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Dynamic Programming

• Contractions and Banach’s fixed point theorem

• Policy Evaluation

• Policy Optimization 

• Value Iteration

• Policy Iteration
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Norms

• 𝑉: a vector space over the reals 

• 𝑓 ∶ 𝑣 → ℝ!" is a norm if 

• If 𝑓 𝑣 = 0, then 𝑣 = 0

• For 𝑢, 𝑣 ∈ 𝑉, 𝑓 𝑢 + 𝑣 ≤ 𝑓(𝑢) + 𝑓(𝑣)
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Examples of Norms

• 𝑉 = (𝑅!, +, ⋅)

• 𝑙" norms:  for 𝑝 ≥ 1, 𝑣 # = ∑$%&! 𝑣$ "
&/"

• 𝑙( norms: 𝑣 ( = max
&)$)!

|𝑣$|

• 𝑉 = (𝐵(𝑋), +, ⋅)

• 𝐵 𝑋 = 𝑓: 𝑋 → ℝ: sup
*∈,

𝑓 𝑥 < +∞ -- the vector space of uniformly 

bounded real functions over domain 𝑋

• 𝑓 ( = sup
*∈,

𝑓 𝑥
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Convergence in norm

• 𝑉, ⋅ : a normed vector space

• 𝑣- -./ is said to converge to 𝑣 in norm if lim
-→(

𝑣- − 𝑣 = 0, denoted by 

𝑣- → ⋅ 𝑣.

• In a 𝑑-dimensional vector space, this is equivalent to 𝑣-,$ → 𝑣$

• 𝑣-,$ - 𝑖-th component of 𝑣-
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Cauchy Sequence

• 𝑉, ⋅ : a normed vector space

• 𝑣- -./ is called a Cauchy sequence if lim
-→(

sup
3.-

𝑣- − 𝑣3 = 0

• 𝑉, ⋅ is called complete if every Cauchy sequence is 
convergent in norm

• A complete, normed vector space is called a Banach space

• Theorem: (𝐵(𝑋), ⋅ () is a Banach space for non-empty 𝑋
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Contraction Mappings

• 𝑉, ⋅ : a normed vector space

• A mapping 𝑇: 𝑉 → 𝑉 is called 𝐿-Lipschitz if for any 𝑢, 𝑣 ∈ 𝑉,

𝑇𝑢 − 𝑇𝑣 ≤ 𝐿 𝑢 − 𝑣

• 𝐿 ≤ 1: 𝑇 is called a non-expansion

• 𝐿 < 1: 𝑇 called a 𝐿-contraction
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Fixed Point

• 𝑣 ∈ 𝑉 is called a fixed point of 𝑇 if 𝑇𝑣 = 𝑣

• 𝑉 = 𝐵 𝒮 :	the	vector	space	of	bounded	value	functions	over	state	space	𝒮

• Bellman equation:  𝑣4 = 𝑟4 + 𝛾𝑃4𝑣4
• 𝑣4 is a fixed point 𝑇4: 𝑉 → 𝑉, 𝑇4𝑣 = 𝑟 + 𝛾𝑃𝑣

• 𝑇4 is called the Bellman operator underlying 𝜋

• Bellman optimality equation: 𝑣∗ 𝑠 = max
6

𝑟 𝑠, 𝑎 + 𝛾 ∑7! 𝑃77! 𝑎 𝑣∗ 𝑠8

• 𝑣∗ is a fixed point 𝑇∗: 𝑉 → 𝑉, (𝑇∗𝑣)(𝑠) = max
6

𝑟 𝑠, 𝑎 + 𝛾 ∑7! 𝑃77! 𝑎 𝑣 𝑠8

• 𝑇∗ is called the Bellman optimality operator 8



Banach’s fixed point theorem

• Let 𝑉 be a Banach space and 𝑇 a 𝐿-contraction mapping. 
Then
• 𝑇 has a unique fixed point 𝑣
• For any 𝑣! ∈ 𝑉, if 𝑣#"$ = 𝑇𝑣#, then 

• lim
#→&

𝑣# − 𝑣 = 0

• 𝑣# − 𝑣 ≤ 𝐿# 𝑣! − 𝑣 (geometric convergence)
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Stefan Banach 
(1892-1945)



