
Model-Free Control

CMPS 4660/6660: Reinforcement Learning
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Model-Free Reinforcement Learning

• Model-free prediction

• Estimate the value function of an unknown MDP

• Model-free control

• Optimize the value function of an unknown MDP
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Agenda

• On-Policy Monte-Carlo Control

• On-Policy Temporal-Difference Learning

• Off-Policy Learning 
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On and Off-Policy Learning

• On-policy learning
• "Learn on the job"
• Learn about policy  𝜋 from experience sampled from 𝜋

• Off-policy learning
• “Look over someone's shoulder"
• Learn about policy 𝜋 from experience sampled from 𝜇
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Generalized Policy Iteration (Refresher)

• Policy evaluation estimates 𝑣!
• e.g. Iterative policy evaluation

• Policy improvement generates 𝜋" s.t. 𝑣!" ≥ 𝑣!
• e.g. Greedy policy improvement
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Generalized Policy Iteration With Monte-Carlo Evaluation
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Policy evaluation Monte-Carlo policy evaluation, 𝑉 = 𝑣!?

Policy improvement Greedy policy improvement? 



Model-Free Policy Iteration Using Action-Value Function

• Greedy policy improvement over 𝑉! 𝑠 requires model of MDP

𝜋′ 𝑠 = argmax
#∈𝒜(')

𝑟 𝑠, 𝑎 + 𝛾2
'!
𝑃''! 𝑎 𝑉! 𝑠"

• Greedy policy improvement over 𝑄! 𝑠, 𝑎 is model-free

𝜋′ 𝑠 = argmax
#∈𝒜(')

𝑄! 𝑠, 𝑎
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Generalized Policy Iteration with Action-Value Function
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Policy evaluation Monte-Carlo policy evaluation, 𝑄 = 𝑞!?

Policy improvement Greedy policy improvement? 



Monte-Carlo Policy Evaluation

• Sample kth episode using policy π:

𝑆), 𝐴) , 𝑅*, … , 𝑆+,*, 𝐴+,*,𝑅+ ~ 𝜋

• For each state 𝑆. and action 𝐴. in the episode:

𝑁 𝑆., 𝐴. ← 𝑁 𝑆., 𝐴. + 1

𝑄 𝑆., 𝐴. ← 𝑄 𝑆., 𝐴. + *
/ 0",1"

𝐺. − 𝑄 𝑆., 𝐴.
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Example of Greedy Action Selection
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• There are two doors in front of you.
• You open the left door and get reward 0

V(left) = 0
• You open the right door and get reward +1

V(right) = +1

• You open the right door and get reward +3
V(right) = +3

• You open the right door and get reward +2
V(right) = +2

• ...
• Are you sure you've chosen the best door?



Exploration vs. Exploitation Tradeoff

• Exploration: Choose an action with more information 

• Exploitation: Choose an action with more reward

• In MDP, the agent has complete information of what he is going to get for 
different actions from the Markov model. 

• In RL, such information is inaccurate due to finite experience. 

• One solution: 𝜖-Greedy 
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𝜖-Greedy Exploration

• Simplest idea for ensuring continual exploration

• All 𝑚 = |𝒜 s | actions are tried with non-zero probability

• With probability 1 − 𝜖 choose the greedy action

• With probability 𝜖 choose an action at random
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𝜖-Greedy Policy Improvement
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𝜋 𝑎 𝑠 ≥ 𝜖/𝑚, ∀𝑎



Monte-Carlo Policy Iteration
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Policy evaluation Monte-Carlo policy evaluation, 𝑄 = 𝑞!
Policy improvement 𝜖-greedy policy improvement



Monte-Carlo Policy Iteration
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Every episode: 
Policy evaluation Monte-Carlo policy evaluation, 𝑄 ≈ 𝑞!
Policy improvement 𝜖-greedy policy improvement
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GLIE
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GLIE Monte-Carlo Control
• Sample kth episode using policy π:

𝑆!, 𝐴! , 𝑅", … , 𝑆#$", 𝐴#$",𝑅# ~ 𝜋
• For each state 𝑆& and action 𝐴& in the episode:

𝑁 𝑆&, 𝐴& ← 𝑁 𝑆&, 𝐴& + 1

𝑄 𝑆&, 𝐴& ← 𝑄 𝑆&, 𝐴& + "
' (!,)!

