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Outline

• Divisibility and Modular Arithmetic (4.1)
• Primes and GCD (4.3)
• Solving Congruences (4.4)
• Cryptography (4.6)



Division

Definition:  Let !, # ∈ ℤ with ! ≠ 0. we say ! divides # if #/! ∈ ℤ
• equivalently, # = *! for some * ∈ ℤ
• we use ! | # to denote ! divides # (or # is divisible by !) 
• if ! | #, we say that ! is a factor or divisor of #

Ex. 1: Determine whether

a.    3 | 7         

b.    3 | 12

Ex. 2: How many positive integers not exceeding , are divisible by 3? ,/3



Division (cont.)

Theorem:  Let !, #, $ ∈ ℤ and ! ≠ 0. Then

(i) If ! | # and ! | $, then ! | (# + $)
(ii) If ! | #, then ! | #$
(iii) If ! | # and # | $ (# ≠ 0) , then ! | $



Prime Numbers

Definition: An integer ! > 1 is called prime if the only positive factors of !
are 1 and !
• ! is prime  ⇔ ∀& ∈ ℤ): & | ! → & = 1 or & = !

Definition: An integer > 1 that is not prime is called composite

• 1 is neither prime nor composite



The Fundamental Theorem of Arithmetic

Theorem: Every positive integer > 1 can be written uniquely as a prime or as the 
product of two or more primes written in a non-decreasing order 
• “prime factorization of an integer”

Ex:  100 =
641 =
999 =

Proof of the fundamental theorem:

1. existence: strong induction

2. uniqueness: to be proved 

q prime factorization is hard 
for large numbers2 ⋅ 2 ⋅ 5 ⋅ 5 = 2* ⋅ 5*

641
3 ⋅ 3 ⋅ 3 ⋅ 37 = 3- ⋅ 37



Applications of the Fundamental Theorem

Theorem: A composite ! has a prime divisor ≤ !.

Corollary:  An integer # > 1 is a prime if it is not divisible by any prime ≤ #.

Ex: Show that 101 is prime

Theorem: There are infinitely many primes

• A proof given by Euclid in The Elements



Two Great Open Problems on Primes

• Goldbach’s conjecture (1742):  every even number ! > 2 is the sum of two primes
• Every even number ! > 2 is the sum of at most 6 primes (1995)

• Every even number ! > 2 is the sum of a prime and a number that is either prime or 
the product of two primes (1+2, 1966)

• Twin prime conjecture (before 1849): there are infinitely many twin primes
• Twin prime pairs:  (3, 5), (5,7), (11, 13), (17, 19), (29, 31), …

• There are infinitely many pairs of prime numbers that differ by 246 or less (2014)



Greatest Common Divisors

Definition: Let !, # ∈ ℤ, not both zero. The largest integer & such that & | ! and & | # is 
called the greatest common divisor of ! and #,  denoted by & = gcd(!, #)
Ex:   gcd 24, 36 =

gcd 17, 22 =
gcd 120, 500 =

gcd 6789 ⋅ 6;8< ⋯6>8?, 67@9 ⋅ 6;@< ⋯6>@? = 67ABC(89,@9) ⋅ 6;ABC(8<,@<) ⋯6>ABC(8?,@?)

• Is there a more efficient way to find gcd? 

12
1
gcd(2D ⋅ 3 ⋅ 5, 2; ⋅ 5D) = 2; ⋅ 5 = 20



Least Common Multiples

Let !, # ∈ ℤ, !, # ≠ 0. The smallest positive integer that is divisible by both ! and # is 
called the least common multiple of ! and #, denoted by lcm(!, #)

Ex:  lcm 24, 36 =

lcm(2345 ⋅ 2748 ⋯2:4;, 23<5 ⋅ 27<8 ⋯2:<;) = 23=>?(45,<5) ⋅ 27=>? (48,<8) ⋯2:=>?(4;,<;)

Theorem: For any positive integers ! and #, !# = gcd !, # ⋅ lcm(!, #)

lcm(2B ⋅ 3, 27⋅ 37) = 2B ⋅ 37 = 72



The Division Algorithm 

Theorem: Let ! ∈ ℤ and $ ∈ ℤ%. Then there are unique &, ( ∈ ℤ, with 
0 ≤ ( < $, such that 

! = $& + (

Ex: ! = 101, $ = 2
! = −11, $ = 3

& = ! div $
( = ! mod $

divisor quotient remainder

= !/$
= ! − $ !/$ $ | ! ⇔ ! mod $ = 0



The Division Algorithm 

Theorem: Let ! ∈ ℤ and $ ∈ ℤ%. Then there are unique &, ( ∈ ℤ, with 0 ≤
( < $, such that ! = $& + (
1. Existence (5.2 Example 5): use the well-ordering property: “Every 

nonempty subset of ℕ has a least element” 