Proof of Banach’s fixed point theorem 
Pick 𝑣! ∈ 𝑉 and define 𝑣"#$ = 𝑇𝑣"
Step 1: sequence 𝑣" is convergent

It suffices to show that 𝑣" is a Cauchy sequence (since 𝑉 is a Banach space)
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𝑣"#% − 𝑣" = 𝑇𝑣"&$#% − 𝑇𝑣"&$

≤ 𝐿 𝑣"&$#% − 𝑣"&$

≤ 𝐿' 𝑣"&'#% − 𝑣"&'

≤ 𝐿" 𝑣% − 𝑣!
⋮

≤ 𝐿"( 𝑣% + 𝑣! )

Since 𝑣% ≤ 𝑣% − 𝑣%&$ + 𝑣%&$ − 𝑣%&' +
…+ 𝑣$ − 𝑣!

𝑣% ≤ (𝐿%&$+𝐿%&' +⋯+ 1) 𝑣$ − 𝑣!

≤
1

1 − 𝐿 𝑣$ − 𝑣!

Thus, 𝑣"#% − 𝑣" ≤ 𝐿" $
$&(

𝑣$ − 𝑣! + 𝑣!

and so, lim
"→*

sup
%+!

𝑣"#% − 𝑣" = 0

since 𝐿 < 1

since 𝐿 < 1



Proof of Banach’s fixed point theorem 

Step 2:  let 𝑣 be the limit of 𝑣" . We show that 𝑇𝑣 = 𝑣.

Take limits of both sides in 𝑣"#$ = 𝑇𝑣". 

The left side converges to 𝑣, and the right side converges to 𝑇𝑣" (𝑇 is a contraction, hence 
it is continuous.)  Thus, we must have 𝑣 = 𝑇𝑣.

Step 3:  uniqueness of the fixed point of 𝑇

Assume 𝑇𝑣 = 𝑣 and 𝑇𝑣′ = 𝑣′. Then, 𝑣 − 𝑣′ = 𝑇𝑣 − 𝑇𝑣′ ≤ 𝐿 𝑣 − 𝑣′ . Since 𝐿 < 1,
we must have 𝑣 − 𝑣′ = 0, which implies 𝑣 = 𝑣′.
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Proof of Banach’s fixed point theorem 

Step 4: geometric convergence

12

𝑣" − 𝑣 = 𝑇𝑣"&$ − 𝑇𝑣

≤ 𝐿 𝑣"&$ − 𝑣

≤ 𝐿' 𝑣"&' − 𝑣

≤ 𝐿" 𝑣! − 𝑣
⋮



Dynamic Programming

• Contractions and Banach’s fixed point theorem

• Policy Evaluation

• Policy Optimization 

• Value Iteration

• Policy Iteration
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Prediction (Policy Evaluation)

• Bellman equation:  𝑣4 = 𝑟4 + 𝛾𝑃4𝑣4
• 𝑉 = (𝐵 𝒮 , ⋅ ()

• 𝑇4: 𝑉 → 𝑉 where 𝑇4𝑣 = 𝑟4 + 𝛾𝑃4𝑣

Fact 1: 𝑇4 is a 𝛾-contraction with respect to ⋅ (

Fact 2:  𝑇4 is monotone, i.e., if 𝑢 ≤ 𝑣, then 𝑇4𝑢 ≤ 𝑇4𝑣
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𝑣4 is the unique fixed 
point of the Bellman 
equation underlying 𝜋

If 𝑣/ ≤ 𝑇𝑣/, then 𝑣/ ≤ 𝑣& ≤ 𝑣9 ≤ 𝑣: ≤ ⋯

If 𝑣/ ≥ 𝑇𝑣/, then 𝑣/ ≥ 𝑣& ≥ 𝑣9 ≥ 𝑣: ≥ ⋯



Prediction (Policy Evaluation)

𝑇' is a 𝛾-contraction with respect to ⋅ &

Proof: 
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≤ 𝛾 sup
,∈𝒮

;
,!∈𝒮

𝑃,,!
/ 𝑢(𝑠0) − 𝑣(𝑠0

≤ 𝛾 sup
,∈𝒮

;
,!∈𝒮

𝑃,,!
/ 𝑢 − 𝑣 * = 𝛾 𝑢 − 𝑣 *

= 𝛾 sup
,∈𝒮

∑,!∈𝒮 𝑃,,!
/ 𝑢(𝑠0) − 𝑣(𝑠0 )

𝑇/𝑢 − 𝑇/𝑣 * = sup
,∈𝒮

𝑟/ 𝑠 + 𝛾 ∑,! 𝑃,,!
/ 𝑢 𝑠0 − 𝑟/ 𝑠 + 𝛾 ∑,! 𝑃,,!

