• • • • • • • • • • •

Finite Markov Decision Processes

CMPS 4660/6660: Reinforcement Learning

Acknowledgement: slides adapted from David Silver's RL course and Stanford CS234

Agent and Environment

Goals and Rewards

- A reward R_t is a scalar feedback signal
 - Indicates how well agent is doing at step t
- The agent's job is to maximize cumulative reward

Reward Hypothesis: *All* goals can be described by the maximization of expected cumulative reward

Do you agree with the statement?

Maze Example

- Goal: escaping from the maze as soon as possible
- Assume $R_t = 1$ for escaping and $R_t = 0$ otherwise
 - Does this work?
 - What is a better way to assign reward?

Chess Example

- Goal: win the game
- What is a good assignment of rewards?
 - +1(win), -1(lose), 0(draw)
 - reward only for actually winning, not for achieving subgoals, e.g., taking opponent's pieces or gaining control of the center of board
 - *Delayed* reward
- reward signal is your way of communicating to the robot what you want it to achieve, not how you want it achieved

Agent and Environment

- At each step *t* the agent:
 - Executes action A_t
 - Receives observation O_{t+1}
 - Receives scalar reward R_{t+1}
- *t* increments at env. step

History and State

- The history is the sequence of observations, actions, rewards
 - $H_t = O_0, A_0, R_1, O_1, A_1, R_2, \dots, R_t, O_t$
 - i.e. all observable variables up to time t
 - e.g. the sensorimotor stream of a robot or embodied agent
- What happens next depends on the history:
 - The agent selects actions
 - The environment selects observations/rewards
- State is the information used to determine what happens next
- Formally, state is a function of the history: $S_t = f(H_t)$

Environment State

- The environment state S_t^e is the environment's private representation
- i.e. whatever data the environment uses to pick the next observation/reward
- The environment state is not usually visible to the agent
- Even if S_t^e is visible, it may contain irrelevant information

Agent State

- The agent state S_t^a is the agent's internal representation
- i.e. whatever information the agent uses to pick the next action
- i.e. it is the information used by reinforcement learning algorithms
- It can be any function of history:

 $S_t^a = f(H_t)$

Fully Observable Environments

 Full observability: agent directly observes environment state

 $O_t = S_t^e$

• In this case, we may simply set

 $S_t^a = O_t$

- This is not always the best choice though
- We also want the states to be "Markov" (to be defined shortly)

Partially Observable Environments

- Partial observability: agent indirectly observes environment:
 - A robot with camera vision isn't told its absolute location
 - A trading agent only observes current prices
 - A poker playing agent only observes public cards
- Agent must construct its own state representation S_t^a , e.g.
 - Complete history: $S_t^a = H_t$
 - Beliefs of environment state: $S_t^a = (\Pr[S_t^e = s^1], ..., \Pr[S_t^e = s^n])$
 - Recurrent neural network: $S_t^a = \sigma(S_{t-1}^a W_s + O_t W_o)$

Episodic and Continuing Tasks

- Time Horizon (*T*) = the number of time steps in each episode
- Episodic tasks: agent-environment interaction naturally breaks into episodes
 - E.g., plays of games
 - Each episode ends in a special terminal state
 - *T* is typically random (varies from episode to episode)
- Continuing tasks: agent—environment interaction does not break naturally into identifiable episodes, but goes on continually without limit
 - E.g., a robot with a long life span
 - Infinite horizon

Markov Decision Processes

Markov chains

Markov reward processes

Markov decision processes

Value functions

Bellman equations

Introduction to Markov Decision Processes

- Markov decision processes formally describe an environment for reinforcement learning
- Where the environment is fully observable
 - i.e. The current state completely characterizes the process
- Almost all RL problems can be formalized as MDPs, e.g.,
 - Optimal control primarily deals with continuous MDPs
 - Partially observable problems can be converted into MDPs
 - Bandits are MDPs with one state

