Finite Markov Decision Processes

CMPS 4660/6660: Reinforcement Learning

Acknowledgement: slides adapted from David Silver's RL course and Stanford C5234

https://www.davidsilver.uk/teaching/
http://web.stanford.edu/class/cs234/

Agent and Environment

action

Goals and Rewards

* Areward R; is a scalar feedback signal

* Indicates how well agent is doing at step ¢t

* The agent’s job is to maximize cumulative reward

Reward Hypothesis: All goals can be described by the maximization
of expected cumulative reward

" Do you agree with the statement?

Maze Example

e Goal: escaping from the maze as soon as
possible

* Assume R; =1 for escapingand R; =0 Start
otherwise
* Does this work?

 What is a better way to assign
reward?

Goal

Chess Example

e Goal: win the game

* What is a good assignment of rewards?
* +1(win), -1(lose), O(draw)
e reward only for actually winning, not for

achieving subgoals, e.g., taking opponent’s
pieces or gaining control of the center of board

e Delayed reward

* reward signal is your way of communicating to
the robot what you want it to achieve, not how

you want it achieved

Agent and Environment

* At each step t the agent:

* Executes action A;
* Receives observation O, 4

* Receives scalar reward R; 1

* t increments at env. step

History and State

* The history is the sequence of observations, actions, rewards
* Ht — 00,140, Rli 01, Al' Rz, ...,Rt, Ot
* j.e. all observable variables up to time t

e e.g. the sensorimotor stream of a robot or embodied agent

* What happens next depends on the history:

* The agent selects actions
* The environment selects observations/rewards

* State is the information used to determine what happens next

* Formally, state is a function of the history: S; = f(H;)

Environment State

LAY YN * The environment state Sf is the
observaton 4 ‘% ‘. E Kol 3y .»:'i; action . . .
— ,]‘j AR Y S —— environment’s private representation
:ﬁir—*_—’ * i.e. whatever data the environment uses
74 to pick the next observation/reward
reward R; ®

The environment state is not usually
visible to the agent

Even if SF is visible, it may contain

irrelevant information

Agent State

LAY Y N * The agent state S{ is the agent's internal
observation 4/ '~ . , (/| T, action .
—_— T —— representation
o, I\ g B A,
\ W SP— * i.e. whatever information the agent uses
to pick the next action
reward | R * j.e. it is the information used by
reinforcement learning algorithms
* It can be any function of history:

S¢ = f(Hy)

Fully Observable Environments

* Full observability: agent directly
observes environment state

0t=Ste

* |In this case, we may simply set
Sta = O

* This is not always the best choice though

 We also want the states to be “Markov”
(to be defined shortly)

10

Partially Observable Environments

* Partial observability: agent indirectly observes environment:
* A robot with camera vision isn't told its absolute location
* Atrading agent only observes current prices

* A poker playing agent only observes public cards

 Agent must construct its own state representation S£ , e.g.
* Complete history: S¢ = H;
* Beliefs of environment state: S& = (Pr[Sf = s'], ..., Pr[Sf = s™])

 Recurrent neural network: S = o(S; W, + 0:W,)

Episodic and Continuing Tasks

* Time Horizon (T) = the number of time steps in each episode

* Episodic tasks: agent-environment interaction naturally breaks into episodes
* E.g., plays of games
* Each episode ends in a special terminal state
e T is typically random (varies from episode to episode)

* Continuing tasks: agent—environment interaction does not break naturally into
identifiable episodes, but goes on continually without limit

e E.g., arobot with a long life span

* |Infinite horizon

Markov chains

Markov reward processes

Markov Decision

Markov decision processes
Processes

Value functions

Bellman equations

13

Introduction to Markov Decision Processes

* Markov decision processes formally describe an environment for
reinforcement learning

* Where the environment is fully observable

* i.e. The current state completely characterizes the process

* Almost all RL problems can be formalized as MDPs, e.g.,
* Optimal control primarily deals with continuous MDPs
 Partially observable problems can be converted into MDPs

 Bandits are MDPs with one state

Markov Property

“The future is independent of the past given the present”
A state is S; is Markov if

Pr(Sesr =" [Se =54; = 4,51 = St—1, Ar—1=8¢—1, -, So = So)
a)

The state captures all relevant information from the history

— Pr(5t+1 — S,|St — S,At

Once the state is known, the history may be thrown away

i.e. The state is a sufficient statistic of the future

Andrey Markov
(1856-1922)

15

https://en.wikipedia.org/wiki/Sufficient_statistic

Markov Chains

* A discrete time Markov chain is a memoryless random process, i.e., a
sequence of random states Sy, 51, ... with the Markov property.