/ 𝑣 𝑠0



Iterative policy evaluation

Input: 𝜋 (policy to be evaluated), 𝜃 > 0 (threshold)

Initialize 𝑉(𝑠) for 𝑠 ∈ 𝒮#, arbitrarily except 𝑉 𝑠∗ = 0

Loop:

Δ ← 0
Loop for each 𝑠 ∈ 𝒮:

𝑉′ 𝑠 ← ∑2 𝜋 𝑎 𝑠 𝑟 𝑠, 𝑎 + 𝛾 ∑,! 𝑃,,! 𝑎 𝑉 𝑠0

Δ ← max(Δ, |𝑉′ 𝑠 − 𝑉 𝑠 |)
𝑉 ← 𝑉′

until Δ < 𝜃
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To reduce complexity, 
precompute 

𝑟! 𝑠 = $
"∈𝒜(&)

𝜋 𝑎 𝑠 𝑟 (𝑠, 𝑎)

𝑃&,&!
! = $

"∈𝒜(&)

𝜋 𝑎 𝑠 𝑃&&! 𝑎

Each iteration updates the values of all states



In-place iterative policy evaluation

Input: 𝜋 (policy to be evaluated), 𝜃 > 0 (threshold)

Initialize 𝑉(𝑠) for 𝑠 ∈ 𝒮#, arbitrarily except 𝑉 𝑠∗ = 0

Loop:
Δ ← 0
Loop for each 𝑠 ∈ 𝒮:

𝑣 ← 𝑉(𝑠)

𝑉 𝑠 ← ∑2 𝜋 𝑎 𝑠 𝑟 𝑠, 𝑎 + 𝛾 ∑,! 𝑃,,! 𝑎 𝑉 𝑠0

Δ ← max(Δ, |𝑣 − 𝑉 𝑠 |)
until Δ < 𝜃
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sweeps through the state space
usually converges faster



Example: Gridworld

𝒮 = 1,2, … , 14
𝒜 = {up, down, right, leN}

• Actions that would take the agent off the grid 
leave its location unchanged
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Terminal state

Terminal state



Example: Gridworld
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𝑘 = 0 𝑘 = 1 𝑘 = 2

𝑘 = 3 𝑘 = 10 𝑘 = ∞

𝑣B from iterative policy evaluation under equiprobable random policy



Dynamic Programming

• Contractions and Banach’s fixed point theorem

• Policy Evaluation

• Policy Optimization 

• Value Iteration

• Policy Iteration
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Control (Policy Optimization)

• Bellman optimality equation:𝑣∗ 𝑠 = max
6

𝑟 𝑠, 𝑎 + 𝛾 ∑7! 𝑃77! 𝑎 𝑣∗ 𝑠8

• 𝑉 = (𝐵 𝒮 , ⋅ ()

• 𝑣∗ is a fixed point of 𝑇∗: 𝑉 → 𝑉 where (𝑇∗𝑣)(𝑠) = max
6

𝑟 𝑠, 𝑎 + 𝛾 ∑7! 𝑃77! 𝑎 𝑣 𝑠8

Fact 1: 𝑇∗ is a 𝛾-contraction with respect to ⋅ (

Fact 2: 𝑇∗ is monotone, i.e., if 𝑢 ≤ 𝑣, then 𝑇∗𝑢 ≤ 𝑇∗𝑣

21

𝑣∗ is the unique solution 
to the Bellman 
optimality equation.