𝐺& − 𝑄 𝑆&, 𝐴&

• Improve policy based on new action-value function

𝜖 ← 1/𝑘
𝜋 ← 𝜖-greedy (𝑄)
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MC vs. TD Control

• Temporal-difference (TD) learning has several advantages over 
Monte-Carlo (MC)
• Lower variance
• Online
• Incomplete sequences

• Natural idea: use TD instead of MC in our control loop
• Apply TD to 𝑄(𝑆, 𝐴)
• Use 𝜖-greedy policy improvement
• Update every time-step
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Agenda

• On-Policy Monte-Carlo Control

• On-Policy Temporal-Difference Learning

• Off-Policy Learning 
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Updating Action-Value Functions with Sarsa
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𝑄 𝑆., 𝐴. ← 𝑄 𝑆., 𝐴. + 𝛼 𝑅. + 𝛾𝑄 𝑆.2*, 𝐴.2* − 𝑄 𝑆., 𝐴.



On-Policy Control With Sarsa

Every time-step:

• Policy evaluation   Sarsa, 𝑄 ≈ 𝑞!
• Policy improvement   𝜖-greedy policy improvement
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Sarsa Algorithm for On-Policy Control
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Convergence of Sarsa
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Windy Gridworld Example
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Sarsa on the Windy Gridworld
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𝜖 = 0.1, 𝛼 = 0.5
Initially 𝑄(𝑠, 𝑎) = 0



Expressions of Action-Value Function

• Conditional expectation of return: 

𝑞! 𝑠, 𝑎 = 𝔼! ∑.3)4 𝛾. 𝑅.2* 𝑆) = 𝑠, 𝐴) = 𝑎

• Bellman Equation:

𝑞! 𝑠, 𝑎 = 𝔼5 𝑅.2* + 𝛾 𝑞5 𝑆.2*, 𝐴.2* 𝑆. = 𝑠, 𝐴. = 𝑎
𝑞! 𝑠, 𝑎 = 𝔼5 𝑅.2* + 𝛾𝑅.26 + 𝛾6𝑞5 𝑆.26, 𝐴.26 𝑆. = 𝑠, 𝐴. = 𝑎
𝑞! 𝑠, 𝑎 = 𝔼5 𝑅.2* + 𝛾𝑅.26 + 𝛾6𝑅.27 + 𝛾7𝑞5 𝑆.27, 𝐴.27 𝑆. = 𝑠, 𝐴. = 𝑎

…
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n-Step Sarsa
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q(1)t = Rt+1 + �Q(St+1, At+1)
<latexit sha1_base64="6BDYo3WvFAV26QJ3+ofauLP4gNw=">AAACGHicbVDLSgMxFM3UV62vqks3wSK0VOqMCroRfGxc+uoD2jpk0rQNTWbG5I5QhvkMN/6KGxeKuHXn35g+Ftp64HIP59xLco8XCq7Btr+t1Mzs3PxCejGztLyyupZd36joIFKUlWkgAlXziGaC+6wMHASrhYoR6QlW9XoXA7/6yJTmgX8H/ZA1Jen4vM0pASO52b0HF+7jvFNI8Am+cWMoOgku4kaHSEnwdf52JO2ejXrBzebskj0EnibOmOTQGFdu9qvRCmgkmQ9UEK3rjh1CMyYKOBUsyTQizUJCe6TD6ob6RDLdjIeHJXjHKC3cDpQpH/BQ/b0RE6l1X3pmUhLo6klvIP7n1SNoHzdj7ocRMJ+OHmpHAkOABynhFleMgugbQqji5q+YdokiFEyWGROCM3nyNKnsl5yDkn19mDs9H8eRRltoG+WRg47QKbpEV6iMKHpCL+gNvVvP1qv1YX2ORlPWeGcT/YH19QPnAJ0v</latexit>

q(2)t = Rt+1 + �Rt+2 + �2Q(St+2, At+2)
<latexit sha1_base64="kACeggYPbJJP/H/DmF5WB/usNEQ="></latexit>

q(1)
t = Rt+1 + �Rt+2 + . . .+ �T�t�1RT

<latexit sha1_base64="feUFbGj/l9YWyEB3qBi/Zuld3x4="></latexit>

. . .

q(n)t = Rt+1 + �Rt+2 + . . .+ �n�1Rt+n + �nQ(St+n, At+n)
<latexit sha1_base64="aB6PFK1gMGR/Lcm5fekiJJmEsZU="></latexit>