Markov Property

- "The future is independent of the past given the present"
- A state is *S*_t is *Markov* if

 $\Pr(S_{t+1} = s' \mid S_t = s, A_t = a, S_{t-1} = s_{t-1}, A_{t-1} = a_{t-1}, \dots, S_0 = s_0)$

- $= \Pr(S_{t+1} = s' | S_t = s, A_t = a)$
- The state captures all relevant information from the history
- Once the state is known, the history may be thrown away
- i.e. The state is a <u>sufficient statistic</u> of the future

Andrey Markov (1856-1922)

Markov Chains

- A discrete time Markov chain is a memoryless random process, i.e., a sequence of random states S_0, S_1, \dots with the Markov property.
- A finite *Markov Chain* is a tuple $\langle S, P \rangle$
 - S is a (finite) set of states
 - *P* is a state transition probability matrix, $P_{ss'} = \Pr\{S_t = s' | S_{t-1} = s\}$

Example: Gridworld

- States: Agent's location
- Actions: N, E, S, W
- Actions that would take the agent off the grid leave its location unchanged
- From state A, all four actions take the agent to A0
- From state B, all actions take the agent to BO

Example: Gridworld

- Consider the equiprobable random policy
- We have a Markov chain $\langle S, P \rangle$
 - S is the set of all locations, |S| = 25
 - *P* can be easily derived, e.g., $P_{CA} = 0.25$, $P_{CD} = 0.25$, $P_{CC} = 0.5$, $P_{AA'} = 1$

$$\Pr(S_2 = A' | S_0 = C)$$

$$= \Pr(S_2 = A' | S_1 = A) \cdot \Pr(S_1 = A | S_0 = C)$$

 $= P_{AA'} \cdot P_{CA} = 1 \cdot 0.25 = 0.25$

Markov Reward Process

- Markov reward process is a Markov chain + rewards
- A finite *Markov Reward Process* is a tuple $\langle S, P, r, \gamma \rangle$
 - \mathcal{S} is a finite set of states
 - *P* is a state transition probability matrix, $P_{ss'} = \Pr\{S_t = s' | S_{t-1} = s\}$
 - r is a reward function, $r(s) = \mathbb{E}[R_t | S_{t-1} = s]$
 - γ is a discount factor, $\gamma \in [0,1]$
- Note: no actions

Example: Gridworld

- States: Agent's location
- Actions: N, E, S, W
- Actions that would take the agent off the grid leave its location unchanged, but also result in a reward of -1.
- From state A, all four actions yield a reward of +10 and take the agent to A0.
- From state B, all actions yield a reward of +5 and take the agent to B0
- Other actions result in a reward of 0

Example: Gridworld

- Consider the equiprobable random policy
- We have a Markov reward process $\langle S, P, r, \gamma \rangle$
 - S is the set of all locations, |S| = 25
 - *P* can be easily derived
 - r can be derived for each state, e.g.,
 - $r(C) = (-1) \cdot 0.5 + 0 \cdot 0.5 = -0.5$
 - r(A) = 10

Return

- The return G_t is the total discounted reward from time-step t to horizon.
- Episodic tasks: $G_t \doteq R_{t+1} + R_{t+2} + R_{t+3} + \dots + R_T$
 - Finite horizon: terminate at a fixed time T
 - Termination is inevitable (to be made precise shortly)
- Continuing tasks: $G_t \doteq R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots$
 - $\gamma \in [0,1]$
 - If $\gamma < 1$ and $|R_t| \le R_{max}$ for $\forall t$, then $|G_t| \le \frac{1}{1-\gamma}R_{max}$
 - $\gamma = 0$: Only care about immediate reward
 - $\gamma = 1$: Future reward is as beneficial as immediate reward
 - Another common approach: average rewards (difficult to analyze)

Unified notation for episodic and continuing tasks

• Introduce a terminal (absorbing) state s^* where $P_{s^*s^*} = 1$ and $R_t = 0$ if $s_{t-1} = s^*$

• Then for both episodic and continuing tasks

$$G_t \doteq R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

• $\mathcal{S}^+ = \mathcal{S} \cup \{s^*\}$

Why discount?

