• • • • • • • • • • •

Dynamic Programming

CMPS 4660/6660: Reinforcement Learning

Dynamic Programming

- Contractions and Banach's fixed point theorem
- Policy Evaluation
- Policy Optimization
 - Value Iteration
 - Policy Iteration

Norms

- *V*: a vector space over the reals
- $f: v \to \mathbb{R}_0^+$ is a norm if
 - If f(v) = 0, then v = 0
 - For $u, v \in V$, $f(u + v) \le f(u) + f(v)$

Examples of Norms

- $V = (R^d, +, \cdot)$
 - l^p norms: for $p \ge 1$, $||v||_p = (\sum_{i=1}^d |v_i|^p)^{1/p}$
 - l^{∞} norms: $||v||_{\infty} = \max_{1 \le i \le d} |v_i|$
- $V = (B(X), +, \cdot)$
 - $B(X) = \{f: X \to \mathbb{R}: \sup_{x \in X} |f(x)| < +\infty\}$ -- the vector space of uniformly bounded real functions over domain X
 - $||f||_{\infty} = \sup_{x \in X} |f(x)|$

Convergence in norm

- (V, $\|\cdot\|$): a normed vector space
- $\{v_n\}_{n\geq 0}$ is said to converge to v in norm if $\lim_{n\to\infty} ||v_n v|| = 0$, denoted by $v_n \to_{\|\cdot\|} v$.
- In a d-dimensional vector space, this is equivalent to $v_{n,i} \rightarrow v_i$
 - $v_{n,i}$ *i*-th component of v_n

Cauchy Sequence

- (V, $\|\cdot\|$): a normed vector space
- $\{v_n\}_{n\geq 0}$ is called a Cauchy sequence if $\lim_{n\to\infty} \sup_{m\geq n} ||v_n v_m|| = 0$
- (*V*, ||·||) is called complete if every Cauchy sequence is convergent in norm
- A complete, normed vector space is called a Banach space
- Theorem: $(B(X), \|\cdot\|_{\infty})$ is a Banach space for non-empty X

Contraction Mappings

- (V, $\|\cdot\|$): a normed vector space
- A mapping $T: V \rightarrow V$ is called *L*-Lipschitz if for any $u, v \in V$,

$$||Tu - Tv|| \le L||u - v||$$

- $L \leq 1: T$ is called a non-expansion
- *L* < 1: *T* called a *L*-contraction

Fixed Point

- $v \in V$ is called a fixed point of T if Tv = v
- V = B(S): the vector space of bounded value functions over state space S
- Bellman equation: $v_{\pi} = r^{\pi} + \gamma P^{\pi} v_{\pi}$
 - v_{π} is a fixed point $T^{\pi}: V \to V$, $T^{\pi}v = r + \gamma Pv$
 - T^{π} is called the Bellman operator underlying π
- Bellman optimality equation: $v_*(s) = \max_a [r(s, a) + \gamma \sum_{s'} P_{ss'}(a) v_*(s')]$
 - v_* is a fixed point $T^*: V \to V$, $(T^*v)(s) = \max_a [r(s,a) + \gamma \sum_{s'} P_{ss'}(a)v(s')]$
 - *T*^{*} is called the Bellman optimality operator

Banach's fixed point theorem

- Let V be a Banach space and T a L-contraction mapping. Then
 - T has a unique fixed point v
 - For any $v_0 \in V$, if $v_{n+1} = Tv_n$, then
 - $\lim_{n \to \infty} \|v_n v\| = 0$
 - $||v_n v|| \le L^n ||v_0 v||$ (geometric convergence)

Stefan Banach (1892-1945)

Proof of Banach's fixed point theorem

Pick $v_0 \in V$ and define $v_{n+1} = Tv_n$

Step 1: sequence $\{v_n\}$ is convergent

It suffices to show that $\{v_n\}$ is a Cauchy sequence (since V is a Banach space)

