Discrete Probability

CMPS/MATH 2170: Discrete Mathematics

Applications of Probability in Computer Science

- Algorithms
- Complexity
- Machine learning
- Combinatorics
- Networking
- Cryptography
- Information theory
- ...

Agenda

- Discrete Probability Law (7.1,7.2)
- Independence (7.2)
- Random Variables (7.2)
- Expected Value (7.4)

Examples

- Ex. 1: consider rolling a pair of 6 -sided fair dice
- Sample space $\Omega=\{(i, j): i, j=1,2,3,4,5,6\}$
- Each outcome has the same probability of $1 / 36$
- What is the probability that the sum of the rolls is 6 ?

Let A denote the event that the sum of the rolls is 6

$$
\begin{aligned}
& A=\{(1,5),(5,1),(2,4),(4,2),(3,3)\} \\
& \mathrm{P}(A)=5 / 36
\end{aligned}
$$

Examples

- Ex. 2: consider rolling a 6 -sided biased (loaded) die
- Sample space $\Omega=\{1,2,3,4,5,6\}$
- Assume $\mathrm{P}(3)=\frac{2}{7}, \mathrm{P}(1)=\mathrm{P}(2)=\mathrm{P}(4)=\mathrm{P}(5)=\mathrm{P}(6)=\frac{1}{7}$
- What is the probability of getting an odd number?

Let B denote the event of getting an odd number

$$
B=\{1,3,5\}
$$

$$
P(B)=\frac{1}{7}+\frac{2}{7}+\frac{1}{7}=\frac{4}{7}
$$

Experiment and Sample Space

- Experiment: a procedure that yields one of a given set of possible outcomes
- Ex: flip a coin, roll two dice, draw five cards from a deck, etc.
- Sample space Ω : the set of possible outcomes
- We focus on countable sample space: Ω is finite or countably infinite
- In many applications, Ω is uncountable (e.g., a subset of \mathbb{R})
- Event: a subset of the sample space
- Probability is assigned to events
- For an event $A \subseteq \Omega$, its probability is denoted by $\mathrm{P}(A)$
- Describes beliefs about likelihood of outcomes

Discrete Probability

- Discrete Probability Law
- A function $\mathrm{P}: \mathcal{P}(\Omega) \rightarrow[0,1]$ that assigns probability to events such that:
- $0 \leq \mathrm{P}(\{s\}) \leq 1$ for all $s \in \Omega$
- $\mathrm{P}(A)=\sum_{s \in A} \mathrm{P}(\{s\})$ for all $A \subseteq \Omega$
- $\mathrm{P}(\Omega)=\sum_{s \in \Omega} \mathrm{P}(\{s\})=1$
(Nonnegativity)
(Additivity)
(Normalization)
- Discrete uniform probability law: $|\Omega|=n, \mathrm{P}(A)=\frac{|A|}{n} \forall A \subseteq \Omega$

Properties of Probability Laws

- Consider a probability law, and let A, B, and C be events
- If $A \subseteq B$, then $\mathrm{P}(A) \leq \mathrm{P}(B)$
$-\mathrm{P}(\bar{A})=1-\mathrm{P}(A)$
$-\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B)$
$-\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)$ if A and B are disjoint, i.e., $A \cap B=\varnothing$
- Ex. 3: What is the probability that a positive integer selected at random from the set of positive integers not exceeding 100 is divisible by either 2 or 5 ?

$$
\frac{50}{100}+\frac{20}{100}-\frac{10}{100}=0.6
$$

Agenda

- Discrete Probability Law (7.1,7.2)
- Independence (7.2)
- Random Variables (7.2)
- Expected Value (7.4)

Independence

- Two events A and B are independent if and only if $\mathrm{P}(A \cap B)=\mathrm{P}(A) \mathrm{P}(B)$
- Ex. 4: Consider an experiment involving two successive rolls of a 4 -sided die in which all 16 possible outcomes are equally likely and have probability $1 / 16$. Are the following pair of events independent?
(a) $A=\{$ 1st roll is 1$\}, B=\{$ sum of two rolls is 5$\}$ Yes
(b) $A=\{1$ st roll is 4$\}, B=\{$ sum of two rolls is 4$\}$ No