* A finite Markov Chain is a tuple (S, P)
e Sis a (finite) set of states

* P is a state transition probability matrix, P, = Pr{S; = s'|S;_1 = s}

Example: Gridworld

» States: Agent's location
* Actions: N, E,S, W

e Actions that would take the agent off the grid
leave its location unchanged

* From state A, all four actions take the agent to AO

* From state B, all actions take the agent to BO

m

Al/

17

Example: Gridworld

* Consider the equiprobable random policy

* We have a Markov chain (S, P)
* S is the set of all locations, |S| = 25

* P can be easily derived, e.g., P-4 = 0.25,
PCD — O.ZS,PCC — 05, PAAI =1

Pr(S, = A'|S, = C)
= Pr(S, = A'|S; = A) - Pr(S; = AlS, = C)
=PAAIOPCA — 1025 =025

\\i/

18

Markov Reward Process

* Markov reward process is a Markov chain + rewards
* A finite Markov Reward Process is a tuple (S, P,r, V)
* § is a finite set of states
e P is a state transition probability matrix, P, = Pr{S; = s'|S;_; = s}
* ris areward function, r(s) = E[R;|S¢—1 = S]
* y is a discount factor, y € [0,1]

* Note: no actions

19

Example: Gridworld

 States: Agent's location
* Actions: N, E,S, W

* Actions that would take the agent off the
grid leave its location unchanged, but also
result in a reward of -1.

* From state A, all four actions yield a reward
of +10 and take the agent to AO.

* From state B, all actions yield a reward of
+5 and take the agent to BO

e Other actions result in a reward of O

+5

Bl

Al

\\i/

20

Example: Gridworld

* Consider the equiprobable random policy
* We have a Markov reward process (S, P, 1, V)
* §isthe set of all locations, |S| = 25
e P can be easily derived
e r can be derived for each state, e.g.,
cr(C)=(-1)-054+0-0.5=-0.5
« r(4) = 10

+9

Bl

\\jﬁ,/

21

Return

* The return G is the total discounted reward from time-step t to horizon.

° EpiSOdiC tasks: Gt = Rt+1 + Rt+2 + Rt+3 + -+ RT
* Finite horizon: terminate at a fixed time T
* Termination is inevitable (to be made precise shortly)

e Continuing tasks: Gy = Rytq + YRpyp + V2Rpy3 + -
- y€[0,1]

If y <1and |R;| < Ry for Vi, then |G| < iRmax

¥ = 0: Only care about immediate reward

y = 1: Future reward is as beneficial as immediate reward

Another common approach: average rewards (difficult to analyze)

Unified notation for episodic and continuing tasks

* Introduce a terminal (absorbing) state s* where P+« = 1and R, = 0 if
St-1 =S~

‘R=13R7:1.R: Ry=0
@ =+ »=+ @ 3=+1 ©R5:0
* Then for both episodic and continuing tasks

Gy = Rey1 + YRiy2 + V*Rpys + - = z V¥Rt k1
k=0

¢« §T=8§5U{s"}

23

Why discount?

 Mathematically convenient (avoid infinite returns and values)
* Uncertainty about the future may not be fully represented

* Model the reality

* |f the reward is financial, immediate rewards may earn more interest than
delayed rewards

* Animal/human behavior shows preference for immediate reward

Stationary Preferences

* Theorem: if we assume stationary preferences:
[al, as, . .] — [bl, ba, . .]

0

r,a1,az,...] = [r,b1,ba, ..]

* Then: there are only two ways to define utilities

* Additive utility: U([rg,r1,72,...]) =170 -

B I SR

e Discounted utility: U([ro,r1,72,...]) =70 1

-yr

Markov Decision Process

* A Markov decision process (MDP) is a Markov reward process with decisions. It is
an environment in which all states are Markov.