$$\begin{aligned} |v_{n+k} - v_n|| &= ||Tv_{n-1+k} - Tv_{n-1}|| & \text{Since } ||v_k|| \le ||v_k - v_{k-1}|| + ||v_{k-1} - v_{k-2}|| + \\ & \le L ||v_{n-1+k} - v_{n-1}|| & \dots + ||v_1 - v_0|| \\ & \le L^2 ||v_{n-2+k} - v_{n-2}|| & ||v_k|| \le (L^{k-1} + L^{k-2} + \dots + 1) ||v_1 - v_0|| \\ & \vdots & \le L^n ||v_k - v_0|| & \le \frac{1}{1-L} ||v_1 - v_0|| & \text{since } L < 1 \\ & \le L^n (||v_k|| + ||v_0||) & \text{Thus, } ||v_{n+k} - v_n|| \le L^n \left(\frac{1}{1-L} ||v_1 - v_0|| + ||v_0||\right) \\ & \text{and so, } \lim_{n \to \infty} \sup_{k \ge 0} ||v_{n+k} - v_n|| = 0 & \text{since } L < 1 \\ & = 0 & \text{since } L < 1 \\ & = 0 & \text{since } L < 1 \\ & = 0 & \text{since } L < 1 \\ & = 0 & \text{since } L < 1 \\ & = 0 & \text{since } L < 1 \\ & = 0 & \text{since } L < 1 \\ & = 0 & \text{since } L < 1 \\ & = 0 & \text{since } L < 1 \\ & = 0 & \text{since } L < 1 \\ & = 0 & \text{since } L < 1 \\ & = 0 & \text{since } L < 1 \\ & = 0 & \text{since } L < 1 \\ & = 0 & \text{since } L < 1 \\ & = 0 & \text{since } L < 1 \\ & = 0 & \text{since } L < 1 \\ & = 0 & \text{since } L < 1 \\ & = 0 & \text{since } L < 1 \\ & = 0 & \text{since } L < 1 \\ & = 0 & \text{since } L < 1 \\ & = 0 & \text{since } L < 1 \\ & = 0 & \text{since } L < 1 \\ & = 0 & \text{since } L < 1 \\ & = 0 & \text{since } L < 1 \\ & = 0 & \text{since } L < 1 \\ & = 0 & \text{since } L < 1 \\ & = 0 & \text{since } L < 1 \\ & = 0 & \text{since } L < 1 \\ & = 0 & \text{since } L < 1 \\ & = 0 & \text{since } L < 1 \\ & = 0 & \text{since } L < 1 \\ & = 0 & \text{since } L < 1 \\ & = 0 & \text{since } L < 1 \\ & = 0 & \text{since } L < 1 \\ & = 0 & \text{since } L < 1 \\ & = 0 & \text{since } L < 1 \\ & = 0 & \text{since } L < 1 \\ & = 0 & \text{since } L < 1 \\ & = 0 & \text{since } L < 1 \\ & = 0 & \text{since } L < 1 \\ & = 0 & \text{since } L < 1 \\ & = 0 & \text{since } L < 1 \\ & = 0 & \text{since } L < 1 \\ & = 0 & \text{since } L < 1 \\ & = 0 & \text{since } L < 1 \\ & = 0 & \text{since } L < 1 \\ & = 0 & \text{since } L < 1 \\ & = 0 & \text{since } L < 1 \\ & = 0 & \text{since } L < 1 \\ & = 0 & \text{since } L < 1 \\ & = 0 & \text{since } L < 1 \\ & = 0 & \text{since } L < 1 \\ & = 0 & \text{since } L < 1 \\ & = 0 & \text{since } L < 1 \\ & = 0 & \text{since } L < 1 \\ & = 0 & \text{since } L < 1 \\ & = 0 & \text{since } L < 1 \\ & = 0 & \text{since } L < 1 \\ & = 0 & \text{since } L < 1 \\ & = 0 & \text{since } L < 1 \\$$

Proof of Banach's fixed point theorem

Step 2: let v be the limit of $\{v_n\}$. We show that Tv = v.

Take limits of both sides in $v_{n+1} = Tv_n$.

The left side converges to v, and the right side converges to Tv_n (T is a contraction, hence it is continuous.) Thus, we must have v = Tv.

Step 3: uniqueness of the fixed point of T

Assume Tv = v and Tv' = v'. Then, $||v - v'|| = ||Tv - Tv'|| \le L||v - v'||$. Since L < 1, we must have ||v - v'|| = 0, which implies v = v'.