- Mathematically convenient (avoid infinite returns and values)
- Uncertainty about the future may not be fully represented
- Model the reality
 - If the reward is financial, immediate rewards may earn more interest than delayed rewards
 - Animal/human behavior shows preference for immediate reward

Stationary Preferences

• Theorem: if we assume stationary preferences:

$$[a_1, a_2, \ldots] \succ [b_1, b_2, \ldots]$$

$$(r, a_1, a_2, \ldots] \succ [r, b_1, b_2, \ldots]$$

- Then: there are only two ways to define utilities
 - Additive utility: $U([r_0, r_1, r_2, ...]) = r_0 + r_1 + r_2 + \cdots$
 - Discounted utility: $U([r_0, r_1, r_2, ...]) = r_0 + \gamma r_1 + \gamma^2 r_2 \cdots$

Markov Decision Process

- A Markov decision process (MDP) is a Markov reward process with decisions. It is an environment in which all states are Markov.
- A finite *Markov Decision Process* is a tuple $\langle S, \mathcal{A}, P, r, \gamma \rangle$
 - \mathcal{S} is a finite set of states
 - $\mathcal{A}(s)$ is a finite set of actions available at state s
 - *P* is a state transition probability matrix,

 $P_{ss'}(a) = \Pr\{S_t = s' | S_{t-1} = s, A_{t-1} = a\}$

- r is a reward function, $r(s, a) = \mathbb{E}[R_t | S_{t-1} = s, A_{t-1} = a]$
- γ is a discount factor, $\gamma \in [0,1]$

Markov Decision Process

$$P_{ss'}(a) = \Pr\{S_t = s' | S_{t-1} = s, A_{t-1} = a\} \\ r(s, a) = \mathbb{E}[R_t | S_{t-1} = s, A_{t-1} = a]$$

Let \mathcal{R} be a finite set of rewards

$$p(s', r|s, a) = \Pr\{S_t = s', R_t = r|S_{t-1} = s, A_{t-1} = a\}$$

 $P_{ss'}(a) = ? \qquad \sum_{r \in \mathcal{R}} p(s', r | s, a)$ $r(s, a) = ? \qquad \sum_{r \in \mathcal{R}} r \sum_{s' \in \mathcal{S}} p(s', r | s, a)$

Policy (1)

- A policy = any rule for choosing actions
 - A policy fully defines the behavior of an agent, and
 - can be history dependent and/or randomized
- A stochastic stationary policy π is a distribution over actions given states,

$$\pi(a|s) = \Pr\{A_t = a | S_t = s\} \in [0,1] \text{ and } \sum_{a \in \mathcal{A}(s)} \pi(a|s) = 1$$

- Stationary policies depend on the current state (not the history)
- Deterministic stationary policy: $A_t = \pi(S_t)$
- A fundamental question: For a given optimality criterion, under what conditions is it optimal to use a deterministic stationary policy?

- Given an MDP $\langle S, A, P, r, \gamma \rangle$ and a stationary policy π
- The state and reward sequence S_0, R_1, S_1, R_2 ... is a Markov reward process $\langle S, P^{\pi}, r^{\pi}, \gamma \rangle$, where

$$P_{s,s'}^{\pi} = \sum_{a \in \mathcal{A}(s)} \pi(a|s) P_{ss'}(a)$$
$$r^{\pi}(s) = \sum_{a \in \mathcal{A}(s)} \pi(a|s) r(s,a)$$

• The state sequence S_0, S_1, \dots is a Markov chain $\langle S, P^{\pi} \rangle$

