Set Theory

CMPS/MATH 2170: Discrete Mathematics

Outline

- Sets and Set Operations (2.1-2.2)
- Functions (2.3)
- Sequences and Summations (2.4)
- Cardinality of Sets (2.5)

Introduction to Sets

- A set is an unordered collection of objects, called elements or members of the set
 - Usually: duplicates are not allowed
 - $a \in A$: *a* is an element of the set *A*
 - $a \notin A$: *a* is not an element of the set *A*
- Examples

$$A = \{1, 3, 5, 7, 9\} \quad B = \{1, 2, 3, \dots, 99\}$$
$$A = \{x | x \text{ is an odd positive integer less than 10}\}$$
$$A = \{x \in \mathbb{Z}^+ | x \text{ is odd and } x < 10\}$$
the set of positive integers

Roster method

Set builder notation

Often Used Sets

 $\mathbb{N} = \{0, 1, 2, 3, ...\}$, the set of natural numbers $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$, the set of integers $\mathbb{Z}^+ = \{1, 2, 3, ...\}$, the set of positive integers $\mathbb{Q} = \{p/q | p \in \mathbb{Z}, q \in \mathbb{Z}, \text{and } q \neq 0\}$, the set of rational numbers \mathbb{R} , the set of real numbers

 \mathbb{R}^+ , the set of positive real numbers

 \mathbb{C} , the set of complex numbers

Sets vs. Tuples

- A set is an unordered collection of objects
 - two sets are equal if and only if they have the same elements
 - A = B iff $\forall a: a \in A \leftrightarrow a \in B$
 - $\{1,3,5\} = \{3,5,1\}$
- An *n*-tuple $(a_1, a_2, ..., a_n)$ is an ordered collection of elements
 - (3,5,1) is a 3-tuple
 - $(3,5,1) \neq (1,3,5)$
 - $(a_1, a_2, ..., a_n) = (b_1, b_2, ..., b_m)$ iff $n = m, a_1 = b_1, a_2 = b_2, ..., a_n = b_n$

Subsets

- *A* is a subset of *B* if every element of *A* is also an element of *B*
 - $A \subseteq B$
 - $\forall x \in A: x \in B$
 - $\forall x: x \in A \rightarrow x \in B$

- *B* is a superset of *A* if *A* is a subset of *B*
 - $B \supseteq A$

Subsets

- Ex. 1: $A = \{1, 3, 5\}, B = \{1, 2, 3, 4, 5\}$
- Ex. 2: Intervals of real numbers $[a,b] = \{x | a \le x \le b\}$ $[a,b) = \{x | a \le x < b\}$ $(a,b] = \{x | a < x \le b\}$ $(a,b) = \{x | a < x \le b\}$

Subsets

- To show that $A \subseteq B$, show that if $a \in A$ then $a \in B$
- To show that $A \not\subseteq B$, show that there is $a \in A$ such that $a \notin B$
- $S \subseteq S$ for any set S
- $\emptyset \subseteq S$ for any set $S: \emptyset$ empty set {}
- A = B iff $A \subseteq B$ and $B \subseteq A$
- A is a proper subset of B if A is a subset of B but $A \neq B$
 - $A \subset B$
 - $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$

The Size of a Set

- If a set S contains n distinct elements, we say that S is a finite set and n is the cardinality of S, denoted by |S| = n
 - $|\emptyset| = 0$
 - $|\{1, 2, 6\}| = 3$
- A set is said to be infinite if it is not finite
 - The set of positive integers is infinite
 - How to compare the sizes of two infinite sets?

