
Finite Markov Decision Processes

CMPS 4660/6660: Reinforcement Learning
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Agent and Environment
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Goals and Rewards

• A reward 𝑅! is a scalar feedback signal
• Indicates how well agent is doing at step 𝑡

• The agent’s job is to maximize cumulative reward
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Reward Hypothesis: All goals can be described by the maximization 
of expected cumulative reward

§ Do you agree with the statement? 



Maze Example

• Goal: escaping from the maze as soon as 
possible

• Assume 𝑅! = 1 for escaping and 𝑅! = 0 
otherwise
• Does this work? 
• What is a better way to assign 

reward?

4



Chess Example

• Goal: win the game

• What is a good assignment of rewards?
• +1(win), -1(lose), 0(draw)
• reward only for actually winning, not for 

achieving subgoals, e.g., taking opponent’s 
pieces or gaining control of the center of board

• Delayed reward

• reward signal is your way of communicating to 
the robot what you want it to achieve, not how
you want it achieved
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Agent and Environment

• At each step 𝑡 the agent:
• Executes action 𝐴!
• Receives observation 𝑂!"#
• Receives scalar reward 𝑅!"#

• 𝑡 increments at env. step
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History and State

• The history is the sequence of observations, actions, rewards
• 𝐻! = 𝑂", 𝐴", 𝑅#, 𝑂#, 𝐴#, 𝑅$, … , 𝑅! , 𝑂!
• i.e. all observable variables up to time 𝑡
• e.g. the sensorimotor stream of a robot or embodied agent

• What happens next depends on the history:
• The agent selects actions
• The environment selects observations/rewards

• State is the information used to determine what happens next

• Formally, state is a function of the history:  𝑆! = 𝑓(𝐻!)
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Environment State

• The environment state 𝑆!$ is the 
environment’s private representation

• i.e. whatever data the environment uses 
to pick the next observation/reward

• The environment state is not usually 
visible to the agent

• Even if 𝑆!$ is visible, it may contain 
irrelevant information
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Agent State

• The agent state 𝑆!% is the agent's internal 
representation

• i.e. whatever information the agent uses 
to pick the next action

• i.e. it is the information used by 
reinforcement learning algorithms

• It can be any function of history:
𝑆!% = 𝑓(𝐻!)
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Fully Observable Environments

• Full observability: agent directly
observes environment state

𝑂! = 𝑆!$

• In this case, we may simply set

𝑆!% = 𝑂!
• This is not always the best choice though

• We also want the states to be “Markov” 
(to be defined shortly)

10



Partially Observable Environments

• Partial observability: agent indirectly observes environment:
• A robot with camera vision isn't told its absolute location
• A trading agent only observes current prices
• A poker playing agent only observes public cards

• Agent must construct its own state representation 𝑆!% , e.g.
• Complete history: 𝑆!% = 𝐻!
• Beliefs of environment state: 𝑆!% = Pr 𝑆!$ = 𝑠# , … , Pr 𝑆!$ = 𝑠&

• Recurrent neural network: 𝑆!% = 𝜎(𝑆!'#% 𝑊( + 𝑂!𝑊))
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Episodic and Continuing Tasks

• Time Horizon (𝑇) = the number of time steps in each episode

• Episodic tasks: agent-environment interaction naturally breaks into episodes
• E.g., plays of games
• Each episode ends in a special terminal state
• 𝑇 is typically random (varies from episode to episode)

• Continuing tasks: agent–environment interaction does not break naturally into 
identifiable episodes, but goes on continually without limit
• E.g., a robot with a long life span
• Infinite horizon 
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Markov Decision 
Processes
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Markov chains

Markov reward processes

Markov decision processes

Value functions

Bellman equations



Introduction to Markov Decision Processes 

• Markov decision processes formally describe an environment for 
reinforcement learning

• Where the environment is fully observable
• i.e. The current state completely characterizes the process

• Almost all RL problems can be formalized as MDPs, e.g., 
• Optimal control primarily deals with continuous MDPs
• Partially observable problems can be converted into MDPs
• Bandits are MDPs with one state
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Markov Property

• “The future is independent of the past given the present”

• A state is 𝑆! is Markov if 

Pr 𝑆!%# = 𝑠′ | 𝑆! = 𝑠, 𝐴! = 𝑎, 𝑆!&# = 𝑠!&#, 𝐴!&#'𝑎!&#, … , 𝑆" = 𝑠"

= Pr 𝑆!%# = 𝑠( 𝑆! = 𝑠, 𝐴! = 𝑎

• The state captures all relevant information from the history

• Once the state is known, the history may be thrown away

• i.e. The state is a sufficient statistic of the future

Andrey Markov 
(1856-1922)
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https://en.wikipedia.org/wiki/Sufficient_statistic


Markov Chains

• A discrete time Markov chain is a memoryless random process, i.e., a 
sequence of random states 𝑆", 𝑆#, … with the Markov property.