Example: Gridworld

- States: Agent's location
- Actions: N, E, S, W
- Actions that would take the agent off the grid leave its location unchanged, but also result in a reward of -1.
- From state A, all four actions yield a reward of +10 and take the agent to A0.
- From state B, all actions yield a reward of +5 and take the agent to B0
- Other actions result in a reward of 0

Example: Gridworld

- A Markov decision process $\langle S, A, P, r, \gamma \rangle$
 - S is the set of all locations, |S| = 25
 - $\mathcal{A}(s) = \{\mathsf{N}, \mathsf{E}, \mathsf{S}, \mathsf{W}\}$
 - *P* and *r* can be easily derived from the game rule
 - $P_{CC}(N) = 1, P_{CA}(E) = 1, P_{CD}(S) = 1, P_{CC}(W) = 1$
 - r(C,N) = r(C,W) = -1, r(C,E) = r(C,S) = 0
 - A stationary policy π picks an action depending on the current location
 - E.g., equiprobable random policy

Return

- The return G_t is the total discounted reward from time-step t to horizon.
- Episodic tasks: $G_t \doteq R_{t+1} + R_{t+2} + R_{t+3} + \dots + R_T$
 - Finite horizon: terminate at a fixed time T
 - Termination is inevitable (to be made precise shortly)
- Continuing tasks: $G_t \doteq R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots$
 - $\gamma \in [0,1]$
 - If $\gamma < 1$ and $|R_t| \le R_{max}$ for $\forall t$, then $|G_t| \le \frac{1}{1-\gamma}R_{max}$
 - $\gamma = 0$: Only care about immediate reward
 - $\gamma = 1$: Future reward is as beneficial as immediate reward
 - Another common approach: average rewards (difficult to analyze)

State-Value Function

• The *state-value* function $v_{\pi}(s)$ of an MDP is the expected return starting from state *s*, then following policy π

$$\begin{aligned} \nu_{\pi}(s) &= \mathbb{E}_{\pi} \left(\sum_{t=0}^{\infty} \gamma^{t} R_{t+1} | S_{0} = s \right) \\ &= \mathbb{E}_{\pi} \left(\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} | S_{t} = s \right) \quad \text{(if } \pi \text{ is stationary)} \\ &= \mathbb{E}_{\pi} (G_{t} | S_{t} = s) \qquad \qquad \text{(if } \pi \text{ is stationary)} \end{aligned}$$

Example: Gridworld

• Consider an equiprobable random policy

• $\gamma = 0.8$

- Why v(A) < 10 and v(B) > 5?
- How to find the state-value function?
- Can we do better?

Action-Value Function

• The *action-value* function $q_{\pi}(s, a)$ is the expected return starting from state s, taking action a, then following policy π

$$q_{\pi}(s,a) = \mathbb{E}_{\pi}(\sum_{t=0}^{\infty} \gamma^{t} R_{t+1} | S_{0} = s, A_{0} = a)$$

$$= \mathbb{E}_{\pi}(\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} | S_{t} = s, A_{t} = a) \quad \text{(if } \pi \text{ is stationary)}$$

$$= \mathbb{E}_{\pi}(G_{t} | S_{t} = s, A_{t} = a) \quad \text{(if } \pi \text{ is stationary)}$$

Value Functions

$$v_{\pi}(s) = \sum_{a} \pi(a|s) q_{\pi}(s,a)$$
$$q_{\pi}(s,a) = r(s,a) + \gamma \sum_{s'} P_{ss'}(a) v_{\pi}(s')$$

Example: Inventory Management

- An inventory of capacity *M*
- A_t: the number of items ordered in the evening of day t for day t + 1
- D_t : the demand on day t (independent and identically distributed with a known distribution)
- Payoff on day *t*
 - purchasing cost: $K \mathbb{I}_{\{A_t > 0\}} + cA_t$
 - holding cost: *h* per item
 - selling price: p per item sold

Example: Inventory Management

- State X_t : the size of the inventory in the evening of day t
- Action A_t : the number of items ordered in the evening of day t
- R_t : reward on day t
- Transition probabilities and reward function can be derived from:

$$X_{t+1} = (\min(X_t + A_t, M) - D_{t+1})^+$$

$$R_{t+1} = -K\mathbb{I}_{\{A_t > 0\}} - c (\min(X_t + A_t, M) - X_t))$$

$$-hX_t + p (\min(X_t + A_t, M) - X_{t+1})^+$$

MDP with a terminal state

Question: For episodic tasks, when are the return/value functions well defined?

