Set Theory

CMPS/MATH 2170: Discrete Mathematics

Outline

- Sets and Set Operations (2.1-2.2)
- Functions (2.3)
- Sequences and Summations (2.4)
- Cardinality of Sets (2.5)

Introduction to Sets

- A set is an unordered collection of objects, called elements or members of the set
- Usually: duplicates are not allowed
- $a \in A: a$ is an element of the set A
- $a \notin A: a$ is not an element of the set A
- Examples

$$
A=\{1,3,5,7,9\} \quad B=\{1,2,3, \ldots, 99\}
$$

Roster method
$A=\{x \mid x$ is an odd positive integer less than 10$\}$
$A=\left\{x \in \mathbb{Z}^{+} \mid x\right.$ is odd and $\left.\mathrm{x}<10\right\}$

Often Used Sets

$\mathbb{N}=\{0,1,2,3, \ldots\}$, the set of natural numbers
$\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$, the set of integers
$\mathbb{Z}^{+}=\{1,2,3, \ldots\}$, the set of positive integers
$\mathbb{Q}=\{p / q \mid p \in \mathbb{Z}, q \in \mathbb{Z}$, and $q \neq 0\}$, the set of rational numbers
\mathbb{R}, the set of real numbers
\mathbb{R}^{+}, the set of positive real numbers
\mathbb{C}, the set of complex numbers

Sets vs. Tuples

- A set is an unordered collection of objects
- two sets are equal if and only if they have the same elements
- $A=B$ iff $\forall a: a \in A \leftrightarrow a \in B$
- $\{1,3,5\}=\{3,5,1\}$
- An n-tuple $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is an ordered collection of elements
- $(3,5,1)$ is a 3 -tuple
- $(3,5,1) \neq(1,3,5)$
- $\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\left(b_{1}, b_{2}, \ldots, b_{m}\right)$ iff $n=m, a_{1}=b_{1}, a_{2}=b_{2}, \ldots, a_{n}=b_{n}$

Subsets

- A is a subset of B if every element of A is also an element of B
- $A \subseteq B$
- $\forall x \in A: x \in B$
- $\forall x: x \in A \rightarrow x \in B$
- B is a superset of A if A is a subset of B
- $B \supseteq A$

Subsets

- Ex. 1: $A=\{1,3,5\}, B=\{1,2,3,4,5\}$
- Ex. 2: Intervals of real numbers

$$
\begin{aligned}
& {[a, b]=\{x \mid a \leq x \leq b\}} \\
& {[a, b)=\{x \mid a \leq x<b\}} \\
& (a, b]=\{x \mid a<x \leq b\} \\
& (a, b)=\{x \mid a<x<b\}
\end{aligned}
$$

Venn Diagram

Subsets

- To show that $A \subseteq B$, show that if $a \in A$ then $a \in B$
- To show that $A \nsubseteq B$, show that there is $a \in A$ such that $a \notin B$
- $S \subseteq S$ for any set S
- $\varnothing \subseteq S$ for any set $S: \emptyset$ - empty set $\}$
- $A=B$ iff $A \subseteq B$ and $B \subseteq A$
- A is a proper subset of B if A is a subset of B but $A \neq B$
- $A \subset B$
- $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$

The Size of a Set

- If a set S contains n distinct elements, we say that S is a finite set and n is the cardinality of S, denoted by $|S|=n$
- $|\varnothing|=0$
- $|\{1,2,6\}|=3$
- A set is said to be infinite if it is not finite
- The set of positive integers is infinite
- How to compare the sizes of two infinite sets?

Power Sets

- The power set of a set A is the set of all subsets of A
- $\mathcal{P}(A)=\{B \mid B \subseteq A\}$
- $\operatorname{Ex}: A=\{1,2,3\}$
$\cdot \mathcal{P}(A)=\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$
- $|\mathcal{P}(A)|=8=2^{3}=2^{|A|}$
- Theorem: for any finite set $A,|\mathcal{P}(A)|=2^{|A|}$
- A proof by mathematical induction will be given in Chapter 5