From Optimal Value to Optimal Policy 

Proof:  𝑇4𝑣∗ = 𝑇∗𝑣∗ = 𝑣∗
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Theorem
Let 𝜋 be the deterministic stationary policy such that

𝜋 𝑠 = argmax
6∈𝒜(7)

𝑟 𝑠, 𝑎 + 𝛾`
7!
𝑃77! 𝑎 𝑣∗ 𝑠8 , ∀𝑠 ∈ 𝒮

Then 𝑣4 = 𝑣∗. Hence, 𝜋 is optimal.

⇒ 𝑣4 = 𝑣∗



Value Iteration
Input: 𝜃 > 0 (threshold)
Initialize 𝑉(𝑠) for 𝑠 ∈ 𝒮), arbitrarily except 𝑉 𝑠∗ = 0

Loop:
Δ ← 0
Loop for each 𝑠 ∈ 𝒮:

𝑣 ← 𝑉(𝑠)

𝑉 𝑠 ← max
"∈𝒜 &

𝑟 𝑠, 𝑎 + 𝛾 ∑&! 𝑃&&! 𝑎 𝑉 𝑠+

Δ ← max(Δ, |𝑣 − 𝑉 𝑠 |)
until Δ < 𝜃

Output the deterministic policy 𝜋 such that

𝜋 𝑠 = argma𝑥
"∈𝒜 &

𝑟 𝑠, 𝑎 + 𝛾 ∑&! 𝑃&&! 𝑎 𝑉 𝑠+
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Value Iteration

Proof: see Singh and Yee, “An Upper Bound on the Loss from Approximate Optimal-Value 
Functions”, 1994.
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Theorem
Let 𝑣 be a state-value function such that |𝑣 𝑠 − 𝑣∗(𝑠)| ≤ 𝜃′ for all 𝑠 ∈ 𝑆, and 
𝜋 a greedy policy for 𝑣. Then for all 𝑠 ∈ 𝑆,

𝑣4 𝑠 − 𝑣∗ 𝑠 ≤
2𝛾𝜃′
1 − 𝛾



Gambler’s Problem

• A gambler has the opportunity to make bets on the 
outcomes of a sequence of coin flips.
• If the coin comes up heads, he wins as many dollars as he has 

staked on that flip; if it is tails, he loses his stake.
• The game ends when the gambler wins by reaching his goal of 

$100, or loses by running out of money.

• On each flip, the gambler must decide what portion of 
his capital to stake, in integer numbers of dollars.
• This problem can be formulated as an undiscounted, 

finite (non-deterministic) MDP.
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Gambler’s Problem

• The state is the gambler's capital 𝑠 = {0,1,2,3… , 100}
• The actions are stakes 𝑎 ∈ {1, 2, … ,min(𝑠, 100 − 𝑠)}
• The reward is zero on all transitions except those on 

which the gambler reaches his goal, when it is +1.
• The state-value function then gives the probability of 

winning from each state.
• A policy is a mapping from levels of capital to stakes

• The optimal policy maximizes the probability of reaching the 
goal.

• Let 𝑝, denote the probability of the coin coming up heads.
• If 𝑝, is known, then the entire problem space is known and can 

be solved
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Gambler’s Problem
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𝑝F = 0.4



Asynchronous Value Iteration

• Synchronous VI 
• operates at all states simultaneously in every iteration
• may stuck at bad states

• Asynchronous VI
• 𝑉(𝑠) is updated for a subset of states in one iteration
• Iteration orders can be deterministic or randomized 
• convergence is still guaranteed as long as all the states are visited infinitely number of times

• Advantage of asynchronous VI
• Faster convergence
• Parallel and distributed computation 
• Simulation-based/online implementation (see SB Ch.8)
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Dynamic Programming

• Contractions and Banach’s fixed point theorem

• Policy Evaluation

• Policy Optimization 

• Value Iteration

• Policy Iteration
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Policy Improvement

30

Proof: Exercise

Theorem
Let 𝜋! be a stationary policy and let 𝜋 be the greedy policy with respect to 𝑣/" . That 
is, 𝜋 𝑠 = argmax2 𝑟 𝑠, 𝑎 + 𝛾 ∑,! 𝑃,,! 𝑎 𝑣/" 𝑠