Power Sets

- The power set of a set A is the set of all subsets of A
 - $\mathcal{P}(A) = \{B \mid B \subseteq A\}$
- Ex: $A = \{1, 2, 3\}$
 - $\mathcal{P}(A) = \{ \emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\} \}$
 - $|\mathcal{P}(A)| = 8 = 2^3 = 2^{|A|}$
- Theorem: for any finite set A, $|\mathcal{P}(A)| = 2^{|A|}$
 - A proof by mathematical induction will be given in Chapter 5

Cartesian Products

Let A and B be two sets. The Cartesian product of A and B is the set of all ordered pairs (a, b) with a ∈ A and b ∈ B:

 $A \times B = \{(a, b) | a \in A \text{ and } b \in B\}$

• Ex:
$$A = \{a, b\}, B = \{1, 2, 3\}$$

 $A \times B = \{(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)\}$

• Ex: \mathbb{R} is the set of real numbers

 $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R} = \{(x, y) | x \in \mathbb{R} \text{ and } y \in \mathbb{R}\}\$ is the set of all points in the Cartesian plane

Cartesian Products

• Ex: $A = \{a, b\}, B = \{1, 2, 3\}$

 $A \times B = \{(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)\}$

- For any finite sets A and B, $|A \times B| = |A||B|$
- Cartesian product of multiple sets
 - $A_1 \times A_2 \times \dots \times A_n = \{(a_1, a_2, \dots, a_n) | a_i \in A_i \text{ for } i = 1, 2, \dots, n\}$

True or False

- Suppose $A = \{a, b, c\}$
- $\emptyset \subseteq A$ True
- $\{\emptyset\} \subseteq A$ False
- $\{a, c\} \in A$ False
- $\{b, c\} \in \mathcal{P}(A)$ True
- $\{a, b\} \in A \times A$ False

- Set Operations
 - Union
 - Intersection
 - Difference & Complement
- Set Identities

- -- Disjunction
- -- Conjunction
- -- Negation
- -- Logical equivalences

• The union of set A and set B, denoted by $A \cup B$, is the set that contains those elements that are either in A or B, or in both

 $A \cup B = \{x \mid x \in A \lor x \in B\}$

 $A \cup B$ is shaded.

• The intersection of *A* and *B*, denoted by $A \cap B$, is the set containing those elements that are in both *A* and *B*

 $A \cap B = \{x \mid x \in A \land x \in B\}$

 $A \cap B$ is shaded.

• The difference of *A* and *B*, denoted by $A \setminus B$ (or A - B) is the set containing those elements that are in *A* but not in *B*

 $A \backslash B = \{ x \mid x \in A \land x \notin B \}$

A - B is shaded.

• The complement of a set A with respect to a universe U, denoted by \overline{A} , is the set containing those elements that are not in A

 $\bar{A} = \{x \in U \mid x \notin A\} = U \backslash A$

Ex:
$$A = \{-2, 3, 4\}$$
 $B = \{1, 3, 4, 7\}$
 $A \cup B = \{-2, 1, 3, 4, 7\}$
 $A \cap B = \{3, 4\}$
 $A \setminus B = \{-2\}$

• If $A \subseteq B$, then $A \cup B = B$ and $A \cap B = A$

• $A \setminus B = A \cap \overline{B}$

Theorem: If A and B are two finite sets, then

$$|A \cup B| = |A| + |B| - |A \cap B|$$

Corollary: If two sets *A* and *B* are finite and disjoint, $|A \cup B| = |A| + |B|$

• Two sets are called disjoint if their intersection is the empty set

Set Identities

FABLE 1 Set Identities.			
Identity	Name	$A \cup (B \cup C) = (A \cup B) \cup C$	Associative laws
$A \cup \emptyset = A$	Identity laws	$A \cap (B \cap C) = (A \cap B) \cap C$	
$A \cap U = A$		$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	Distributive laws
$A \cup U = U$	Domination laws	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	
$A \cap \emptyset = \emptyset$		$\overline{A \cup B} = \overline{A} \cap \overline{B}$	De Morgan's laws
$A \cup A = A$	Idempotent laws	$\overline{A \cap B} = \overline{A} \cup \overline{B}$	
$A \cap A = A$		$A \cup (A \cap B) = A$	Absorption laws
$\overline{(\overline{A})} = A$	Complementation law	$A \cap (A \cup B) = A$	*
$A \cup B = B \cup A$	Commutative laws	$A \cup \overline{A} = U$	Complement laws
$A \cap B = B \cap A$		$A \cap \overline{A} = \emptyset$	