Cartesian Products

- Let A and B be two sets. The Cartesian product of A and B is the set of all ordered pairs (a, b) with $a \in A$ and $b \in B$:

$$
A \times B=\{(a, b) \mid a \in A \text { and } b \in B\}
$$

- Ex: $A=\{a, b\}, B=\{1,2,3\}$

$$
A \times B=\{(a, 1),(a, 2),(a, 3),(b, 1),(b, 2),(b, 3)\}
$$

- $\operatorname{Ex:~} \mathbb{R}$ is the set of real numbers

$$
\mathbb{R}^{2}=\mathbb{R} \times \mathbb{R}=\{(x, y) \mid x \in \mathbb{R} \text { and } y \in \mathbb{R}\} \text { is the set of all points in the Cartesian plane }
$$

Cartesian Products

- Ex: $A=\{a, b\}, B=\{1,2,3\}$

$$
A \times B=\{(a, 1),(a, 2),(a, 3),(b, 1),(b, 2),(b, 3)\}
$$

- For any finite sets A and $B,|A \times B|=|A||B|$
- Cartesian product of multiple sets
- $A_{1} \times A_{2} \times \cdots \times A_{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid a_{i} \in A_{i}\right.$ for $\left.i=1,2, \ldots, n\right\}$

True or False

Suppose $A=\{a, b, c\}$

- $\emptyset \subseteq A$

True

- $\{\varnothing\} \subseteq A$

False

- $\{a, c\} \in A$

False

- $\{b, c\} \in \mathcal{P}(A) \quad$ True
- $\{a, b\} \in A \times A$ False

Set Operations

- Set Operations
- Union
- Intersection
- Difference \& Complement
- Set Identities
-- Disjunction
-- Conjunction
-- Negation
-- Logical equivalences

Set Operations

- The union of set A and set B, denoted by $A \cup B$, is the set that contains those elements that are either in A or B, or in both

$$
A \cup B=\{x \mid x \in A \vee x \in B\}
$$

$A \cup B$ is shaded.

Set Operations

- The intersection of A and B, denoted by $A \cap B$, is the set containing those elements that are in both A and B

$$
A \cap B=\{x \mid x \in A \wedge x \in B\}
$$

Set Operations

- The difference of A and B, denoted by $A \backslash B$ (or $A-B$) is the set containing those elements that are in A but not in B

$$
A \backslash B=\{x \mid x \in A \wedge x \notin B\}
$$

Set Operations

- The complement of a set A with respect to a universe U, denoted by \bar{A}, is the set containing those elements that are not in A

$$
\bar{A}=\{x \in U \mid x \notin A\}=U \backslash A
$$

Set Operations

$$
\text { Ex: } \begin{aligned}
& A=\{-2,3,4\} \quad B=\{1,3,4,7\} \\
& A \cup B=\{-2,1,3,4,7\} \\
& A \cap B=\{3,4\} \\
& A \backslash B=\{-2\}
\end{aligned}
$$

- If $A \subseteq B$, then $A \cup B=B$ and $A \cap B=A$
- $A \backslash B=A \cap \bar{B}$

Set Operations

Theorem: If A and B are two finite sets, then

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

Corollary: If two sets A and B are finite and disjoint, $|A \cup B|=|A|+|B|$

- Two sets are called disjoint if their intersection is the empty set

Set Identities

TABLE 1 Set Identities.

Identity	Name
$A \cup \emptyset=A$	Identity laws
$A \cap U=A$	
$A \cup U=U$	Domination laws
$A \cap \emptyset=\emptyset$	Idempotent laws
$A \cup A=A$	
$A \cap A=A$	Complementation law
$\overline{(\bar{A})}=A$	Commutative laws
$A \cup B=B \cup A$	
$A \cap B=B \cap A$	

$A \cup(B \cup C)=(A \cup B) \cup C$	Associative laws
$A \cap(B \cap C)=(A \cap B) \cap C$	
$A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$	Distributive laws
$A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$	
$\overline{A \cup B}=\bar{A} \cap \bar{B}$	De Morgan's laws
$\overline{A \cap B}=\bar{A} \cup \bar{B}$	
$A \cup(A \cap B)=A$	Absorption laws
$A \cap(A \cup B)=A$	Complement laws
$A \cup \bar{A}=U$	
$A \cap \bar{A}=\emptyset$	

Set Identities

- De Morgan's laws for sets

$$
\begin{aligned}
& \overline{A \cup B}=\bar{A} \cap \bar{B} \\
& \overline{A \cap B}=\bar{A} \cup \bar{B}
\end{aligned}
$$