Assumption (termination is Inevitable Under All Policies)

There exists an integer m such that regardless of the policy used and the initial state, there is a **positive** probability that the terminal state will be reached after no more than m stages; i.e., for all admissible policies π we have

$$\rho_{\pi} = \max_{s \in S} \Pr_{\pi} \{ S_m \neq s^* | S_0 = s \} < 1$$

E.g., this holds when at the end of each time step, there is a positive probability that the process ends (m = 1).

MDP with a terminal state

Lemma

Let $\rho = \max_{\pi} \rho_{\pi}$, the maximum probability of not researching s^* within m stages over all starting states and policies (not necessarily stationary). We have (1) $\rho < 1$; (2) $\Pr_{\pi} \{S_{km} \neq s^* | S_0 = s\} \le \rho^k$ for any π .

Proof sketch: since ρ_{π} depends only on the first *m* components of π and there are finite number of actions, there can be only finite number of distinct ρ_{π} .

(see DB p. 180 for a complete proof)

MDP with a terminal state

Lemma

The total reward in the m stages between km and (k + 1)m - 1 is bounded by

 $\rho^k B$ where $B = m \max_{s \in S, a \in \mathcal{A}(s)} |r(s, a)|$

Theorem

$$|v_{\pi}(s)| \leq \frac{1}{1-\rho}B, \quad \forall s, \pi$$

(see DB p. 212 for proofs)

Major Components of an RL Agent

- Policy: agent's behavior function
- Value function: how good is each state and/or action
- Model: agent's representation of the environment

Policy

- A policy is the agent's behavior
- It is a map from state to action, e.g.
 - Deterministic (stationary) policy: $a = \pi(s)$
 - Stochastic (stationary) policy: $\pi(a|s) = \Pr\{A_t = a | S_t = s\}$

Valuation

- Value function is a prediction of future reward
- Used to evaluate the goodness/badness of states
- And therefore to select between actions, e.g.

$$\nu_{\pi}(s) = \mathbb{E}_{\pi}(R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots | S_t = s)$$

Model

- A model predicts what the environment will do next
- *P* predicts the next state
- r predicts the next (immediate) reward, e.g.

$$P_{ss'}(a) = \Pr\{S_t = s' | S_{t-1} = s, A_{t-1} = a\}$$

$$r(s, a) = \mathbb{E}[R_t | S_{t-1} = s, A_{t-1} = a]$$

Maze Example: Model

- Goal: escaping from the maze as soon as possible
- Rewards: -1 per time-step
- Actions: N, E, S, W
- States: Agent's location

Maze Example: Policy

• Arrows represent policy $\pi(s)$ for each state s

Maze Example: Value Function

• Numbers represent value v(s) of each state s

Prediction and Control

- Prediction: evaluate the future
 - Given a policy
- Control: optimize the future
 - Find the best policy

Gridworld Example: Prediction

What is the value function for the uniform random policy?

Gridworld Example: Control

- What is the optimal value function over all possible policies?
- What is the optimal policy?