Bernoulli Trials

- Bernoulli Trial: an experiment with two possible outcomes
-E.g., flip a coin results in two possible outcomes: head (H) and tail (T)
- Independent Bernoulli Trials: a sequence of Bernoulli trails that are mutually independent

Bernoulli Trials

- Ex.5: Consider an experiment involving five independent tosses of a biased coin, in which the probability of heads is p.
- What is the probability of the sequence HHHTT?
- $A_{i}=\{i-$ th toss is a head $\}$
- $\mathrm{P}\left(A_{1} \cap A_{2} \cap A_{3} \cap \bar{A}_{4} \cap \bar{A}_{5}\right)=\mathrm{P}\left(A_{1}\right) \mathrm{P}\left(A_{2}\right) \mathrm{P}\left(A_{3}\right) \mathrm{P}\left(\bar{A}_{4}\right) \mathrm{P}\left(\bar{A}_{5}\right)=p^{3}(1-p)^{2}$
- What is the probability that exactly three heads come up?
- $\mathrm{P}($ exactly three heads come up $)=\binom{5}{3} p^{3}(1-p)^{2}$

Agenda

- Discrete Probability Law (7.1,7.2)
- Independence (7.2)
- Random Variables (7.2)
- Expected Value (7.4)

Random Variables

- A random variable (r.v.) is a real-valued function of the experimental outcome.
- Ex. 6: Consider an experiment involving three independent tosses of a fair coin.
$-\Omega=\{H H H, H H T, H T H, T H H, H T T, T H T, T T H, T T T\}$
$-X(s)=$ the number of heads that appear for outcome $s \in \Omega$. Then
$X(H H H)=3, X(H H T)=X(H T H)=X(T H H)=2$,
$X(H T T)=X(T H T)=X(T T H)=1, X(T T T)=0$
$-\mathrm{P}(X=2)=\mathrm{P}(\{s \in \Omega: X(s)=2)=\mathrm{P}(\{H H T, H T H, T H H\})=3 / 8$
$-\mathrm{P}(X<2)=\mathrm{P}(\{H T T, T H T, T T H, T T T\})=4 / 8=1 / 2$

Random Variables

- A random variable is a real-valued function of the outcome of the experiment.
- A random variable is called discrete if the sample space Ω is finite or countably infinite
- We can associate with each random variable certain "averages" of interest, such as the expected value and the variance.

Expected Value

- The expected value (also called the expectation or the mean) of a random variable X on the sample space Ω is equal to

$$
E(X)=\sum_{s \in \Omega} X(s) \mathrm{P}(\{s\})
$$

- Ex. 7: Consider an experiment of tossing a biased coin once where the probability of heads is p.

$$
-\Omega=\{H, T\}
$$

- Let X be a r.v. where $X=1$ if "Head" and $X=0$ if "Tail"
$-E(X)=1 \cdot p+0 \cdot(1-p)=p$

Expected Value

- Ex. 8: Consider an experiment involving three independent tosses of a biased coin in which the probability of heads is p
$-\Omega=\{H H H, H H T, H T H, T H H, H T T, T H T, T T H, T T T\}$
$-X(s)=$ the number of heads that appear for outcome $s \in \Omega$

$$
\begin{aligned}
-E(X) & =3 \cdot p^{3}+2 \cdot p^{2}(1-p) \cdot 3+1 \cdot p(1-p)^{2} \cdot 3+0 \cdot(1-p)^{3} \\
& =3 p^{3}+6 p^{2}(1-p)+3 p(1-p)^{2} \\
& =3 p
\end{aligned}
$$

Expected Value

- Ex. 9: Consider an experiment involving n independent tosses of a biased coin in which the probability of heads is p
$-X(s)=$ the number of heads that appear for outcome $s \in \Omega$

$$
\begin{aligned}
-E(X) & =\sum_{k=0}^{n} k\binom{n}{k} p^{k}(1-p)^{n-k} \\
& =n p
\end{aligned}
$$