Set Identities

• De Morgan's laws for sets

 $\overline{A \cup B} = \overline{A} \cap \overline{B}$ $\overline{A \cap B} = \overline{A} \cup \overline{B}$

• Absorption laws for sets

 $A \cup (A \cap B) = A$

 $A \cap (A \cup B) = A$

Generalized Union and Intersections

- $A \cup B \cup C = A \cup (B \cup C) = (A \cup B) \cup C$
- $A \cap B \cap C = A \cap (B \cap C) = (A \cap B) \cap C$
- The union of a collection of sets is the set that contains those elements that are members of at least one set in the collection.

$$A_1 \cup A_2 \cup \dots \cup A_n = \bigcup_{i=1}^n A_i$$

• The intersection of a collection of sets is the set that contains those elements that are members of all the sets in the collection.

$$A_1 \cap A_2 \cap \dots \cap A_n = \bigcap_{i=1}^n A_i$$

Generalized Union and Intersections

• Ex:
$$B_1 = \{1\}, B_2 = \{1, 2\}, \dots, B_n = \{1, 2, 3, \dots, n\}, \dots$$

$$\bigcup_{n=1}^{\infty} B_n = \{1\} \cup \{1,2\} \cup \dots \cup \{1,2,3,\dots,n\} \cup \dots$$
$$= \{1,2,3\dots\} = \mathbb{Z}^+$$

$$\bigcap_{n=1}^{\infty} B_n = \{1\} \cap \{1,2\} \cap \dots \cap \{1,2,3,\dots,n\} \cap \dots$$
$$= \{1\}$$

Outline

- Sets and Set Operations
- Functions
- Sequences and Summations
- Cardinality of Sets

Functions

- Let *X* and *Y* be nonempty sets. A function $f: X \to Y$ maps every element of *X* to exactly one element in *Y*.
 - *X* is called the domain, *Y* is called the codomain
 - Write f(x) = y where y is the unique element of Y assigned by f to $x \in X$
 - y is called image of x and x is the preimage of y
- Let $S \subseteq X$. Then $f(S) = \{f(s) | s \in S\}$ is the image of S
 - f(X) is the range of f

$$X = \{-3, -1, 2, 5\} \quad Y = \{-1, 0, 4, 7\}$$

$$f(-3) = 0$$

$$f(-1) = 7$$

$$f(2) = 4$$

$$f(X) = \{0, 4, 7\}$$

$$f(5) = 4$$

Functions

• Let $f_1, f_2: X \to \mathbb{R}$ be two functions from X to \mathbb{R} $(f_1 + f_2)(x) = f_1(x) + f_2(x)$ $(f_1f_2)(x) = f_1(x)f_2(x)$

• Ex.1: $f, g: \mathbb{R} \to \mathbb{R}$ $f(x) = x^2, g(x) = x - x^2$ $(f + g)(x) = f(x) + g(x) = x^2 + (x - x^2) = x$ $(fg)(x) = x^2(x - x^2) = x^3 - x^4$

Injective and Surjective Functions

Let $f: X \to Y$ be a function

• f is said be one-to-one, or injective, if

 $\forall x_1, x_2 \in X: f(x_1) = f(x_2) \rightarrow x_1 = x_2$

• *f* is said be onto, or surjective, if

 $\forall y \in Y \ \exists x \in X: \ f(x) = y$

• *f* is said be one-to-one correspondence, or bijective, if it is both injective and surjective

Injective and Surjective Functions

Ex. 2: $f: \mathbb{R} \to \mathbb{R}$ $x \mapsto 2x + 1$ (same as f(x) = 2x + 1) bijective

Ex. 3: $g: \mathbb{R} \to \mathbb{R}$ $x \mapsto x^2$ neither injective nor surjective

Ex. 4: $h: \mathbb{R} \to \mathbb{R}_0^+$ (non-negative real numbers) $x \mapsto x^2$

surjective but not injective

Inverse Functions

Let f: X → Y be a bijective function. Then
 f⁻¹: Y → X, f⁻¹(y) = x such that f(x) = y is the inverse of f