• A finite Markov Chain is a tuple 𝒮, 𝑃

• 𝒮 is a (finite) set of states

• 𝑃 is a state transition probability matrix,  𝑃((* = Pr 𝑆! = 𝑠* 𝑆!'# = 𝑠
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Example: Gridworld

• States: Agent's location

• Actions: N, E, S, W

• Actions that would take the agent off the grid 
leave its location unchanged

• From state A, all four actions take the agent to A0 

• From state B, all actions take the agent to B0
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Example: Gridworld

• Consider the equiprobable random policy

• We have a Markov chain 𝒮, 𝑃
• 𝒮 is the set of all locations, 𝒮 = 25
• 𝑃 can be easily derived, e.g., 𝑃+, = 0.25, 
𝑃+- = 0.25, 𝑃++ = 0.5, 𝑃,,* = 1

C
D
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Pr 𝑆. = 𝐴′ 𝑆/ = 𝐶

= Pr 𝑆. = 𝐴′ 𝑆# = 𝐴 ⋅

= 𝑃,,* ⋅ 𝑃+, = 1 ⋅ 0.25 = 0.25

Pr 𝑆# = 𝐴 𝑆/ = 𝐶



Markov Reward Process

• Markov reward process is a Markov chain + rewards

• A finite Markov Reward Process is a tuple 𝒮, 𝑃, 𝑟, 𝛾
• 𝒮 is a finite set of states

• 𝑃 is a state transition probability matrix,  𝑃((* = Pr 𝑆! = 𝑠* 𝑆!'# = 𝑠

• 𝑟 is a reward function, 𝑟 𝑠 = 𝔼[𝑅!|𝑆!'# = 𝑠]
• 𝛾 is a discount factor, 𝛾 ∈ [0,1]

• Note: no actions
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Example: Gridworld

• States: Agent's location

• Actions: N, E, S, W
• Actions that would take the agent off the 

grid leave its location unchanged, but also 
result in a reward of −1. 
• From state A, all four actions yield a reward 

of +10 and take the agent to A0. 
• From state B, all actions yield a reward of 

+5 and take the agent to B0
• Other actions result in a reward of 0
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Example: Gridworld

• Consider the equiprobable random policy

• We have a Markov reward process 𝒮, 𝑃, 𝑟, 𝛾

• 𝒮 is the set of all locations, 𝒮 = 25

• 𝑃 can be easily derived

• 𝑟 can be derived for each state, e.g., 

• 𝑟 𝐶 = −1 ⋅ 0.5 + 0 ⋅ 0.5 = −0.5

• 𝑟 𝐴 = 10

C
D
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Return

• The return 𝐺! is the total discounted reward from time-step t to horizon.

• Episodic tasks: 𝐺! ≐ 𝑅!"# + 𝑅!"$ + 𝑅!"% +⋯+ 𝑅&
• Finite horizon: terminate at a fixed time 𝑇
• Termination is inevitable (to be made precise shortly) 

• Continuing tasks: 𝐺! ≐ 𝑅!"# + 𝛾𝑅!"$ + 𝛾$𝑅!"% +⋯
• 𝛾 ∈ [0,1]
• If 𝛾 < 1 and |𝑅!| ≤ 𝑅'() for ∀𝑡, then |𝐺!| ≤

#
#*+

𝑅'()
• 𝛾 = 0: Only care about immediate reward
• 𝛾 = 1: Future reward is as beneficial as immediate reward
• Another common approach: average rewards (difficult to analyze)
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Unified notation for episodic and continuing tasks

• Introduce a terminal (absorbing) state 𝑠∗ where 𝑃#∗#∗ = 1 and 𝑅! = 0 if 
𝑠!$% = 𝑠∗

• Then for both episodic and continuing tasks

𝐺! ≐ 𝑅!&% + 𝛾𝑅!&' + 𝛾'𝑅!&( +⋯ = 2
)*+

,

𝛾)𝑅!&)&%

• 𝒮& = 𝒮 ∪ {𝑠∗}
23



Why discount?