Sarsa(𝜆): Forward View
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Sarsa(𝜆): Backward View

• Just like TD(𝜆), we use eligibility traces in an online algorithm

• But Sarsa(𝜆) has one eligibility trace for each state-action pair

𝐸,* 𝑠, 𝑎 = 0

𝐸. 𝑠, 𝑎 = 𝛾𝜆𝐸.,* 𝑠, 𝑎 + 𝟏(𝑆. = 𝑠, 𝐴. = 𝑎)

• 𝑄(𝑠, 𝑎) is updated for every state 𝑠 and action 𝑎

• In proportion to TD-error 𝛿. and eligibility trace 𝐸. 𝑠, 𝑎

𝛿. = 𝑅.2* + 𝛾𝑄 𝑆.2*, 𝐴.2* − 𝑄 𝑆., 𝐴.
𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼𝛿.𝐸. 𝑠, 𝑎 , ∀𝑠 ∈ 𝒮, 𝑎 ∈ 𝐴
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Sarsa(𝜆) Algorithm
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Sarsa(𝜆) Gridworld Example
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Agenda

• On-Policy Monte-Carlo Control

• On-Policy Temporal-Difference Learning

• Off-Policy Learning 
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Off-Policy Learning

• Evaluate target policy 𝜋 𝑎 𝑠 to compute 𝑣!(𝑠) or 𝑞!(𝑠, 𝑎)

• While following behavior policy 𝜇(𝑎|𝑠)

𝑆), 𝐴) , 𝑅*, … , 𝑆+,*, 𝐴+,*,𝑅+ ~ 𝜇

• Why is this important?
• Learn from observing humans or other agents
• Re-use experience generated from old policies 𝜋*, 𝜋6, … 𝜋.,*
• Learn about optimal policy while following exploratory policy
• Learn about multiple policies while following one policy
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Importance Sampling

• Estimate the expectation of a different distribution

𝐸8~: 𝑓 𝑋 = ∑𝑃 𝑋 𝑓 𝑋

= ∑𝑄 𝑋 : 8
; 8 𝑓 𝑋

= 𝐸8~;
: 8
; 8

𝑓 𝑋
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Importance Sampling for Off-Policy Monte-Carlo

• Recall constant−𝛼 MC: 𝑉 𝑆. ← 𝑉 𝑆. + 𝛼 𝐺. − 𝑉 𝑆.
• Use returns generated from 𝜇 to evaluate 𝜋

• Weight return 𝐺. according to similarity between policies

𝐺. ≐ 𝑅.2* + 𝛾𝑅.26 + 𝛾2𝑅.27 +⋯+ 𝛾+,.,*𝑅+

𝑣! 𝑠 = 𝐸! 𝐺. 𝑆. = 𝑠

= 𝐸1",0"#$,1"#$,…,0%~! 𝑓 𝐴., 𝑆.2*, 𝐴.2*, … , 𝑆+ |𝑆. = 𝑠

= 𝐸1",0"#$,1"#$,…,0%~= 𝜌.:+,*𝑓 𝐴., 𝑆.2*, 𝐴.2*, … , 𝑆+ |𝑆. = 𝑠
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Importance Sampling for Off-Policy Monte-Carlo

Pr
!
(𝐴., 𝑆.2*, 𝐴.2*, … , 𝑆+,*, 𝐴+,*,𝑆+)

= 𝜋 𝐴. 𝑆. 𝑝(𝑆.2*|𝑆., 𝐴.) 𝜋 𝐴.2* 𝑆.2* …𝑝 𝑆+ 𝑆+,*, 𝐴+,*

= ∏?3.
+,*𝜋 𝐴? 𝑆? 𝑝(𝑆?2*|𝑆?, 𝐴?)
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𝜌.:+,* =
∏?3.
+,*𝜋 𝐴? 𝑆? 𝑝(𝑆?2*|𝑆?, 𝐴?)

∏?3.
+,*𝜇 𝐴? 𝑆? 𝑝(𝑆?2*|𝑆?, 𝐴?)

=]
?3.

+,*
𝜋 𝐴? 𝑆?
𝜇 𝐴? 𝑆?