0 , ∀𝑠 ∈ 𝒮. Then we have 

(1)  𝑣/ ≥ 𝑣/"
(2)  If 𝑇∗𝑣/" 𝑠 > 𝑣/" 𝑠 for some 𝑠 ∈ 𝒮, then 𝑣/ > 𝑣/"
(3)  If 𝑇∗𝑣/" 𝑠 = 𝑣/" 𝑠 for all 𝑠 ∈ 𝒮, then 𝜋! is an optimal policy

𝜋/→
G
𝑣4"→

H
𝜋& →

G
𝑣4# →

H
𝜋9 →

G
⋯→

H
𝜋∗→

G
𝑣∗



Policy Improvement
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Proof: See [CS] Appendix A.2 Theorem 3 

Theorem
Let 𝜋! be a stationary policy and let 𝜋 be the greedy policy with respect to 𝑣/" . That 
is, 𝜋 𝑠 = argmax2 𝑟 𝑠, 𝑎 + 𝛾 ∑,! 𝑃,,! 𝑎 𝑣/" 𝑠

0 , ∀𝑠 ∈ 𝒮. Then we have 

(1)  𝑣/ ≥ 𝑣/"
(2)  If 𝑇∗𝑣/" 𝑠 > 𝑣/" 𝑠 for some 𝑠 ∈ 𝒮, then 𝑣/ > 𝑣/"
(3)  If 𝑇∗𝑣/" 𝑠 = 𝑣/" 𝑠 for all 𝑠 ∈ 𝒮, then 𝜋! is an optimal policy

• Note that 𝜋 𝑠 = argmax" 𝑟 𝑠, 𝑎 + 𝛾 ∑&! 𝑃&&! 𝑎 𝑣!" 𝑠
+

⇏ 𝑣! = max" 𝑟 𝑠, 𝑎 + 𝛾 ∑&! 𝑃&&! 𝑎 𝑣!" 𝑠
+



Policy Improvement

Proof of part (1)     

𝜋 𝑠 = argmax6 𝑟 𝑠, 𝑎 + 𝛾 ∑7! 𝑃77! 𝑎 𝑣4" 𝑠
8 , ∀𝑠 ∈ 𝒮

⇒ 𝑇4𝑣4" ≥ 𝑇4"𝑣4"
⇒ 𝑇4 9𝑣4" ≥ 𝑇4𝑣4" ≥ 𝑣4"
…
⇒ 𝑇4 (𝑣4" ≥ 𝑣4"
⇒ 𝑣4 ≥ 𝑣4"
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= 𝑣4"



Policy Iteration

Initialization
𝑉 𝑠 ∈ ℝ and 𝜋 𝑠 ∈ 𝒜 𝑠 arbitrarily for all 𝑠 ∈ 𝒮

Policy Evaluation
Loop:
Δ ← 0
Loop for each 𝑠 ∈ 𝒮:
𝑣 ← 𝑉(𝑠)

𝑉 𝑠 ← ∑"𝜋 𝑎 𝑠 𝑟 𝑠, 𝑎 + 𝛾 ∑&! 𝑃&&! 𝑎 𝑉 𝑠+

Δ ← max(Δ, |𝑣 − 𝑉 𝑠 |)
until Δ < 𝜃
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Policy Improvement
policy-stable← true
For each 𝑠 ∈ 𝒮:

old-action← 𝜋 𝑠
𝜋 𝑠 ← argmax

"
[ 𝑟 𝑠, 𝑎 + 𝛾 ∑&! 𝑃&&! 𝑎 𝑉 𝑠+ ]

if old-action≠ 𝜋 𝑠 , then policy-stable=false
If policy-stable, then stop and return 𝑉 and 𝜋
else go to 2.

1

2

3

A subtle bug: policy continually 
switches between two or more 
policies that are equally good.