• Mathematically convenient (avoid infinite returns and values)

• Uncertainty about the future may not be fully represented

• Model the reality
• If the reward is financial, immediate rewards may earn more interest than 

delayed rewards
• Animal/human behavior shows preference for immediate reward
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Stationary Preferences

• Theorem: if we assume stationary preferences:

• Then: there are only two ways to define utilities

• Additive utility:

• Discounted utility:
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Markov Decision Process

• A Markov decision process (MDP) is a Markov reward process with decisions. It is 
an environment in which all states are Markov.

• A finite Markov Decision Process is a tuple 𝒮,𝒜, 𝑃, 𝑟, 𝛾
• 𝒮 is a finite set of states
• 𝒜(𝑠) is a finite set of actions available at state 𝑠
• 𝑃 is a state transition probability matrix,

𝑃((!(𝑎) = Pr 𝑆! = 𝑠* 𝑆!'# = 𝑠, 𝐴!'# = 𝑎
• 𝑟 is a reward function, 𝑟 𝑠, 𝑎 = 𝔼[𝑅!|𝑆!'# = 𝑠, 𝐴!'# = 𝑎]
• 𝛾 is a discount factor, 𝛾 ∈ [0,1]
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Markov Decision Process

𝑃##* 𝑎 = Pr 𝑆! = 𝑠- 𝑆!$% = 𝑠, 𝐴!$% = 𝑎
𝑟 𝑠, 𝑎 = 𝔼[𝑅!|𝑆!$% = 𝑠, 𝐴!$% = 𝑎]

𝑃((! 𝑎 = ?

𝑟 𝑠, 𝑎 = ?

Let ℛ be a finite set of rewards

𝑝 𝑠*, 𝑟 𝑠, 𝑎 = Pr 𝑆! = 𝑠*, 𝑅! = 𝑟|𝑆!'# = 𝑠, 𝐴!'# = 𝑎

I
0∈ℛ

𝑝(𝑠*, 𝑟|𝑠, 𝑎)

I
0∈ℛ

𝑟 I
(!∈𝒮

𝑝(𝑠*, 𝑟|𝑠, 𝑎)
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Policy (1)

• A policy = any rule for choosing actions

• A policy fully defines the behavior of an agent, and

• can be history dependent and/or randomized

• A stochastic stationary policy 𝜋 is a distribution over actions given states, 

𝜋 𝑎 𝑠 = Pr{𝐴! = 𝑎|𝑆! = 𝑠 } ∈ [0,1] and ∑%∈𝒜(()𝜋 𝑎 𝑠 = 1

• Stationary policies depend on the current state (not the history)

• Deterministic stationary policy: 𝐴! = 𝜋(𝑆!)

• A fundamental question: For a given optimality criterion, under what conditions is 
it optimal to use a deterministic stationary policy? 28



Policy (2) 

• Given an MDP 𝒮,𝒜, 𝑃, 𝑟, 𝛾 and a stationary policy 𝜋

• The state and reward sequence 𝑆+, 𝑅%, 𝑆%, 𝑅'… is a Markov reward process 
𝒮, 𝑃., 𝑟., 𝛾 , where

29

𝑃(,(!
8 =

𝑟8 𝑠 =

• The state sequence 𝑆+, 𝑆%, … is a Markov chain 𝒮, 𝑃.