2. Uniqueness (exercise) 



The Euclidean Algorithm 

qA useful fact about the division algorithm:

Theorem:  Let ! = #$ + &, where !, #, $, & ∈ ℤ. Then gcd !, # = gcd(#, &)

qA more efficient way to find gcd:

Euclidean Algorithm: find gcd !, # by successively applying the division algorithm



The Euclidean Algorithm 

Ex: Find gcd 287,91 using the Euclidean Algorithm 

287 = 91 ⋅ 3 + 14
91 = 14 ⋅ 6 + 7
⇒ gcd 287,91 = gcd(91,14) = gcd(14,7) = 7

gcd 287,91 = gcd(91,14)

gcd 91,14 = gcd(14,7)



GCDs as Linear Combinations
Bezout’s Theorem: Let !, # ∈ ℤ&. There exist ', ( ∈ ℤ such that 

gcd !, # = '! + (#

Ex:  Find ', ( ∈ ℤ such that gcd 54,15 = ' ⋅ 54 + ( ⋅ 15
54 = 3 ⋅ 15 + 9
15 = 1 ⋅ 9 + 6
9 = 1 ⋅ 6 + 3

9 = 54 − 3 ⋅ 15
6 = 15 − 1 ⋅ 9
3 = 9 − 1 ⋅ 6
Backward substitution gives
3 = 9 − 1 ⋅ 6
= 9 − 1 ⋅ (15 − 1 ⋅ 9)
= 2 ⋅ 9 − 1 ⋅ 15
= 2 ⋅ 54 − 3 ⋅ 15 − 1 ⋅ 15
= 2 ⋅ 54 − 7 ⋅ 15 ⇒ ' = 2, ( = −7

gcd 54,15 = gcd 15,9
= gcd 9,6
= gcd 6,3
= 3



Applications of Bezout’s Theorem

Lemma:  If !, #, $ ∈ ℤ' such that gcd !, # = 1 and ! | #$,  then ! | $
• We say that ! and # are relatively prime if gcd !, # = 1

Corollary:  If . is a prime and  . | !/!0 …!2 where each !3 is an integer, then . | !3
for some 4.
The Fundamental Theorem of Arithmetic: Every positive integer > 1 can be written 
uniquely as a prime or as the product of two or more primes where the primer 
factors are written in non-decreasing order 

Proof: 1. existence: strong induction
2. uniqueness: using the above corollary



Wrap Up
1. Divisibility:  ! | # ⇔ # = &! for some integer &
2. Primes

• the Fundamental theorem of Arithmetic
• A composite ' has a prime divisor ≤ '
• there are infinite many primes

3. Greatest common divisor and least common multiple

4. Division algorithm: ! = )* + ,, 0 ≤ , < )
• gcd !, ) = gcd(), ,)

5. Euclidean algorithm: find gcd by successively applying the division algorithm

6. Bezout’s Theorem: gcd !, # = 5! + 6#
• If gcd !, # = 1 and ! | #8,  then ! | 8



Congruences

Definition: Let !, # ∈ ℤ,& ∈ ℤ', we say ! is congruent to # modulo & if & | (! − #)
• If ! is congruent to # modulo &,	we write ! ≡ # (mod &)

• Examples

• 17 ≡ 5 mod 6 ?
• 11 ≡ 8 mod 2 ?

• ! ≡ # mod & ⇔ & | (! − #)
⇔ ! − # = :& for some : ∈ ℤ
⇔ ! = :& + # for some : ∈ ℤ

14 ≡ 2 mod 12
23 ≡ 11 (mod 12) 



Congruences (cont.)

Theorem:  Let !, #, $, % ∈ ℤ,( ∈ ℤ)

• ! ≡ # mod ( ⇔ (! mod () = (# mod ()
• If ! ≡ # (mod () and # ≡ $ (mod (), then ! ≡ $ mod (

• If ! ≡ # (mod () and $ ≡ % (mod (), then ! + $ ≡ # + % (mod () and                
!$ ≡ #% (mod ()

Theorem:  Let ! ∈ ℤ,( ∈ ℤ). There is a unique !3 ∈ {0,1, … ,( − 1} such that  
! ≡ !3 (mod ().



Arithmetic Modulo !
ℤ# = 0,1, … ,! − 1
Addition modulo !:  * +# , = * + , mod !
Multiplication modulo !:   * ⋅# , = * ⋅ , mod !