* A finite Markov Decision Process is a tuple (S, A, P,1,v)
* § is a finite set of states
* A(S) is a finite set of actions available at state s
* P is a state transition probability matrix,
P..(a) =Pr{S; =s'|Si—1 =5,4:-1 = a}
* ris areward function, r(s,a) = E[R{|S;_1 = s5,4;_1 = a]

* v is a discount factor, ¥ € [0,1]

Markov Decision Process

Pssr(a) = Pr{S; = s'|S;—1 = 5,411 = a}
r(s,a) = E[R¢|S¢—1 = 5,41 = a]

Let R be a finite set of rewards

p(s',rls,a) =Pr{S; =s',R; =r|S;_1 =5,A;_1 = a}

P.(a) =7 2 p(s',rls,a)

TER

r(s,a) =7 ZTZ p(s',r|s,a)

TeER s'eS

Policy (1)

* A policy = any rule for choosing actions
* A policy fully defines the behavior of an agent, and
* can be history dependent and/or randomized
* A stochastic stationary policy m is a distribution over actions given states,
m(als) = Pr{d; = alS; = s} € [0,1] and X 5c 45y (als) =1
* Stationary policies depend on the current state (not the history)
* Deterministic stationary policy: Ay = m(S;)

* A fundamental question: For a given optimality criterion, under what conditions is
it optimal to use a deterministic stationary policy?

Policy (2)

* Given an MDP (S, A, P,r,y) and a stationary policy

* The state and reward sequence Sy, R{, 51, R, ... is @ Markov reward process
(S, P™, r™,y), where

pr, =) m(als) Poy(@

acA(s)

()=). mals)r (s,a)

acA(s)

* The state sequence Sy, Sy, ... is @ Markov chain (S, P™)

Example: Gridworld

 States: Agent's location
* Actions: N, E,S, W

* Actions that would take the agent off the
grid leave its location unchanged, but also
result in a reward of -1.

* From state A, all four actions yield a reward
of +10 and take the agent to AO.

* From state B, all actions yield a reward of
+5 and take the agent to BO

e Other actions result in a reward of O

30

Example: Gridworld

* A Markov decision process (S, A, P,r,¥)
* §isthe set of all locations, |S| = 25
« A(s) ={N, E, S, W}
P and r can be easily derived from the game rule
* Pec(N) = 1,Pca(E) = 1,Pcp(S) =1, Pec(W) =1
« (C,N) =7(C, W) =—-1,7(C,E) =7(C,S) =0

» A stationary policy m picks an action depending on
the current location

* E.g., equiprobable random policy

+5

Bl

\\i/

31

Return

* The return G is the total discounted reward from time-step t to horizon.

* Episodic tasks: Gy = R¢yq1 + Ryyp + Rgy3 + -+ Ry
* Finite horizon: terminate at a fixed time T
* Termination is inevitable (to be made precise shortly)

e Continuing tasks: Gy = Rytq + YRpyp + V2Rpy3 + -
- y€[0,1]

If y <1and |R;| < Ry for Vi, then |G| < iRmax

¥ = 0: Only care about immediate reward

y = 1: Future reward is as beneficial as immediate reward

Another common approach: average rewards (difficult to analyze)

State-Value Function

* The state-value function v, (s) of an MDP is the expected return
starting from state s, then following policy

Ur(8) = Ex (X0 V" Re41So =)
— IEn(Z?é’:o yk Rt+k+1|St — S) (if 7T is stationary)

= E,(G;|S; = s) (if T is stationary)

Example: Gridworld

* Consider an equiprobable random policy

y=0.8

A B\

\ +5

40 i <—I—>
. // Actions

* Why v(4) < 10 and v(B) > 5?
* How to find the state-value function?

e Can we do better?

3.3 88|4.4/53|1.5

1.5(3.01 2.3/ 1.9|0.5

0.1 0.7]0.710.4]-0.4

-1.0-0.4-0.4-0.6/-1.2

-1 9| -1 .3| -1 .2| -1.4-2.0

state-value function

34

Action-Value Function

* The action-value function g (s, a) is the expected return starting
from state s, taking action a, then following policy

qr(s,a) = Ex(XtZoV* Re41lSo = 5,40 = a)
= E(ZreoV* Resrs1|S: = s,4; = a) (if mis stationary)

= E,(G¢|S; = 5,4, = a) (if 7T is stationary)

Value Functions

v,(5) =z n(als) 4 (s,)

qn(s: a) — T(S, a) T yz Pss'(a) Un(S,)

Example: Inventory Management

An inventory of capacity M

A¢: the number of items ordered in the evening of day t for
dayt+1

D;: the demand on day t (independent and identically
distributed with a known distribution)

Payoff on day t
* purchasing cost: KTy >0y + cA;
* holding cost: h per item

* selling price: p per item sold

37

Example: Inventory Management

State X;: the size of the inventory in the evening of day t

Action A;: the number of items ordered in the evening of day t

R;: reward onday t

Transition probabilities and reward function can be derived from:
Xtp1 = (min(X; + Ag, M) — Dyq)™
Rit1 = =Ky, 501 — ¢ (min(X; + Ay, M) — X;)
—hX: +p (min(X; + A, M) — X 1)

MDP with a terminal state

Question: For episodic tasks, when are the return/value functions well defined?