I
%∈𝒜(()

𝜋 𝑎 𝑠 𝑃((! 𝑎

I
%∈𝒜(()

𝜋 𝑎 𝑠 𝑟 (𝑠, 𝑎)



Example: Gridworld

• States: Agent's location

• Actions: N, E, S, W
• Actions that would take the agent off the 

grid leave its location unchanged, but also 
result in a reward of −1. 
• From state A, all four actions yield a reward 

of +10 and take the agent to A0. 
• From state B, all actions yield a reward of 

+5 and take the agent to B0
• Other actions result in a reward of 0
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Example: Gridworld

• A Markov decision process 𝒮,𝒜, 𝑃, 𝑟, 𝛾

• 𝒮 is the set of all locations, 𝒮 = 25

• 𝒜 𝑠 = {N, E, S, W}

• 𝑃 and 𝑟 can be easily derived from the game rule

• 𝑃,, 𝑁 = 1, 𝑃,- 𝐸 = 1, 𝑃,. 𝑆 = 1, 𝑃,, 𝑊 = 1

• 𝑟 𝐶, 𝑁 = 𝑟 𝐶,𝑊 = −1, 𝑟 𝐶, 𝐸 = 𝑟 𝐶, 𝑆 = 0

• A stationary policy 𝜋 picks an action depending on 
the current location

• E.g., equiprobable random policy
31

C
D



Return

• The return 𝐺! is the total discounted reward from time-step t to horizon.

• Episodic tasks: 𝐺! ≐ 𝑅!"# + 𝑅!"$ + 𝑅!"% +⋯+ 𝑅&
• Finite horizon: terminate at a fixed time 𝑇
• Termination is inevitable (to be made precise shortly) 

• Continuing tasks: 𝐺! ≐ 𝑅!"# + 𝛾𝑅!"$ + 𝛾$𝑅!"% +⋯
• 𝛾 ∈ [0,1]
• If 𝛾 < 1 and |𝑅!| ≤ 𝑅'() for ∀𝑡, then |𝐺!| ≤

#
#*+

𝑅'()
• 𝛾 = 0: Only care about immediate reward
• 𝛾 = 1: Future reward is as beneficial as immediate reward
• Another common approach: average rewards (difficult to analyze)
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State-Value Function

• The state-value function 𝑣? 𝑠 of an MDP is the expected return 
starting from state 𝑠, then following policy 𝜋

𝑣8 𝑠 = 𝔼8 ∑!9/: 𝛾! 𝑅!"# 𝑆/ = 𝑠

(if 𝜋 is stationary) 

(if 𝜋 is stationary) 

= 𝔼8 ∑;9/: 𝛾; 𝑅!";"# 𝑆! = 𝑠

= 𝔼8 𝐺! 𝑆! = 𝑠
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Example: Gridworld

• Consider an equiprobable random policy

• 𝛾 = 0.8

state-value function

• Why 𝑣 𝐴 < 10 and 𝑣 𝐵 > 5?
• How to find the state-value function?
• Can we do better?  34



Action-Value Function

• The action-value function 𝑞? 𝑠, 𝑎 is the expected return starting 
from state 𝑠, taking action 𝑎, then following policy 𝜋

𝑞8 𝑠, 𝑎 = 𝔼8 ∑!9/: 𝛾! 𝑅!"# 𝑆/ = 𝑠, 𝐴/ = 𝑎

(if 𝜋 is stationary) 

(if 𝜋 is stationary) 

= 𝔼8 ∑;9/: 𝛾; 𝑅!";"# 𝑆! = 𝑠, 𝐴! = 𝑎

35

= 𝔼8 𝐺! 𝑆! = 𝑠, 𝐴! = 𝑎



Value Functions

36

𝑣? 𝑠 =,
@

𝜋 𝑎 𝑠 𝑞?(𝑠, 𝑎)

𝑞? 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 + 𝛾,
A!
𝑃AA!(𝑎) 𝑣? 𝑠B



Example: Inventory Management

• An inventory of capacity 𝑀

• 𝐴!: the number of items ordered in the evening of day 𝑡 for 
day 𝑡 + 1

• 𝐷!: the demand on day 𝑡 (independent and identically 
distributed with a known distribution)

• Payoff on day t

• purchasing cost: 𝐾𝕀{,!-"} + 𝑐𝐴!
• holding cost:  ℎ per item
• selling price: 𝑝 per item sold
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Example: Inventory Management

• State 𝑋!: the size of the inventory in the evening of day 𝑡

• Action 𝐴!: the number of items ordered in the evening of day 𝑡

• 𝑅!: reward on day 𝑡

• Transition probabilities and reward function can be derived from: 

𝑋!%# = min(𝑋! + 𝐴! , 𝑀) − 𝐷!%# %

𝑅!%# = −𝐾𝕀{,!-"} − 𝑐 (min(𝑋! + 𝐴! , 𝑀) − 𝑋!)