Ex:  6 +239,  7 ⋅22 8

• * +# , = 7 ⇒ * + , ≡ 7 mod !
• * ⋅# , = 7 ⇒ * ⋅ , ≡ 7 (mod !)



Properties of ℤ"
For any #, %, & ∈ ℤ"
• Closure:   # +" % ∈ ℤ"

# ⋅" % ∈ ℤ"

• Associativity:     # +" % +" & = # +" (% +" &)
# ⋅" % ⋅" & = # ⋅" (% ⋅" &)

• Commutativity: # +" % = % +" #
# ⋅" % = % ⋅" #



Properties of ℤ"
For any #, %, & ∈ ℤ"
• Distributivity: # ⋅" % +" & = # ⋅" % +" # ⋅" &

(# +"%) ⋅" & = # ⋅" & +" % ⋅" &

• Identity elements: # +" 0 = 0 +" # = #
# ⋅" 1 = 1 ⋅" # = #

• Additive inverse: For every # ∈ ℤ", there is % ∈ ℤ", such that # +" % = 0
0 +" 0 = 0
# +" / − # = 0 for # ≠ 0



Properties of ℤ"
• For # ∈ ℤ" , & ∈ ℤ" is a multiplicative inverse of # if # ⋅" & = 1,

• does 2 have a multiplicative inverse in ℤ+? 

• does 2 have a multiplicative inverse modulo ℤ,?

• Theorem:  # has a multiplicative inverse in ℤ" if and only if gcd #,0 = 1.

• Corollary:  Every non-zero element has a multiplicative inverse in ℤ2 when 3 is 
prime

No

Yes 2 ⋅ 3 ≡ 1 mod 5



Additive Inverse and Multiplicative Inverse

• For $, & ∈ ℤ,
• & is an additive inverse of $ modulo ) ∈ ℤ* if $ + & ≡ 0 mod )
• & is an multiplicative inverse of $ modulo ) ∈ ℤ* if $ ⋅ & ≡ 1 mod )

• Theorem: $ ∈ ℤ and $ ≠ 0 has a multiplicative inverse modulo ) ∈ ℤ* if and only if 
gcd $,) = 1. Furthermore, an inverse, when it exists, is unique modulo ).



Find Multiplicative Inverses 

Ex 1:  Find a multiplicative inverse of 3 modulo 7
3# ≡ 1 ≡ 8 ≡ 15 (mod 7) ⇒ # ≡ 5 (mod 7)

Ex 2:  Find a multiplicative inverse of 5 modulo 3
5# ≡ 1 ≡ 4 ≡ 7 ≡ 10 (mod 3) ⇒ # ≡ 2 mod 3

Use Bezout’s Theorem to find an inverse of 1 modulo 2, where gcd 1,2 = 1
• find 7, 8 ∈ ℤ such that  71 + 82 = 1
• 7 is a multiplicative inverse of 1 modulo 2

Ex 3:  Find an inverse of 101 modulo 4620 (4.4 Example 2)



Solving Linear Congruences
Problem:  Given !, # ∈ ℤ, & ∈ ℤ', find ( ∈ ℤ such that 

!( ≡ # (mod &)

Let us first assume gcd !,& = 1.

Ex:  Find the solution of 3( ≡ 4 mod 7

3( ≡ 4 ≡ 11 ≡ 18 mod 7
⇒ ( ≡ 6 mod 7

We know 3 ⋅ 5 ≡ 1 mod 7
Then    3( ≡ 4 mod 7
⇒ 5 ⋅ 3( ≡ 5 ⋅ 4 (mod 7)
⇒ ( ≡ 20 ≡ 6 (mod 7)



Solving Linear Congruences

Problem:  Given !, # ∈ ℤ, & ∈ ℤ', find all ( ∈ ℤ such that 

!( ≡ # (mod &)

Q:  What if  gcd !,& = 2 > 1?

A:  For the linear congruence to have a solution, we must have 2 | #
⇒We only need to solve !8( ≡ #8 mod &′ where !′ = :

; , #
8 = <

; , and &8 = =
;

Ex: Find the solution of 15( ≡ 6 mod 9



Modular Exponentiation and Fermat’s Little Theorem 

Ex: Find 2" mod 7

Fermat’s Little Theorem:  If ' is prime, then for every integer ( we have 

() ≡ ( (mod ')
Further, if ( is not divisible by ', then

()-. ≡ 1 (mod ')

ØSee 4.4 Exercise 19 for a proof sketch

Ex:  Find 7000 mod 11

To compute (1 mod ' where ' is prime and ' ∤ (
• First write 3 = 5 ' − 1 + 8 where 0 ≤ 8 < ' − 1
• Then (1 = (< )-. =>

= (()-. )<(>
≡ 1<(> (mod ')
≡ (> (mod ')