Proof of Banach's fixed point theorem

Step 4: geometric convergence

$$\begin{split} \|v_n - v\| &= \|Tv_{n-1} - Tv\| \\ &\leq L \|v_{n-1} - v\| \\ &\leq L^2 \|v_{n-2} - v\| \\ &\vdots \\ &\leq L^n \|v_0 - v\| \end{split}$$

Dynamic Programming

- Contractions and Banach's fixed point theorem
- Policy Evaluation
- Policy Optimization
 - Value Iteration
 - Policy Iteration

Prediction (Policy Evaluation)

- Bellman equation: $v_{\pi} = r^{\pi} + \gamma P^{\pi} v_{\pi}$
- $V = (B(\mathcal{S}), \|\cdot\|_{\infty})$
- $T^{\pi}: V \to V$ where $T^{\pi}v = r^{\pi} + \gamma P^{\pi}v$

Fact 1: T^{π} is a γ -contraction with respect to $\|\cdot\|_{\infty}$ Fact 2: T^{π} is monotone, i.e., if $u \leq v$, then $T^{\pi}u \leq T^{\pi}v$ If $v_0 \leq Tv_0$, then $v_0 \leq v_1 \leq v_2 \leq v_3 \leq \cdots$ If $v_0 \geq Tv_0$, then $v_0 \geq v_1 \geq v_2 \geq v_3 \geq \cdots$

 v_{π} is the unique fixed point of the Bellman equation underlying π

Prediction (Policy Evaluation)

 T^{π} is a γ -contraction with respect to $\|\cdot\|_{\infty}$ Proof:

$$\|T^{\pi}u - T^{\pi}v\|_{\infty} = \sup_{s \in \mathcal{S}} \left| \left[r^{\pi}(s) + \gamma \sum_{s'} P^{\pi}_{ss'} u(s') \right] - \left[r^{\pi}(s) + \gamma \sum_{s'} P^{\pi}_{ss'} v(s') \right] \right|$$

$$= \gamma \sup_{s \in \mathcal{S}} \left| \sum_{s' \in \mathcal{S}} P_{ss'}^{\pi} \left(u(s') - v(s') \right) \right|$$

$$\leq \gamma \sup_{s \in \mathcal{S}} \sum_{s' \in \mathcal{S}} P_{ss'}^{\pi} |(u(s') - v(s'))|$$

$$\leq \gamma \sup_{s \in \mathcal{S}} \sum_{s' \in \mathcal{S}} P_{ss'}^{\pi} ||u - v||_{\infty} = \gamma ||u - v||_{\infty}$$

Iterative policy evaluation

Input: π (policy to be evaluated), $\theta > 0$ (threshold) Initialize V(s) for $s \in S^+$, arbitrarily except $V(s^*) = 0$

Loop:

 $\Delta \leftarrow 0$

To reduce complexity, precompute

Loop for each
$$s \in S$$
:
 $V'(s) \leftarrow \sum_{a} \pi(a|s) \left(r(s,a) + \gamma \sum_{s'} P_{ss'}(a) V(s') \right)$
 $\Delta \leftarrow \max(\Delta, |V'(s) - V(s)|)$
 $V \leftarrow V'$
until $\Delta < \theta$
 $r^{\pi}(s) = \sum_{a \in \mathcal{A}(s)} \pi(a|s) r(s,a)$
 $P_{s,s'}^{\pi} = \sum_{a \in \mathcal{A}(s)} \pi(a|s) P_{ss'}(a)$

Each iteration updates the values of all states

In-place iterative policy evaluation

Input: π (policy to be evaluated), $\theta > 0$ (threshold) Initialize V(s) for $s \in S^+$, arbitrarily except $V(s^*) = 0$

Loop:

 $\Delta \leftarrow 0$ Loop for each $s \in S$: $v \leftarrow V(s)$ $V(s) \leftarrow \sum_{a} \pi(a|s) \left(r(s,a) + \gamma \sum_{s'} P_{ss'}(a) V(s') \right)$ $\Delta \leftarrow \max(\Delta, |v - V(s)|)$ until $\Delta < \theta$ sweeps through the state space usually converges faster

Example: Gridworld

 $\mathcal{S} = \{1, 2, \dots, 14\}$

- $\mathcal{A} = \{up, down, right, left\}$
 - Actions that would take the agent off the grid leave its location unchanged

Example: Gridworld

 $\{v_k\}$ from iterative policy evaluation under equiprobable random policy

0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
k = 0			

0.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	0.0
	_		

k =	1
-----	---

0.0	-1.7	-2.0	-2.0
-1.7	-2.0	-2.0	-2.0
-2.0	-2.0	-2.0	-1.7
-2.0	-2.0	-1.7	0.0
	_		

k = 2	
-------	--

0.0	-2.4	-2.9	-3.0
-2.4	-2.9	-3.0	-2.9
-2.9	-3.0	-2.9	-2.4
-3.0	-2.9	-2.4	0.0

0.0	-6.1	- 8 .4	-9.0
-6.1	-7.7	- <mark>8</mark> .4	-8.4
-8.4	-8.4	-7.7	-6.1
-9.0	-8.4	-6.1	0.0

