K}, a_{0}^{K}, r_{1}^{K}, \dots, S_{T_{K}}^{K}$$

- e.g., repeatedly sample episode $k \in \{1, ..., K\}$
- Apply MC or TD(0) to episode k

AB Example

Two states A, B; no discounting; 8 episodes of experience

A, 0, B, 0 B, 1 B, 0

What is V(A), V(B)?

AB Example

Two states A, B; no discounting; 8 episodes of experience

What is V(A), V(B)? V(B) = 0.75

Batch MC

- MC converges to solution with minimum mean-squared error
- Best fit to the observed returns

$$\sum_{k=1}^{K} \sum_{t=0}^{T_k - 1} \left(G_t^k - V(s_t^k) \right)^2$$

• In the AB example, V(A) = 0

Batch TD(0)

- TD(0) converges to solution of max likelihood Markov model
- Solution to the MDP $\langle S, A, \hat{P}, \hat{r}, \gamma \rangle$ that best fits the data

$$\hat{P}_{ss'}(a) = \frac{1}{N(s,a)} \sum_{k=1}^{K} \sum_{t=0}^{T_k - 1} \mathbf{1}(s_t^k, a_t^k, s_{t+1}^k = s, a, s')$$
$$\hat{r}(s,a) = \frac{1}{N(s,a)} \sum_{k=1}^{K} \sum_{t=0}^{T_k - 1} \mathbf{1}(s_t^k, a_t^k = s, a) r_{t+1}^k$$

- Called certainty-equivalence estimate
- In the AB example, V(A) = 0.75

MC vs. TD (3)

- TD exploits Markov property
 - Usually more efficient in Markov environments
- MC does not exploit Markov property
 - Usually more efficient in non-Markov environments

Monte-Carlo Backup

 $V(S_t) \leftarrow V(S_t) + \alpha[G_t - V(S_t)]$

TD(0) Backup

$V(S_t) \leftarrow V(S_t) + \alpha [R_{t+1} + \gamma V(S_{t+1}) - V(S)]$

Dynamic Programming Backup

 $V(S_t) \leftarrow \mathbf{E}_{\pi}[R_{t+1} + \gamma V(S_{t+1})]$

Bootstrapping and Sampling

- Bootstrapping: update involves an estimate
 - MC does not bootstrap
 - DP bootstraps
 - TD bootstraps
- Sampling: update samples an expectation
 - MC samples
 - DP does not sample
 - TD samples

Unified View of Reinforcement Learning

Agenda

- Monte Carlo Method
- TD(0)
- n-step TD
- TD(λ)

Expressions of Value Function

• Conditional expectation of return:

$$v_{\pi}(s) = \mathbb{E}_{\pi}(G_t | S_t = s)$$

• Bellman Equation:

$$v_{\pi}(s) = \mathbb{E}_{\pi} (R_{t+1} + \gamma v_{\pi}(S_{t+1}) | S_t = s)$$

$$v_{\pi}(s) = \mathbb{E}_{\pi} (R_{t+1} + \gamma R_{t+2} + \gamma^2 v_{\pi}(S_{t+2}) | S_t = s)$$

$$v_{\pi}(s) = \mathbb{E}_{\pi} (R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 v_{\pi}(S_{t+3}) | S_t = s)$$

n-Step Return

•

• Consider the following n-step returns for $n = 1, 2, ..., \infty$:

$$n = 1 \text{ (TD(0))} \quad G_t^{(1)} = R_{t+1} + \gamma V(S_{t+1})$$

$$n = 2 \qquad G_t^{(2)} = R_{t+1} + \gamma R_{t+2} + \gamma^2 V(S_{t+2})$$

$$\vdots \qquad \vdots$$

$$n = \infty \text{ (MC)} \qquad G_t^{(\infty)} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-t-1} R_T$$

$$G_t^{(T-t-1)} = G_t^{(T-t)} = \dots = G_t^{(\infty)}$$

n-step temporal-difference learning

$$V(S_t) = V(S_t) + \alpha \left(\frac{G_t^{(n)}}{I} - V(S_t) \right)$$

n-step TD

Large Random Walk Example

Performance of n-step TD methods as a function of α , for various values of n, on a 19-state random walk task (Example 7.1 in SB).

Agenda

- Monte Carlo Method
- TD(0)
- n-step TD
- TD(λ)

Averaging *n*-Step Returns

- We can average *n*-step returns over different *n*
- e.g. average the 2-step and 4-step returns

$$\frac{1}{2}G^{(2)} + \frac{1}{2}G^{(4)}$$

- Combines information from two different time-steps
- Can we efficiently combine information from all time-steps?