Policy Iteration for Action Values

Initialization
𝑄 𝑠, 𝑎 ∈ ℝ arbitrarily for all 𝑠 ∈ 𝒮 and 𝑎 ∈ 𝒜 𝑠
𝜋 𝑠 ∈ 𝒜 𝑠 arbitrarily for all 𝑠 ∈ 𝒮

Policy Evaluation
Loop:
Δ ← 0
Loop for each 𝑠 ∈ 𝒮 and 𝑎 ∈ 𝒜 𝑠
𝑞 ← 𝑄(𝑠, 𝑎)
𝑄 𝑠, 𝑎 ← 𝑟 𝑠, 𝑎 + 𝛾 ∑&! 𝑃&&!(𝑎)𝑄 𝑠+, 𝜋(𝑠+)
Δ ← max(Δ, |𝑞 − 𝑄 𝑠, 𝑎 |)

until Δ < 𝜃
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Policy Improvement
policy-stable← true
For each 𝑠 ∈ 𝒮:

old-action← 𝜋 𝑠
𝜋 𝑠 ← argmax" 𝑄(𝑠, 𝑎)
if old-action≠ 𝜋 𝑠 , then policy-stable=false

If policy-stable, then stop and return 𝑄 and 𝜋
else go to 2.

1

2

3



Policy Iteration

𝜋J→
K
𝑣L!→

M
𝜋N →

K
𝑣L" →

M
𝜋O →

K
⋯→

M
𝜋∗→

K
𝑣∗

• Each policy is a strict improvement over the previous one (unless it’s already optimal).

• A finite MDP only has a finite number of (deterministic stationary) policies => the 
process converges in a finite number of iterations.

• PI vs. VI
• PI converges in fewer iterations than VI
• But the computational cost of a single step in PI is much higher
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Generalized Policy Iteration

• Generalized policy iteration (GPI) - letting 
policy-evaluation and policy-improvement 
processes interact, independent of the 
granularity and other details of the two 
processes.

• If both processes stabilize with respect to 
each other, the value function and policy 
must be optimal.
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Linear Programming Method for MDP

• Policy Evaluation

• Policy Optimization

min
I
∑7∈𝒮 𝑣(𝑠)

subject to 𝑣 𝑠 ≥ 𝑟 𝑠, 𝑎 + 𝛾 ∑7! 𝑃77! 𝑎 𝑣 𝑠8 , ∀𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜(𝑠)

• The correctness of the LP is based on the following fact: 

If 𝑣 ≥ 𝑇∗𝑣, then 𝑣 ≥ 𝑣∗ (Exercise)

37

𝑣4 = 𝑟4 + 𝛾𝑃4𝑣4 ⇒ 𝑣4 = 𝐼 − 𝛾𝑃4 K&𝑟4



Partially Observable MDP

• A Partially Observable Markov Decision Process is a tuple 𝑋,𝒜,𝑂, 𝑝, 𝛾
• 𝑋 = {1,2, … , 𝑑} is a finite set of hidden states

• 𝒜 is a finite set of actions 

• 𝑂 is a finite set of observations (including rewards)

• 𝑝 𝑥8, 𝑜 𝑥, 𝑎 = Pr 𝑋L = 𝑥8, 𝑂L = 𝑜|𝑋LK& = 𝑥, 𝐴LK& = 𝑎
• 𝛾 is a discount factor, 𝛾 ∈ [0,1]
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Belief States

• A history 𝐻L is a sequence of actions, observations and rewards,

𝐻L = 𝑂/, 𝐴/, 𝑂&, 𝐴& , … , 𝑂LK&, 𝐴LK&, 𝑂L

• A belief state 𝑆L = 𝐬L ∈ ℝ! is a probability distribution over states, 
conditioned on the history 𝐻L

𝐬L = Pr 𝑋L = 𝑖 𝐻L = ℎ ,… , Pr 𝑋L = 𝑑 𝐻L = ℎ
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POMDP to Belief MDP

40

• The belief state is Markov, i.e., 

Pr 𝑆LM& = 𝐬′ | 𝑆L = 𝐬, 𝐴L = 𝑎, 𝑆LK& = 𝐬LK&, 𝐴LK& = 𝑎LK&, … , 𝑆/ = 𝐬/

= Pr 𝑆LM& = 𝐬8 𝑆L = 𝐬, 𝐴L = 𝑎

• We thus obtain a continuous state MDP

• Belief update:

𝐬LM& 𝑖 =
∑N%&! 𝐬L 𝑗 𝑝(𝑖, 𝑜|𝑗, 𝑎)

∑N%&! ∑B%&! 𝐬L 𝑗 𝑝(𝑘, 𝑜|𝑗, 𝑎)