0.0	-14.	-20.	-22.
-14.	-18.	-20.	-20.
-20.	-20.	-18.	-14.
-22.	-20.	-14.	0.0

k = 3

k = 10

Dynamic Programming

- Contractions and Banach's fixed point theorem
- Policy Evaluation
- Policy Optimization
 - Value Iteration
 - Policy Iteration

Control (Policy Optimization)

• Bellman optimality equation: $v_*(s) = \max_a [r(s, a) + \gamma \sum_{s'} P_{ss'}(a)v_*(s')]$

• $V = (B(\mathcal{S}), \|\cdot\|_{\infty})$

• v_* is a fixed point of $T^*: V \to V$ where $(T^*v)(s) = \max_a [r(s, a) + \gamma \sum_{s'} P_{ss'}(a)v(s')]$

Fact 1: T^* is a γ -contraction with respect to $\|\cdot\|_{\infty}$ to to Take the fact 2: T^* is monotone, i.e., if $u \leq v$, then $T^*u \leq T^*v$

 v_* is the unique solution to the Bellman optimality equation.

From Optimal Value to Optimal Policy

Theorem

Let π be the deterministic stationary policy such that

$$\pi(s) = \operatorname*{argmax}_{a \in \mathcal{A}(s)} \left[r(s, a) + \gamma \sum_{s'} P_{ss'}(a) v_*(s') \right], \forall s \in \mathcal{S}$$

Then $v_{\pi} = v_*$. Hence, π is optimal.

Proof: $T^{\pi}v_* = T^*v_* = v_* \Rightarrow v_{\pi} = v_*$

Value Iteration

```
Input: \theta > 0 (threshold)

Initialize V(s) for s \in S^+, arbitrarily except V(s^*) = 0

Loop:

\Delta \leftarrow 0

Loop for each s \in S:

v \leftarrow V(s)

V(s) \leftarrow \max_{a \in \mathcal{A}(s)} \left( r(s, a) + \gamma \sum_{s'} P_{ss'}(a) V(s') \right)

\Delta \leftarrow \max(\Delta, |v - V(s)|)
```

until $\Delta < \theta$

Output the deterministic policy π such that

$$\pi(s) = \underset{a \in \mathcal{A}(s)}{\operatorname{argmax}} \left(r(s, a) + \gamma \sum_{s'} P_{ss'}(a) V(s') \right)$$

Value Iteration

Theorem

Let v be a state-value function such that $|v(s) - v_*(s)| \le \theta'$ for all $s \in S$, and π a greedy policy for v. Then for all $s \in S$,

$$|v_{\pi}(s) - v_{*}(s)| \leq \frac{2\gamma\theta'}{1 - \gamma}$$

Proof: see Singh and Yee, "An Upper Bound on the Loss from Approximate Optimal-Value Functions", 1994.

Gambler's Problem

- A gambler has the opportunity to make bets on the outcomes of a sequence of coin flips.
 - If the coin comes up heads, he wins as many dollars as he has staked on that flip; if it is tails, he loses his stake.
 - The game ends when the gambler wins by reaching his goal of \$100, or loses by running out of money.
- On each flip, the gambler must decide what portion of his capital to stake, in integer numbers of dollars.
- This problem can be formulated as an undiscounted, finite (non-deterministic) MDP.

Gambler's Problem

- The state is the gambler's capital $s = \{0, 1, 2, 3 \dots, 100\}$
- The actions are stakes $a \in \{1, 2, \dots, \min(s, 100 s)\}$
- The reward is zero on all transitions except those on which the gambler reaches his goal, when it is +1.
- The state-value function then gives the probability of winning from each state.
- A policy is a mapping from levels of capital to stakes
 - The optimal policy maximizes the probability of reaching the goal.
 - Let p_h denote the probability of the coin coming up heads.
 - If p_h is known, then the entire problem space is known and can be solved