−ℎ𝑋! + 𝑝 (min 𝑋! + 𝐴! , 𝑀 − 𝑋!%#)%

38



MDP with a terminal state

Assumption (termination is Inevitable Under All Policies)

There exists an integer 𝑚 such that regardless of the policy used and the initial 
state, there is a positive probability that the terminal state will be reached after no 
more than 𝑚 stages; i.e., for all admissible policies 𝜋 we have

𝜌8 = max
(∈<

Pr8 𝑆= ≠ 𝑠∗ 𝑆/ = 𝑠 < 1

39

Question: For episodic tasks, when are the return/value functions well defined? 

E.g., this holds when at the end of each time step, there is a positive probability 
that the process ends (𝑚 = 1). 



MDP with a terminal state

Proof sketch: since 𝜌8 depends only on the first 𝑚 components of 𝜋 and there are 
finite number of actions, there can be only finite number of distinct 𝜌8.

(see DB p. 180 for a complete proof)

Lemma

Let 𝜌 = max
8

𝜌8, the maximum probability of not researching 𝑠∗ within 𝑚 stages 

over all starting states and policies (not necessarily stationary). We have 

(1) 𝜌<1; 

(2) Pr
8
𝑆;= ≠ 𝑠∗|𝑆/ = 𝑠 ≤ 𝜌; for any 𝜋.
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MDP with a terminal state

Theorem

𝑣8 𝑠 ≤
1

1 − 𝜌
𝐵, ∀𝑠, 𝜋

Lemma

The total reward in the 𝑚 stages between 𝑘𝑚 and 𝑘 + 1 𝑚 − 1 is bounded by 

𝜌;𝐵 where 𝐵 = 𝑚 max
?∈<,%∈𝒜(()

|𝑟(𝑠, 𝑎)|

41
(see DB p. 212 for proofs)



Major Components of an RL Agent

• Policy: agent's behavior function

• Value function: how good is each state and/or action

• Model: agent's representation of the environment

42



Policy

• A policy is the agent's behavior

• It is a map from state to action, e.g.
• Deterministic (stationary) policy: 𝑎 = 𝜋(𝑠)
• Stochastic (stationary) policy: 𝜋 𝑎 𝑠 = Pr{𝐴! = 𝑎|𝑆! = 𝑠 }
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Valuation

• Value function is a prediction of future reward

• Used to evaluate the goodness/badness of states

• And therefore to select between actions, e.g.

𝑣. 𝑠 = 𝔼. 𝑅!&% + 𝛾𝑅!&' + 𝛾'𝑅!&( +⋯ 𝑆! = 𝑠
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Model

• A model predicts what the environment will do next

• 𝑃 predicts the next state

• 𝑟 predicts the next (immediate) reward, e.g.

𝑃##*(𝑎) = Pr 𝑆! = 𝑠- 𝑆!$% = 𝑠, 𝐴!$% = 𝑎

𝑟 𝑠, 𝑎 = 𝔼[𝑅!|𝑆!$% = 𝑠, 𝐴!$% = 𝑎]
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Maze Example: Model

46

• Goal: escaping from the maze as 
soon as possible

• Rewards: -1 per time-step

• Actions: N, E, S, W

• States: Agent's location



Maze Example: Policy

• Arrows represent policy 𝜋(s) for each state 𝑠
47



Maze Example: Value Function

• Numbers represent value 𝑣(𝑠) of each state 𝑠
48



Prediction and Control

• Prediction: evaluate the future
• Given a policy

• Control: optimize the future
• Find the best policy

49



Gridworld Example: Prediction

What is the value function for the uniform random policy?

50



Gridworld Example: Control

• What is the optimal value function over all possible policies?