Assumption (termination is Inevitable Under All Policies)

There exists an integer m such that regardless of the policy used and the initial
state, there is a positive probability that the terminal state will be reached after no

more than m stages; i.e., for all admissible policies T we have

pr = max Pr{S,, # s*|Sp =s} <1
SES
E.g., this holds when at the end of each time step, there is a positive probability
that the process ends (m = 1).

39

MDP with a terminal state

Lemma

Let p = max p,;, the maximum probability of not researching s* within m stages
T

over all starting states and policies (not necessarily stationary). We have
(1) p<3;
(2) Pr{Sim, # s*|So = s} < p* for any .

T

Proof sketch: since p,; depends only on the first m components of 7 and there are
finite number of actions, there can be only finite number of distinct p.

(see DB p. 180 for a complete proof)

40

MDP with a terminal state

Lemma

The total reward in the m stages between km and (k + 1)m — 1 is bounded by

k —
p“B where B mSESrEgS% - |7 (s, a)|

Theorem

|

v (s)| < 1_—,DB’ Vs, T

(see DB p. 212 for proofs) .

Major Components of an RL Agent

* Policy: agent's behavior function
* Value function: how good is each state and/or action

 Model: agent's representation of the environment

Policy

* A policy is the agent's behavior

* It is a map from state to action, e.g.
* Deterministic (stationary) policy: a = m(s)

e Stochastic (stationary) policy: m(a|s) = Pr{4; = a|S; = s }

Valuation

* Value function is a prediction of future reward
* Used to evaluate the goodness/badness of states

* And therefore to select between actions, e.g.

U($) = Ex(Res1 + YRey2 + Y Rpy3 + 4 1S = 5)

Model

A model predicts what the environment will do next
e P predicts the next state

e 1 predicts the next (immediate) reward, e.g.
Pesr(a) =Pr{S; = s'[S;—1 =5,4;1 = a}

r(s,a) = E[R¢|S¢—1 = 5,4¢-1 = 4]

Maze Example: Model

* Goal: escaping from the maze as
soon as possible

Start

* Rewards: -1 per time-step

* Actions: N, E,S, W

 States: Agent's location

Goal

Maze Example: Policy

* Arrows represent policy m(s) for each state s

Maze Example: Value Function

(| =|eln]|n]s

n

* Numbers represent value v(s) of each state s

Prediction and Control

* Prediction: evaluate the future

* Given a policy

e Control: optimize the future
* Find the best policy

Gridworld Example: Prediction

A

) j

40

.4

What is the value function for the uniform random policy?

<_I_.

Actions

3.3

8.8

4.4

5.3

1.5

1.5

3.0

2.3

1.9

0.5

0.1

0.7

0.7

0.4

-0.4

-1.0

-0.4

-0.4

-0.6

-1.2

-1.9

-1.3

-1.2

1.4

-2.0

50

Gridworld Example: Control

A\L N 29.0124.422.0119.4{17 5 — b — [P

é 19.8/122.0{19.8/17.8/16.0 [N PR R

ﬂg 17.8/19.8/17.816.0{14.4 N P P

16.0{17.8/16.0{14.4/13.0 [O O A

AKX 14.416.014.413.0[11.7 Lt Jg3a
Gridworld UV Tk

* What is the optimal value function over all possible policies?

* What is the optimal policy?

Prediction and Control

* Prediction: evaluate the future
e Given a policy
* Bellman equations

e Control: optimize the future
* Find the best policy

* Bellman optimality equations

52

Bellman Equation for MDP

Consider a stationary policy
Ur(s) = Ep(GelSe = 5)
= Ez(Re41 + YGes1lSe = 5)

Gy = Rpyq +YRes2 + VPRiss + ¥ Rpys + -

= Rey1 T Y(Reg2+HYRey3 + Vth+4 +)
=Ri11 + VG

Bellman Equation for MDP

Consider a stationary policy

Ur(s) = E(G¢|Se = 5)

= Ez(Re41 + ¥Ges1lSe = 5)

= Zn(als)

a

(r(s, a) + VE Pyor(a) E(GeyqlSe41 = S’))

= En(als)

a

(r(s, a) + yz P..(a) vn(s’))