Gambler's Problem

 $p_{h} = 0.4$

Asynchronous Value Iteration

- Synchronous VI
 - operates at all states simultaneously in every iteration
 - may stuck at bad states
- Asynchronous VI
 - V(s) is updated for a subset of states in one iteration
 - Iteration orders can be deterministic or randomized
 - convergence is still guaranteed as long as all the states are visited infinitely number of times
- Advantage of asynchronous VI
 - Faster convergence
 - Parallel and distributed computation
 - Simulation-based/online implementation (see SB Ch.8)

Dynamic Programming

- Contractions and Banach's fixed point theorem
- Policy Evaluation
- Policy Optimization
 - Value Iteration
 - Policy Iteration

Policy Improvement

Theorem

Let π_0 be a stationary policy and let π be the greedy policy with respect to v_{π_0} . That is, $\pi(s) = \operatorname{argmax}_a [r(s, a) + \gamma \sum_{s'} P_{ss'}(a) v_{\pi_0}(s')], \forall s \in S$. Then we have (1) $v_{\pi} \ge v_{\pi_0}$ (2) If $T^* v_{\pi_0}(s) > v_{\pi_0}(s)$ for some $s \in S$, then $v_{\pi} > v_{\pi_0}$ (3) If $T^* v_{\pi_0}(s) = v_{\pi_0}(s)$ for all $s \in S$, then π_0 is an optimal policy

Proof: Exercise

$$\pi_0 \xrightarrow{E} \nu_{\pi_0} \xrightarrow{I} \pi_1 \xrightarrow{E} \nu_{\pi_1} \xrightarrow{I} \pi_2 \xrightarrow{E} \cdots \xrightarrow{I} \pi_* \xrightarrow{E} \nu_*$$

Policy Improvement

Theorem

Let π_0 be a stationary policy and let π be the greedy policy with respect to v_{π_0} . That is, $\pi(s) = \operatorname{argmax}_a [r(s, a) + \gamma \sum_{s'} P_{ss'}(a) v_{\pi_0}(s')], \forall s \in S$. Then we have (1) $v_{\pi} \ge v_{\pi_0}$ (2) If $T^* v_{\pi_0}(s) > v_{\pi_0}(s)$ for some $s \in S$, then $v_{\pi} > v_{\pi_0}$ (3) If $T^* v_{\pi_0}(s) = v_{\pi_0}(s)$ for all $s \in S$, then π_0 is an optimal policy

Proof: See [CS] Appendix A.2 Theorem 3

• Note that $\pi(s) = \operatorname{argmax}_{a} \left[r(s, a) + \gamma \sum_{s'} P_{ss'}(a) v_{\pi_0}(s') \right]$ $\Rightarrow v_{\pi} = \max_{a} \left[r(s, a) + \gamma \sum_{s'} P_{ss'}(a) v_{\pi_0}(s') \right]$

Policy Improvement

Proof of part (1) $\pi(c) = \operatorname{argmax} \left[r(c) \right]$

 $\pi(s) = \operatorname{argmax}_{a} \left[r(s, a) + \gamma \sum_{s'} P_{ss'}(a) v_{\pi_{0}}(s') \right], \forall s \in S$ $\Rightarrow T^{\pi} v_{\pi_{0}} \ge T^{\pi_{0}} v_{\pi_{0}} = v_{\pi_{0}}$ $\Rightarrow (T^{\pi})^{2} v_{\pi_{0}} \ge T^{\pi} v_{\pi_{0}} \ge v_{\pi_{0}}$...

 $\Rightarrow (T^{\pi})^{\infty} v_{\pi_0} \ge v_{\pi_0}$ $\Rightarrow v_{\pi} \ge v_{\pi_0}$

Policy Iteration

1 Initialization

 $V(s) \in \mathbb{R}$ and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in S$

2 Policy Evaluation

Loop:

 $\Delta \leftarrow 0$

Loop for each $s \in S$: $v \leftarrow V(s)$ $V(s) \leftarrow \sum_{a} \pi(a|s) \left(r(s,a) + \gamma \sum_{s'} P_{ss'}(a) V(s') \right)$ $\Delta \leftarrow \max(\Delta, |v - V(s)|)$ until $\Delta < \theta$

3 Policy Improvement

policy-stable \leftarrow true For each $s \in S$: old-action $\leftarrow \pi(s)$ $\pi(s) \leftarrow \arg\max_{a} [r(s, a) + \gamma \sum_{s'} P_{ss'}(a)V(s')]$ if old-action $\neq \pi(s)$, then policy-stable=false If policy-stable, then stop and return V and π else go to 2.