Ex. 5:
$$f: \mathbb{R} \to \mathbb{R}$$
 where $f(x) = 2x + 1$
 $f^{-1}: \mathbb{R} \to \mathbb{R}$ where $f^{-1}(y) = (y - 1)/2$

Ex. 6:
$$f: \mathbb{R}_0^+ \to \mathbb{R}_0^+$$
 where $f(x) = x^2$
 $f^{-1}: \mathbb{R}_0^+ \to \mathbb{R}_0^+$ where $f^{-1}(y) = \sqrt{y}$

• $(f^{-1})^{-1} = f$

Compositions of Functions

• Let $f: X \to Y$ and $g: Y \to Z$. Then

 $g \circ f: X \to Z$ where $(g \circ f)(x) = g(f(x))$ is the composition of g and f

For $g \circ f$ to be defined, the range of f must be a subset of the domain of g

Ex. 7: $f: \mathbb{R} \to \mathbb{R}$, f(x) = 2x, $g: \mathbb{R} \to \mathbb{R}$, g(x) = x + 3 $g \circ f: \mathbb{R} \to \mathbb{R}$, $(g \circ f)(x) = g(f(x)) = g(2x) = 2x + 3$ $f \circ g: \mathbb{R} \to \mathbb{R}$, $(f \circ g)(x) = f(g(x)) = f(x + 3) = 2(x + 3) = 2x + 6$

Compositions of Functions

• Assume $f: X \to Y$ and $g: Y \to Z$ are bijective. Then

Floor and Ceiling Functions

• Floor function: $[]: \mathbb{R} \to \mathbb{Z}$

 $x \rightarrow \lfloor x \rfloor$ (the largest integer less than or equal to x)

• Ceiling function: $[]: \mathbb{R} \to \mathbb{Z}$

 $x \rightarrow [x]$ (the smallest integer greater than or equal to x)

Useful properties:

- $x 1 < [x] \le x$ $x \le [x] < x + 1$
- For all $x \in \mathbb{Z}$: $\left\lfloor \frac{x}{2} \right\rfloor + \left\lfloor \frac{x}{2} \right\rfloor = x$

Outline

- Sets and Set Operations
- Functions
- Sequences and Summations (to be discussed after fall break)
- Cardinality of Sets

Cardinality of Sets

Recall: For a finite set S, |S| = n if S contains n distinct elements

How to compare the sizes of two infinite sets?

FIGURE 2 A New Guest Arrives at Hilbert's Grand Hotel.

David Hilbert

Cardinality of Sets

How to compare the sizes of two infinite sets?

Definition 1: Two sets A and B have the same cardinality, denoted by |A| = |B|, if there is a bijection between A and B

Ex: Let *S* and *T* be finite sets with |S| = |T|. Find a bijection between *S* and *T*.

Georg Cantor (1845-1918)

Cardinality of Sets

Theorem: Let O^+ be the set of odd positive integers. Show that $|\mathbb{Z}^+| = |O^+|$ Proof: $f: \mathbb{Z}^+ \to O^+$, f(n) = 2n - 1

Theorem: Show that $|\mathbb{Z}| = |\mathbb{Z}^+|$

Proof:
$$f: \mathbb{Z} \to \mathbb{Z}^+$$
, $f(n) = \begin{cases} 2n & \text{if } n > 0 \\ -2n+1 & \text{if } n \le 0 \end{cases}$

Countable and Uncountable Sets

Definition 3: Let *S* be a set.

- *S* is countably infinite if $|S| = |\mathbb{Z}^+| = \aleph_0$ ("aleph null")
 - E.g., both O^+ and \mathbb{Z} are countably infinite
- *S* is countable if *S* is finite or countably infinite
- If *S* is not countable, it is uncountable
- Definition 4: We say that |A| ≤ |B| if there is an injection f: A → B, and |A| < |B| if |A| ≤ |B| and |A| ≠ |B|
 - If *A* is finite and *B* is uncountable, then $|A| < \aleph_0 < |B|$