• What is the optimal policy?
51



Prediction and Control

• Prediction: evaluate the future
• Given a policy
• Bellman equations

• Control: optimize the future
• Find the best policy
• Bellman optimality equations

52



Bellman Equation for MDP

53

𝑣8 𝑠 ≐ 𝔼8 𝐺! 𝑆! = 𝑠

= 𝔼8 𝑅!"# + 𝛾𝐺!"# 𝑆! = 𝑠

𝐺! ≐ 𝑅!%# + 𝛾𝑅!%$ + 𝛾$𝑅!%/ + 𝛾/𝑅!%0 +⋯

= 𝑅!%# + 𝛾(𝑅!%$+𝛾𝑅!%/ + 𝛾$𝑅!%0 +⋯)

= 𝑅!%# + 𝛾𝐺!%#

Consider a stationary policy 𝜋



Bellman Equation for MDP

54

𝑣8 𝑠 ≐ 𝔼8 𝐺! 𝑆! = 𝑠

= 𝔼8 𝑅!"# + 𝛾𝐺!"# 𝑆! = 𝑠

=I
%

𝜋 𝑎 𝑠 𝑟 𝑠, 𝑎 + 𝛾I
(!
𝑃((! 𝑎 𝑣8 𝑠*

=I
%

𝜋 𝑎 𝑠 𝑟 𝑠, 𝑎 + 𝛾I
(!
𝑃((! 𝑎 𝔼 𝐺!"# 𝑆!"# = 𝑠*

Consider a stationary policy 𝜋



Bellman Equation for MDP

𝑣8 𝑠 =I
%

𝜋 𝑎 𝑠 𝑟 𝑠, 𝑎 + 𝛾I
(!
I
%

𝜋 𝑎 𝑠 𝑃((! 𝑎 𝑣8 𝑠*

= 𝑟8 𝑠 + 𝛾I
(*

𝑃((!
8 𝑣8 𝑠*
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Richard Bellman
(1856-1922)

Immediate 
reward

Discounted sum of 
future rewards



Bellman Equation in Matrix Form

• For finite state MDP, we can express 𝑣?(𝑠) using a matrix equation

𝑣(𝑠%)
⋮

𝑣(𝑠/)
=

𝑟(𝑠%)
⋮

𝑟(𝑠/)
+ 𝛾

𝑃#1#1 ⋯ 𝑃#1#2
⋮ ⋱ ⋮

𝑃#2#1 ⋯ 𝑃#2#2

𝑣(𝑠%)
⋮

𝑣(𝑠/)

𝑣? = 𝑟? + 𝛾𝑃?𝑣?

56



Analytic Solution for Value of MDP

• Bellman equation: 𝑣8 = 𝑟8 + 𝛾𝑃8𝑣8

• Analytic solution

𝑣8 = 𝑟8 + 𝛾𝑃8𝑣8

Solving directly requires taking a matrix inverse ~𝑂(|𝒮|@)
Direct solution only possible for small MDPs
Iterative methods for large MDPs, e.g.
• Dynamic programming
• Monte-Carlo evaluation
• Temporal-Difference learning

Theorem

The Bellman equation has a unique solution (to be proved)
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𝑣8 = 𝐼 − 𝛾𝑃8 '#𝑟8

𝑣8 − 𝛾𝑃8𝑣8 = 𝑟8

𝐼 − 𝛾𝑃8 𝑣8 = 𝑟8



Bellman Equation for MDP

• The action-value function can similarly be decomposed,

𝑞. 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 + 𝛾2
#*
𝑃##*(𝑎) 𝑣. 𝑠-

= 𝑟 𝑠, 𝑎 + 𝛾2
#*
𝑃##*(𝑎)2

0-

𝜋(𝑎-|𝑠-) 𝑞. 𝑠-, 𝑎′
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Optimal Policy and Optimal Value Functions

• We say that 𝜋 ≥ 𝜋* (”𝜋 is better than 𝜋′”)  if 𝑣8 ≥ 𝑣8*

• There is a policy 𝜋∗ that is better than any other policy (including non-stationary 
ones), which is an optimal policy (to be proved)

• All optimal policies share the same value functions

𝑣∗ 𝑠 = sup
8
𝑣8(𝑠) , ∀𝑠

𝑞∗ 𝑠, 𝑎 = sup
8
𝑞8(𝑠, 𝑎) , ∀𝑠, 𝑎
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i.e., 𝑣8 𝑠 ≥ 𝑣8* 𝑠 , ∀𝑠



Bellman Optimality Equation
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Theorem

The optimal value function 𝑣∗ 𝑠 satisfies the following equation

𝑣∗ 𝑠 = max
%∈𝒜(()

𝑟 𝑠, 𝑎 + 𝛾I
(!
𝑃((! 𝑎 𝑣∗ 𝑠* , ∀𝑠 ∈ 𝒮

Remark 1: We will show that 𝑣∗ is the unique solution to the optimality equation.