A subtle bug: policy continually switches between two or more policies that are equally good.

Policy Iteration for Action Values

1 Initialization

 $Q(s, a) \in \mathbb{R}$ arbitrarily for all $s \in S$ and $a \in \mathcal{A}(s)$ $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in S$

2 Policy Evaluation

Loop:

 $\Delta \leftarrow 0$

Loop for each $s \in S$ and $a \in \mathcal{A}(s)$

$$q \leftarrow Q(s, a)$$

$$Q(s, a) \leftarrow r(s, a) + \gamma \sum_{s'} P_{ss'}(a) Q(s', \pi(s'))$$

$$\Delta \leftarrow \max(\Delta, |q - Q(s, a)|)$$
until $\Delta < \theta$

3 Policy Improvement

policy-stable \leftarrow true For each $s \in S$: old-action $\leftarrow \pi(s)$ $\pi(s) \leftarrow \operatorname{argmax}_a Q(s, a)$ if old-action $\neq \pi(s)$, then policy-stable=false If policy-stable, then stop and return Q and π else go to 2.

Policy Iteration

$$\pi_0 \xrightarrow{E} v_{\pi_0} \xrightarrow{I} \pi_1 \xrightarrow{E} v_{\pi_1} \xrightarrow{I} \pi_2 \xrightarrow{E} \cdots \xrightarrow{I} \pi_* \xrightarrow{E} v_*$$

- Each policy is a strict improvement over the previous one (unless it's already optimal).
- A finite MDP only has a finite number of (deterministic stationary) policies => the process converges in a finite number of iterations.
- Pl vs. Vl
 - PI converges in fewer iterations than VI
 - But the computational cost of a single step in PI is much higher

Generalized Policy Iteration

- Generalized policy iteration (GPI) letting policy-evaluation and policy-improvement processes interact, independent of the granularity and other details of the two processes.
- If both processes stabilize with respect to each other, the value function and policy must be optimal.

Linear Programming Method for MDP

• Policy Evaluation

$$v_{\pi} = r^{\pi} + \gamma P^{\pi} v_{\pi} \Rightarrow v_{\pi} = (I - \gamma P^{\pi})^{-1} r^{\pi}$$

• Policy Optimization

$$\min_{v} \sum_{s \in S} v(s)$$

subject to $v(s) \ge r(s, a) + \gamma \sum_{s'} P_{ss'}(a) v(s'), \forall s \in S, a \in \mathcal{A}(s)$

• The correctness of the LP is based on the following fact:

If $v \ge T^*v$, then $v \ge v_*$ (Exercise)

Partially Observable MDP

- A Partially Observable Markov Decision Process is a tuple $\langle X, \mathcal{A}, O, p, \gamma \rangle$
 - $X = \{1, 2, ..., d\}$ is a finite set of hidden states
 - ${\mathcal A}$ is a finite set of actions
 - O is a finite set of observations (including rewards)
 - $p(x', o | x, a) = \Pr\{X_t = x', O_t = o | X_{t-1} = x, A_{t-1} = a\}$
 - γ is a discount factor, $\gamma \in [0,1]$

Belief States

• A history H_t is a sequence of actions, observations and rewards,

$$H_t = O_0, A_0, O_1, A_1, \dots, O_{t-1}, A_{t-1}, O_t$$

• A *belief state* $S_t = \mathbf{s}_t \in \mathbb{R}^d$ is a probability distribution over states, conditioned on the history H_t

$$\mathbf{s}_t = (\Pr[X_t = i | H_t = h], ..., \Pr[X_t = d | H_t = h])$$

POMDP to Belief MDP

• Belief update:

$$\mathbf{s}_{t+1}[i] = \frac{\sum_{j=1}^{d} \mathbf{s}_{t}[j] p(i, o|j, a)}{\sum_{j=1}^{d} \sum_{k=1}^{d} \mathbf{s}_{t}[j] p(k, o|j, a)}$$

• The belief state is Markov, i.e.,

 $Pr(S_{t+1} = \mathbf{s}' | S_t = \mathbf{s}, A_t = a, S_{t-1} = \mathbf{s}_{t-1}, A_{t-1} = a_{t-1}, \dots, S_0 = \mathbf{s}_0)$ $= Pr(S_{t+1} = \mathbf{s}' | S_t = \mathbf{s}, A_t = a)$

We thus obtain a continuous state MDP