Homework 2 (15 points) Due 09/17/20 before class

Note: Please clearly justify your answer to each of the following questions. Questions marked with *** are required for graduate students only.

All the problems below assume a given Markov decision process (S, A, P, r, γ) . V is the normed vector space of uniformally bounded value functions over the state space S with the infinity norm.

1. Monotonicity of Bellman Operators (5 points)

Consider the Bellman operator $T^{\pi}: V \to V$ for a given stationary policy π , where $T^{\pi}v = r^{\pi} + \gamma P^{\pi}v$. Prove that for any $u, v \in V$, if $u \leq v$, then $T^{\pi}u \leq T^{\pi}v$. Recall that $u \leq v$ iff $u(s) \leq v(s)$ for all $s \in S$.

2. *** Policy Improvement (5 points)

Let π_0 be a stationary policy and π be the greedy policy with respect to v_{π_0} . That is, $\pi(s) = \operatorname{argmax}_{a \in \mathcal{A}(s)}[r(s, a) + \gamma \sum_{s' \in \mathcal{S}} P_{ss'}(a)v_{\pi_0}(s')]$. Show that $v_{\pi} \geq v_{\pi_0}$.

3. Policy Iteration for Action Values (5 points)

Give a complete policy iteration algorithm for computing q^* , analogous to that for computing v^* given in Section 4.3 of Sutton and Barto's book.