- Absorption laws for sets

$$
\begin{aligned}
& A \cup(A \cap B)=A \\
& A \cap(A \cup B)=A
\end{aligned}
$$

Generalized Union and Intersections

- $A \cup B \cup C=A \cup(B \cup C)=(A \cup B) \cup C$
- $A \cap B \cap C=A \cap(B \cap C)=(A \cap B) \cap C$
- The union of a collection of sets is the set that contains those elements that are members of at least one set in the collection.

$$
A_{1} \cup A_{2} \cup \cdots \cup A_{n}=\bigcup_{i=1}^{n} A_{i}
$$

- The intersection of a collection of sets is the set that contains those elements that are members of all the sets in the collection.

$$
A_{1} \cap A_{2} \cap \cdots \cap A_{n}=\bigcap_{i=1}^{n} A_{i}
$$

Generalized Union and Intersections

- Ex: $B_{1}=\{1\}, B_{2}=\{1,2\}, \ldots, B_{n}=\{1,2,3, \ldots, n\}, \ldots$

$$
\begin{aligned}
\bigcup_{n=1}^{\infty} B_{n} & =\{1\} \cup\{1,2\} \cup \cdots \cup\{1,2,3, \ldots, n\} \cup \cdots \\
& =\{1,2,3 \ldots\}=\mathbb{Z}^{+} \\
\bigcap_{n=1}^{\infty} B_{n} & =\{1\} \cap\{1,2\} \cap \cdots \cap\{1,2,3, \ldots, n\} \cap \cdots \\
& =\{1\}
\end{aligned}
$$

Outline

- Sets and Set Operations
- Functions
- Sequences and Summations
- Cardinality of Sets

Functions

- Let X and Y be nonempty sets. A function $f: X \rightarrow Y$ maps every element of X to exactly one element in Y.
- X is called the domain, Y is called the codomain
- Write $f(x)=y$ where y is the unique element of Y assigned by f to $x \in X$
- y is called image of x and x is the preimage of y
- Let $S \subseteq X$. Then $f(S)=\{f(s) \mid s \in S\}$ is the image of S
- $f(X)$ is the range of f

$$
X=\{-3,-1,2,5\} \quad Y=\{-1,0,4,7\}
$$

$$
f(-3)=0
$$

$$
f(-1)=7
$$

$$
f(\{2,5\})=\{4\}
$$

$$
f(2)=4 \quad f(X)=\{0,4,7\}
$$

$$
f(5)=4
$$

Functions

- Let $f_{1}, f_{2}: X \rightarrow \mathbb{R}$ be two functions from X to \mathbb{R}

$$
\begin{aligned}
& \left(f_{1}+f_{2}\right)(x)=f_{1}(x)+f_{2}(x) \\
& \left(f_{1} f_{2}\right)(x)=f_{1}(x) f_{2}(x)
\end{aligned}
$$

- Ex.1: $f, g: \mathbb{R} \rightarrow \mathbb{R}$

$$
\begin{aligned}
& f(x)=x^{2}, g(x)=x-x^{2} \\
& (f+g)(x)=f(x)+g(x)=x^{2}+\left(x-x^{2}\right)=x \\
& (f g)(x)=x^{2}\left(x-x^{2}\right)=x^{3}-x^{4}
\end{aligned}
$$

Injective and Surjective Functions

Let $f: X \rightarrow Y$ be a function

- f is said be one-to-one, or injective, if

$$
\forall x_{1}, x_{2} \in X: f\left(x_{1}\right)=f\left(x_{2}\right) \rightarrow x_{1}=x_{2}
$$

- f is said be onto, or surjective, if

$$
\forall y \in Y \exists x \in X: f(x)=y
$$

- f is said be one-to-one correspondence, or bijective, if it is both injective and surjective

Injective and Surjective Functions

Ex. 2: $f: \mathbb{R} \rightarrow \mathbb{R}$

$$
x \mapsto 2 x+1 \quad(\text { same as } f(x)=2 x+1)
$$

bijective
Ex. 3: $g: \mathbb{R} \rightarrow \mathbb{R}$

$$
x \mapsto x^{2}
$$

neither injective nor surjective
Ex. 4: $h: \mathbb{R} \rightarrow \mathbb{R}_{0}^{+}$(non-negative real numbers)

$$
x \mapsto x^{2}
$$

surjective but not injective

Inverse Functions

- Let $f: X \rightarrow Y$ be a bijective function. Then

$$
f^{-1}: Y \rightarrow X, f^{-1}(y)=x \text { such that } f(x)=y \text { is the inverse of } f
$$