λ -return

- The λ -return G_t^{λ} combines all n-step return $G_t^{(n)}$
- Using weight $(1 \lambda)\lambda^{n-1}$

$$G_t^{\lambda} \doteq (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} G_t^{(n)}$$

• Forward-view $TD(\lambda)$

$$V(S_t) = V(S_t) + \alpha \left(\frac{G_t^{\lambda}}{I} - V(S_t) \right)$$

$TD(\lambda)$ weighting function

Forward-View $TD(\lambda)$ on Large Random Walk

Forward View TD(λ)

- Update value function towards the λ -return
- Forward-view looks into the future to compute G_t^{λ}
- Like MC, can only be computed from complete episodes

Backward View $TD(\lambda)$

- Forward view provides theory
- Backward view provides mechanism
- Update online, every step, from incomplete sequences

Eligibility Traces

- Frequency heuristic: assign credit to most frequent states
- Recency heuristic: assign credit to most recent states
- Eligibility traces combine both heuristics

Backward View $TD(\lambda)$

- Keep an eligibility trace for every state *s*
- Update value V(s) for every state s
- In proportion to TD-error δ_t and eligibility trace $E_t(s)$

 $\delta_t = R_{t+1} + \gamma V(S_{t+1}) - V(S_t)$ $V(s) = V(s) + \alpha \delta_t E_t(s), \forall s \in S$

Tabular TD(λ) for estimating v_{π}

Input: π : policy to be evaluated, α : step size, $\lambda \in [0,1]$: trace decay rate Initialize V(s) for $s \in S^+$, arbitrarily except $V(s^*) = 0$

```
Loop for each episode:
```

```
Initizlize S, E(s) = 0, \forall s
```

Loop for each step of epsiode:

```
Choose A \sim \pi(\cdot | S)

Take action A, observe R, S'

E(s) \leftarrow \gamma \lambda E(s) + \mathbf{1}(S = s), \forall s

\delta = R + \gamma V(S') - V(S)

V(s) \leftarrow V(s) + \alpha \delta E(s), \forall s

S \leftarrow S'
```

until S is terminal

$TD(\lambda)$ and TD(0)

• When $\lambda = 0$, only current state is updated

$$E_t(s) = \mathbf{1}(S_t = s)$$
$$V(s) = V(s) + \alpha \delta_t E_t(s)$$

• This is exactly equivalent to TD(0) update

$$V(S_t) = V(S_t) + \alpha \delta_t$$

Offline Equivalence of Forward and Backward TD

Offline updates

- Updates are accumulated within episode
- but applied in batch at the end of episode

Theorem

The sum of offline updates is identical for forward-view and backward-view $TD(\lambda)$

$$\sum_{t=0}^{T-1} \alpha \delta_t E_t(s) = \sum_{t=0}^{T-1} \alpha (G_t^{\lambda} - V(S_t) \mathbf{1}(S_t = s), \forall s \in S$$

TD(1) and MC

- TD(1) is roughly equivalent to every-visit Monte-Carlo
- When $\lambda = 1$, credit is deferred until end of episode
- Consider episodic environments with offline updates
- Error is accumulated online, step-by-step
- If value function is only updated offline at the end of episode
- Then total update is exactly the same as MC

TD(1) and MC

- Consider an episode where s is visited once at time-step k,
- TD(1) eligibility trace discounts time since visit,

$$E_t(s) = \gamma E_{t-1}(s) + \mathbf{1}(S_t = s)$$
$$= \begin{cases} 0 & \text{if } t < k \\ \gamma^{t-k} & \text{if } t \ge k \end{cases}$$

• TD(1) updates accumulate error online

$$\sum_{t=0}^{T-1} \alpha \delta_t E_t(s) = \alpha \sum_{t=k}^{T-1} \gamma^{t-k} \delta_t$$
$$= \alpha \left(\delta_k + \gamma \delta_{k+1} + \dots + \gamma^{T-1-k} \delta_{T-1} \right)$$
$$= \alpha \left(G_k - V(S_k) \right)$$

Telescoping in TD(1)

$$\begin{split} \delta_{t} + \gamma \delta_{t+1} + \cdots + \gamma^{T-1-t} \delta_{T-1} \\ &= R_{t+1} + \gamma V(S_{t+1}) - V(S_{t}) \\ &+ \gamma R_{t+2} + \gamma^{2} V(S_{t+2}) - \gamma V(S_{t+1}) \\ &+ \gamma^{2} R_{t+3} + \gamma^{3} V(S_{t+3}) - \gamma^{2} V(S_{t+2}) \\ &\vdots \\ &+ \gamma^{T-1-t} R_{T} + \gamma^{T-t} V(S_{T}) - \gamma^{T-t-1} V(S_{T-1}) \\ &= R_{t+1} + \gamma R_{t+2} + \cdots + \gamma^{T-1-t} R_{T} - V(S_{t}) \\ &= G_{t} - V(S_{t}) \end{split}$$

When $\lambda = 1$, sum of TD errors telescopes into MC error

Online Equivalence of Forward and Backward TD

Online updates

- TD(λ) updates are applied online at each step within episode
- Forward and backward-view $TD(\lambda)$ are slightly different
- NEW: Exact online TD(λ) achieves perfect equivalence
- By using a slightly different form of eligibility trace
- Sutton and von Seijen, ICML 2014

Some evidence for TD

 Psychology recognizes two fundamental learning processes, analogous to prediction and control

- The details of the TD(λ) algorithm match key features of biological learning
 - Dopamine = TD error is the most important interaction ever between AI and neuroscience

• Read SB 15.6