Prediction and Control

- Prediction: evaluate the future
 - Given a policy
 - Bellman equations
- Control: optimize the future
 - Find the best policy
 - Bellman optimality equations

Consider a stationary policy π

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}(G_t | S_t = s)$$
$$= \mathbb{E}_{\pi}(R_{t+1} + \gamma G_{t+1} | S_t = s)$$

$$G_{t} \doteq R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} R_{t+4} + \cdots$$
$$= R_{t+1} + \gamma (R_{t+2} + \gamma R_{t+3} + \gamma^{2} R_{t+4} + \cdots)$$
$$= R_{t+1} + \gamma G_{t+1}$$

Consider a stationary policy π

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}(G_{t}|S_{t} = s)$$

$$= \mathbb{E}_{\pi}(R_{t+1} + \gamma G_{t+1}|S_{t} = s)$$

$$= \sum_{a} \pi(a|s) \left(r(s,a) + \gamma \sum_{s'} P_{ss'}(a) \mathbb{E}(G_{t+1}|S_{t+1} = s') \right)$$

$$= \sum_{a} \pi(a|s) \left(r(s,a) + \gamma \sum_{s'} P_{ss'}(a) v_{\pi}(s') \right)$$

$$v_{\pi}(s) = \sum_{a} \pi(a|s) r(s,a) + \gamma \sum_{s'} \sum_{a} \pi(a|s) P_{ss'}(a) v_{\pi}(s')$$
$$= r^{\pi}(s) + \gamma \sum_{s'} P_{ss'}^{\pi} v_{\pi}(s')$$
Immediate Discounted sum of reward future rewards

Richard Bellman (1856-1922)

Bellman Equation in Matrix Form

• For finite state MDP, we can express $v_{\pi}(s)$ using a matrix equation

$$\begin{bmatrix} v(s_1) \\ \vdots \\ v(s_N) \end{bmatrix} = \begin{bmatrix} r(s_1) \\ \vdots \\ r(s_N) \end{bmatrix} + \gamma \begin{bmatrix} P_{s_1s_1} & \cdots & P_{s_1s_N} \\ \vdots & \ddots & \vdots \\ P_{s_Ns_1} & \cdots & P_{s_Ns_N} \end{bmatrix} \begin{bmatrix} v(s_1) \\ \vdots \\ v(s_N) \end{bmatrix}$$

$$v_{\pi} = r^{\pi} + \gamma P^{\pi} v_{\pi}$$

Analytic Solution for Value of MDP

• Bellman equation: $v_{\pi} = r^{\pi} + \gamma P^{\pi} v_{\pi}$

Theorem

The Bellman equation has a unique solution (to be proved)

• Analytic solution

 $v_{\pi} = r^{\pi} + \gamma P^{\pi} v_{\pi}$ $v_{\pi} - \gamma P^{\pi} v_{\pi} = r^{\pi}$ $(I - \gamma P^{\pi}) v_{\pi} = r^{\pi}$ $v_{\pi} = (I - \gamma P^{\pi})^{-1} r^{\pi}$

Solving directly requires taking a matrix inverse $\sim O(|S|^3)$ Direct solution only possible for small MDPs Iterative methods for large MDPs, e.g.

- Dynamic programming
- Monte-Carlo evaluation
- Temporal-Difference learning

• The action-value function can similarly be decomposed,

$$q_{\pi}(s,a) = r(s,a) + \gamma \sum_{s'} P_{ss'}(a) v_{\pi}(s')$$

= $r(s,a) + \gamma \sum_{s'} P_{ss'}(a) \sum_{a'} \pi(a'|s') q_{\pi}(s',a')$

Optimal Policy and Optimal Value Functions

- We say that $\pi \ge \pi'$ (" π is better than π' ") if $v_{\pi} \ge v_{\pi'}$ i.e., $v_{\pi}(s) \ge v_{\pi'}(s), \forall s$
- There is a policy π_* that is better than any other policy (including non-stationary ones), which is an optimal policy (to be proved)
- All optimal policies share the same value functions

 $v_*(s) = \sup_{\pi} v_{\pi}(s), \forall s$ $q_*(s, a) = \sup_{\pi} q_{\pi}(s, a), \forall s, a$

Bellman Optimality Equation

Theorem

The optimal value function $v_*(s)$ satisfies the following equation

$$v_*(s) = \max_{a \in \mathcal{A}(s)} \left[r(s, a) + \gamma \sum_{s'} P_{ss'}(a) v_*(s') \right], \forall s \in \mathcal{S}$$

Remark 1: We will show that v_* is the unique solution to the optimality equation.