Ex. 5: $f: \mathbb{R} \rightarrow \mathbb{R}$ where $f(x)=2 x+1$

$$
f^{-1}: \mathbb{R} \rightarrow \mathbb{R} \text { where } f^{-1}(y)=(y-1) / 2
$$

Ex. 6: $f: \mathbb{R}_{0}^{+} \rightarrow \mathbb{R}_{0}^{+}$where $f(x)=x^{2}$

$$
f^{-1}: \mathbb{R}_{0}^{+} \rightarrow \mathbb{R}_{0}^{+} \text {where } f^{-1}(y)=\sqrt{y}
$$

- $\left(f^{-1}\right)^{-1}=f$

Compositions of Functions

- Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$. Then
$g \circ f: X \rightarrow Z$ where $(g \circ f)(x)=g(f(x))$ is the composition of g and f

For $g \circ f$ to be defined, the range of f must be a subset of the domain of g

Ex. 7: $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=2 x, g: \mathbb{R} \rightarrow \mathbb{R}, g(x)=x+3$

$$
\begin{aligned}
& g \circ f: \mathbb{R} \rightarrow \mathbb{R},(g \circ f)(x)=g(f(x))=g(2 x)=2 x+3 \\
& f \circ g: \mathbb{R} \rightarrow \mathbb{R},(f \circ g)(x)=f(g(x))=f(x+3)=2(x+3)=2 x+6
\end{aligned}
$$

Compositions of Functions

- Assume $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are bijective. Then
(1) $g \circ f$ is bijective

Floor and Ceiling Functions

- Floor function: $\rfloor: \mathbb{R} \rightarrow \mathbb{Z}$

$$
x \rightarrow\lfloor x\rfloor \text { (the largest integer less than or equal to } x \text {) }
$$

- Ceiling function: $\rceil: \mathbb{R} \rightarrow \mathbb{Z}$

$$
x \rightarrow\lceil x\rceil \text { (the smallest integer greater than or equal to } x \text {) }
$$

Useful properties:

- $x-1<\lfloor x\rfloor \leq x \quad x \leq\lceil x\rceil<x+1$
- For all $x \in \mathbb{Z}:\left\lfloor\frac{x}{2}\right\rfloor+\left\lceil\frac{x}{2}\right\rceil=x$

Outline

- Sets and Set Operations
- Functions
- Sequences and Summations (to be discussed after fall break)
- Cardinality of Sets

Cardinality of Sets

Recall: For a finite set $S,|S|=n$ if S contains n distinct elements
How to compare the sizes of two infinite sets?

Hilbert's Grand Hotel

David Hilbert

Cardinality of Sets

How to compare the sizes of two infinite sets?
Definition 1: Two sets A and B have the same cardinality, denoted by $|A|=|B|$, if there is a bijection between A and B

Ex: Let S and T be finite sets with $|S|=|T|$. Find a bijection between S

Georg Cantor (1845-1918) and T.

Cardinality of Sets

Theorem: Let O^{+}be the set of odd positive integers. Show that $\left|\mathbb{Z}^{+}\right|=\left|O^{+}\right|$
Proof: $f: \mathbb{Z}^{+} \rightarrow O^{+}, f(n)=2 n-1$
Theorem: Show that $|\mathbb{Z}|=\left|\mathbb{Z}^{+}\right|$
Proof: $f: \mathbb{Z} \rightarrow \mathbb{Z}^{+}, f(n)= \begin{cases}2 n & \text { if } n>0 \\ -2 n+1 & \text { if } n \leq 0\end{cases}$

Countable and Uncountable Sets

Definition 3: Let S be a set.

- S is countably infinite if $|S|=\left|\mathbb{Z}^{+}\right|=\kappa_{0}$ ("aleph null")
- E.g., both O^{+}and \mathbb{Z} are countably infinite
- S is countable if S is finite or countably infinite
- If S is not countable, it is uncountable
- Definition 4: We say that $|A| \leq|B|$ if there is an injection $f: A \rightarrow B$, and $|A|<$ $|B|$ if $|A| \leq|B|$ and $|A| \neq|B|$
- If A is finite and B is uncountable, then $|A|<\kappa_{0}<|B|$