Remark 2: if 𝑣∗ is known, any policy that is greedy with respect to 𝑣∗ is optimal. In 
particular, there is a deterministic stationary policy that is optimal.



Bellman Optimality Equation

• A Markov policy is a sequence of mappings 𝜋 = 𝜇+, 𝜇%, … , one for each 
time step, where each 𝜇! is a (randomized) mapping from state to action. 
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Lemma

Given any history-dependent policy and starting state, there exists a 
Markov policy with the same value. 

(see Theorem 5.5.1 in “Markov Decision Processes” by Puterman)



Proof of Bellman Optimality Equation
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Step 1: 𝑣∗ 𝑠 ≤ max
3

𝑟 𝑠, 𝑎 + 𝛾 ∑4" 𝑃44" 𝑎 𝑣∗ 𝑠(

Let 𝜋 = (𝜇", 𝜇#, 𝜇$, … ) be an arbitrary Markov policy and 𝜋′ = (𝜇#, 𝜇$, … ). Then  

𝑣5 𝑠 = ∑3 𝜇"(𝑎|𝑠) 𝑟 𝑠, 𝑎 + 𝛾 ∑4" 𝑃44" 𝑎 𝑣5( 𝑠( .

Since 𝑣5( 𝑠( ≤ 𝑣∗ 𝑠′ for all 𝑠′, we have

𝑣5 𝑠 ≤ ∑3 𝜇"(𝑎|𝑠) 𝑟 𝑠, 𝑎 + 𝛾 ∑4" 𝑃44" 𝑎 𝑣∗ 𝑠(

≤ ∑3 𝜇"(𝑎|𝑠)max3 𝑟 𝑠, 𝑎 + 𝛾 ∑4" 𝑃44" 𝑎 𝑣∗ 𝑠(

= max
3

𝑟 𝑠, 𝑎 + 𝛾 ∑4" 𝑃44" 𝑎 𝑣∗ 𝑠( . 

As this holds for any Markov policy, we have 𝑣∗ 𝑠 ≤ max
3

𝑟 𝑠, 𝑎 + 𝛾 ∑4" 𝑃44" 𝑎 𝑣∗ 𝑠( . 



Proof of Bellman Optimality Equation

Step 2: 𝑣∗ 𝑠 ≥ max
3

𝑟 𝑠, 𝑎 + 𝛾 ∑4" 𝑃44" 𝑎 𝑣∗ 𝑠(

Let 𝑎" = argmax3 𝑟 𝑠, 𝑎 + 𝛾 ∑4" 𝑃44" 𝑎 𝑣∗ 𝑠( .

Let 𝜋4( be a policy such that 𝑣5#( 𝑠′ ≥ 𝑣∗ 𝑠( − 𝜖.

Let 𝜋 be the policy that chooses 𝑎" at time 0, and, if the next state is 𝑠′, then view the 
process as originating in state 𝑠′, following the policy 𝜋4(. Then 

𝑣5 𝑠 = 𝑟 𝑠, 𝑎" + 𝛾∑4(𝑃44" 𝑎" 𝑣5#"(𝑠′)

Thus, 𝑣∗ 𝑠 ≥ 𝑟 𝑠, 𝑎" + 𝛾∑4(𝑃44" 𝑎" 𝑣∗(𝑠′) − 𝛾𝜖

The result follows by making 𝜖 arbitrarily small.
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≥ 𝑟 𝑠, 𝑎" + 𝛾∑4(𝑃44" 𝑎" 𝑣∗(𝑠′) − 𝛾𝜖.

= max
3

𝑟 𝑠, 𝑎 + 𝛾 ∑4" 𝑃44" 𝑎 𝑣∗ 𝑠( −𝛾𝜖.



Bellman Optimality Equation
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Corollary

The optimal value function 𝑞∗ 𝑠, 𝑎 satisfies the following equation

𝑞∗ 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 + 𝛾I
(!
𝑃((! 𝑎 max

%!∈𝒜(()
𝑞∗ 𝑠*, 𝑎′ , ∀𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜(𝑠)

Remark: Given 𝑞∗ 𝑠, 𝑎 , an optimal deterministic stationary policy can be easily 
obtained as 𝜋 𝑠 = argmax

3
𝑞∗(𝑠, 𝑎).