Remark 2: if v_* is known, any policy that is greedy with respect to v_* is optimal. In particular, there is a deterministic stationary policy that is optimal.

Bellman Optimality Equation

• A Markov policy is a sequence of mappings $\pi = (\mu_0, \mu_1, ...)$, one for each time step, where each μ_t is a (randomized) mapping from state to action.

Lemma

Given any history-dependent policy and starting state, there exists a Markov policy with the same value.

(see Theorem 5.5.1 in "Markov Decision Processes" by Puterman)

Proof of Bellman Optimality Equation

Step 1: $v_*(s) \le \max_{a} [r(s, a) + \gamma \sum_{s'} P_{ss'}(a) v_*(s')]$

Let $\pi = (\mu_0, \mu_1, \mu_2, ...)$ be an arbitrary Markov policy and $\pi' = (\mu_1, \mu_2, ...)$. Then

 $v_{\pi}(s) = \sum_{a} \mu_{0}(a|s) \left[r(s,a) + \gamma \sum_{s'} P_{ss'}(a) v_{\pi'}(s') \right].$

Since $v_{\pi'}(s') \leq v_*(s')$ for all s', we have

$$\begin{aligned} v_{\pi}(s) &\leq \sum_{a} \mu_{0}(a|s) \left[r(s,a) + \gamma \sum_{s'} P_{ss'}(a) v_{*}(s') \right] \\ &\leq \sum_{a} \mu_{0}(a|s) \max_{a} \left[r(s,a) + \gamma \sum_{s'} P_{ss'}(a) v_{*}(s') \right] \\ &= \max_{a} \left[r(s,a) + \gamma \sum_{s'} P_{ss'}(a) v_{*}(s') \right]. \end{aligned}$$

As this holds for any Markov policy, we have $v_*(s) \le \max_a [r(s, a) + \gamma \sum_{s'} P_{ss'}(a) v_*(s')]$.

Proof of Bellman Optimality Equation

Step 2: $v_*(s) \ge \max_a [r(s, a) + \gamma \sum_{s'} P_{ss'}(a) v_*(s')]$ Let $a_0 = \operatorname{argmax}_a [r(s, a) + \gamma \sum_{s'} P_{ss'}(a) v_*(s')].$ Let $\pi_{s'}$ be a policy such that $v_{\pi_{s'}}(s') \ge v_*(s') - \epsilon$.

Let π be the policy that chooses a_0 at time 0, and, if the next state is s', then view the process as originating in state s', following the policy $\pi_{s'}$. Then

 $v_{\pi}(s) = r(s, a_0) + \gamma \sum_{s'} P_{ss'}(a_0) v_{\pi_{s'}}(s') \ge r(s, a_0) + \gamma \sum_{s'} P_{ss'}(a_0) v_*(s') - \gamma \epsilon.$ Thus, $v_*(s) \ge r(s, a_0) + \gamma \sum_{s'} P_{ss'}(a_0) v_*(s') - \gamma \epsilon = \max_a \left[r(s, a) + \gamma \sum_{s'} P_{ss'}(a) v_*(s') \right] - \gamma \epsilon.$ The result follows by making ϵ arbitrarily small.

Bellman Optimality Equation

Corollary

The optimal value function $q_*(s, a)$ satisfies the following equation

$$q_*(s,a) = r(s,a) + \gamma \sum_{s'} P_{ss'}(a) \max_{a' \in \mathcal{A}(s)} q_*(s',a'), \forall s \in \mathcal{S}, a \in \mathcal{A}(s)$$

Remark: Given $q_*(s, a)$, an optimal deterministic stationary policy can be easily obtained as $\pi(s) = \arg \max_a q_*(s, a)$.