54

Bellman Equation for MDP
() = Z n(als) r(s,0) + VZ 2 7(als)Psgt (@) vr(s")

= 7(s) + yz: P, v,(s")

Immediate Discounted sum of
reward future rewards

Richard Bellman
(1856-1922)

55

Bellman Equation in Matrix Form

* For finite state MDP, we can express v,;(s) using a matrix equation
V(Sl) _T(Sl)_ _P5151 P515N_ 'U(Sl)'
5 4| . : .
v(Sy)- r(sy) _PSNS1 PSNSN_ v(Sy).

v, = 1" +yP v,

Analytic Solution for Value of MDP

 Bellman equation: v, = r™ + yP™v,

The Bellman equation has a unique solution (to be proved)

. . . , L N 2
+ Analytic solution Solving directly requires taking a matrix inverse ~0(|5]?)

- - Direct solution only possible for small MDPs
Ve = 1" +yP" v,

- Iterative methods for large MDPs, e.g.

vy —yP v, =1
(I — Py = o * Dynamic programming
14 T e Monte-Carlo evaluation

v, = (I . ,yPT[)—erL'

* Temporal-Difference learning .-

Bellman Equation for MDP

* The action-value function can similarly be decomposed,

4r(5,@) = 7(5,@) + ¥) Pyt (@) v (s")

=1(5, @) + ¥) Py(@)) 7(@ls") 4 (s’ @)

Optimal Policy and Optimal Value Functions

* We say that m > 7’ ("m is better than 7©'”) if v, = v, i.e., v .(s) = v,(s),Vs

* There is a policy m, that is better than any other policy (including non-stationary
ones), which is an optimal policy (to be proved)

* All optimal policies share the same value functions

v,(s) = supvy,(s),Vs
T

q.(s,a) = supq,(s,a),Vs,a
VIA

59

Bellman Optimality Equation

The optimal value function v, (s) satisfies the following equation

,Vs€ES
acA(s)

v.(s) = max [r(s, a) + yz P .. (a)v.(s")

Remark 1: We will show that v, is the unique solution to the optimality equation.

Remark 2: if v, is known, any policy that is greedy with respect to v, is optimal. In
particular, there is a deterministic stationary policy that is optimal.

Bellman Optimality Equation

* A Markov policy is a sequence of mappings m = (ug, Uy, ...), one for each
time step, where each p; is a (randomized) mapping from state to action.

Lemma

Given any history-dependent policy and starting state, there exists a
Markov policy with the same value.

(see Theorem 5.5.1 in “Markov Decision Processes” by Puterman)

61

Proof of Bellman Optimality Equation

Step 1: v,(s) < max[r(s, a) +vy g PSS,(a)v*(S’)]
a
Let 1 = (Ug, Uy, Uy, ...) be an arbitrary Markov policy and ' = (i, iy, ...). Then

vr(s) = Nato(als) [r(s,a) +y Ty Psgr (@) vy, (s1)].

Since v, (s") < v,(s") for all s’, we have

U () < Sa o(als) [r(s,@) + ¥ T Pogr (@ (5]
< S tto(als) max[r(s, @) + B Pygr(@)v.(s")]

= mc?x[r(s, a) +y X P (a)v, (s’)].

As this holds for any Markov policy, we have v,(s) < max[r(s, a) +y X PSS/(a)v*(s')].
a

Proof of Bellman Optimality Equation

Step 2: v,(s) = mC?X[T(S, a) +y 2y Psgr (@), (5')]

Let a, = argmax, [r(s, a) +y X PSS,(a)v*(s')].
Let 75, be a policy such that v ,(s") = v.(s") — €.

Let be the policy that chooses a, at time 0, and, if the next state is s’, then view the
process as originating in state s’, following the policy mg,. Then

v (s) =r(s,ay) + ¥ Xg PSSr(aO)v,TS, (s") =r(s,ap) + v Xs P (ag)v. (s — ve.

Thus, v,(s) = 71(s,a9) + ¥ 251 P (ag)vi(s) —ye = mc?x[r(s, a) +y X PSSr(a)v*(s’)] —YE.

The result follows by making € arbitrarily small.

Bellman Optimality Equation

Corollary

The optimal value function g..(s, a) satisfies the following equation

q.(s,a) =r(s,a) + yz P..(a)| max q.(s',a")}Vs €S,a € A(s)
’ a’ eA(S)
S

Remark: Given g, (s, a), an optimal deterministic stationary policy can be easily
obtained as m(s) = argmax q..(s, a).
a