• Update value towards corrected return
• 𝑉 𝑆# = 𝑉 𝑆# + 𝛼(𝜌#:%&'𝐺# − 𝑉 𝑆#)

• Cannot use if 𝜇 is zero when 𝜋 is non-zero

• Importance sampling can dramatically increase variance



Importance Sampling for Off-Policy TD

• Use TD targets generated from 𝜇 to evaluate 𝜋

• Weight TD target 𝑅 + 𝛾𝑉(𝑆") by importance sampling

• Only need a single importance sampling correction

• Much lower variance than Monte-Carlo importance sampling

• Policies only need to be similar over a single step
38



Q-Learning

• We now consider off-policy learning of action-values 𝑄(𝑠, 𝑎)

• No importance sampling is required

• Next action is chosen using behavior policy 𝐴.2*~𝜇(⋅ |𝑆.)

• But we consider alternative successor action 𝐴"~𝜋(⋅ |𝑆.)

• And update 𝑄(𝑆., 𝐴.) towards value of alternative action
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Q-Learning (Off-policy Control)

• We now allow both behavior and target policies to improve

• The target policy is greedy w.r.t. 𝑄(𝑠, 𝑎)

• The behavior policy is e.g. 𝜖-greedy w.r.t. 𝑄(𝑠, 𝑎)

• The Q-learning target then simplifies:
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Q-Learning (Off-policy Control)
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greedy

or another 
behavior policy



Convergence of Q-Learning

Theorem:

If (i) all (state, action) pairs are generated infinitely often, 
(ii) given (state, action), the next state is generated independently 

at each occurrence of the (state, action) pair,      
(iii) the learning rate satisfies ∑@A)𝛼@ = ∞ and	∑@A)𝛼@6 < ∞,
(iv) a few other technical conditions are satisfied,  

then 𝑄 𝑠, 𝑎 converges to 𝑞∗ 𝑠, 𝑎 with probability one. 

[DB] p. 254

Tsitsiklis, Asynchronous Stochastic Approximation and Q-Learning, 1994
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SARSA vs. Q-learning

• SARSA is on-policy: behavior and target policies are the same

Q-learning is off-policy: behavior and target policies are different

• In 𝜖-greedy step, SARSA needs 𝜖 to decay for achieve optimality

• Q-learning directly learns the optimal policy and does not need 𝜖 to decay

• Q-learning has higher variance than SARSA
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SARSA vs. Q-learning

• “SARSA will approach convergence allowing for possible penalties from 
exploratory moves, whilst Q-learning will ignore them. 

• That makes SARSA more conservative - if there is risk of a large negative reward close 
to the optimal path, Q-learning will tend to trigger that reward whilst exploring, 
whilst SARSA will tend to avoid a dangerous optimal path and only slowly learn to 
use it when the exploration parameters are reduced. “

44

https://stats.stackexchange.com/questions/326788/when-to-
choose-sarsa-vs-q-learning



Cliff Walking Example
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𝜖 = 0.1



SARSA vs. Q-learning

• “In practice, the conservation of SARSA can make a big difference if mistakes are 
costly - e.g. you are training a robot not in simulation, but in the real world. You 
may prefer a more conservative learning algorithm that avoids high risk, if there 
was real time and money at stake if the robot was damaged.”

• “If your goal is to train an optimal agent in simulation, or in a low-cost and fast-
iterating environment, then Q-learning is a good choice, as it learns the optimal 
policy directly. If your agent learns online, and you care about rewards 
gained whilst learning, then SARSA may be a better choice.”
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https://stats.stackexchange.com/questions/326788/when-to-
choose-sarsa-vs-q-learning



Relationship Between DP and TD
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Expected Sarsa

• when 𝜋 is the greedy policy with respect to 𝑄 ⋅,⋅ , it reduces to Q-learning 

• when 𝜋 is the policy used to generate the next action (e.g., 𝜖-greedy), it moves 
deterministically in the same direction as Sarsa moves in expectation

• Generalizes Q-learning and reliably improves Sarsa (with small additional 
computational cost)
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• Similar to Q-learning except the update rule is replaced by



Maximization Bias

• Finding target policy involves taking maximization of estimated values
• In Q-learning, the target policy is the greedy policy given the current action values

• In Sarsa, the target policy is often 𝜖-greedy

• In both methods, maximum over estimated values is used implicitly as an 
estimate of the maximum true value

• Maximization bias: 𝐸!(𝑄 𝑠, argmax#𝑄 𝑠, 𝑎 ≠ 𝑞!(𝑠, 𝑎)
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