Pierre de Fermat



Fast Modular Exponentiation

Ex:  Find 3"# mod 645

36 = 2' + 2)

3)* mod 645 = 9

3)+ mod 645 = 9) mod 645 = 81
3)1 mod 645 = 81) mod 645 = 6561 mod 645 = 111
3)5 mod 645 = 111) mod 645 = 12,321 mod 645 = 66
3)7 mod 645 = 66) mod 645 = 4356 mod 645 = 486
3"# mod 645 = 3)7 ⋅ 3)+ mod 645 = 486 ⋅ 81 mod 645 = 21
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Introduction to Cryptography

• Classical Cryptography

• Shift Cipher 
• Affine Cipher

• Public Key Cryptography

• RSA



Symmetric Key Cryptography

Eve



Symmetric Key Cryptography

• Bob and Alice need to share the secret key !
• Need to make sure " = $%('%("))

"

Type equation
here.7 = '% " " = $% 7

Bob

"
Alice

7

Eve

encryption decryption



Shift Cipher

• Caesar Cipher:  shift each letter three letters forward in the alphabet
• Plain: ! " # $ % & …( ) * + , - .
• Cipher: / 0 1 2 ℎ 4 …5 6 7 8 9 : ;
• Ex:  TULANE  → 56=/>ℎ

• Mathematically, encode letters as numbers in ℤ@A = {0,1, … , 25}
• ! " # $ % & … ) * + , - .
• 0 1 2 3 4 5 … 20 21 22 23 24 25

• Encryption: ; = 0L M = M + O mod 26
• Decryption: M = /L ; = ; − O mod 26
• Do we have M = /L(0L(M))?

M: plaintext, ;: ciphertext, O: key
M, ;, O ∈ ℤ@A



Affine Cipher

• Encryption: ! = # ⋅ % + ' mod 26
• #, ' is the key where #, ' ∈ ℤ01 and gcd #, 26 = 1

• Ex:   # = 7, ' = 3, % = 10 (‘8’), what is !? 

• Decryption: % = 9# ! − ' mod 26
• 9# ∈ ℤ01, # 9# ≡ 1 (mod 26)

• Do we have % = >?(@?(%))?

! = 21 (‘v’)



Public Key Cryptography

Anyone can send a secret (encrypted) message to the 
receiver, without any prior contact, using publicly 
available info.

Albert R. Meyer     March 13, 2013 



Public Key Cryptography

• Invented by Diffie & Hellman in 1976  

• They shared the 2015 Turing Award

• Why Public Key Cryptography?

• Key distribution

• Digital signature



Public Key Cryptography

• Alice has a key pair ! = !#$%, !#'() , Bob only knows !#$%
• Need to make sure * = +,-./0(2,-34(*))

*

Type equation here.D = 2,-34 * * = +,-./0 D

Bob

*
Alice

D

encryption decryption

Eve



The RSA Cryptosystem

• One of the first practical public key cryptosystems 

• Invented by Ronald Rivest, Adi Shamir, and Lenoard Adleman in 1976

• They shared the 2002 Turing Award 

• Based on the difficulty of factoring large numbers into primes



The RSA Cryptosystem

Message Encoding: 
1. Each letter is encoded into a two-digit number

! " # … % & ' ( … ) * + , - . / 0 1 2 3 4
00 01 02 …08 09 10 11 …14 15 16 17 18 19 20 21 22 23 24 25

2. A message is divided into ? letter blocks such that the maximum 2? digits does not 
exceed @

Ex:  @ = 2537, a message is divided into 2 letter blocks (2525 < 2537<252525)
• Message STOP is translated into two blocks 1819  1415

Plain and cipher texts are numbers in ℤD = 0,1, … , @ − 1 .



The RSA Cryptosystem

Key generation (by Alice):
1. Select two large primes !, #, ! ≠ #
2. ' = ! ⋅ #
3. Select a small odd integer * that is relatively prime to (! − 1)(# − 1)
4. Compute / such that /* ≡ 1 (mod ! − 1 # − 1 )
5. 5678 = ', * is the public key

6. 56:;< = (', /) is the private key

Ex:  ! = 43 # = 59 ' = ! ⋅ # = 2537 * = 13 / = 361
5678 = (2537, 13), 56:;< = (2537, 361)



RSA Encryption and Decryption
To encrypt a plaintext ! use the public key (#, %)

' = !) mod #
To decrypt a ciphertext ' use the private key (#, -)

! = '. mod #

Ex:  Encrypt the message STOP with the public key (2537, 13)
• Message STOP is translated into two blocks 1819 1415
• Compute 181978 mod 2537, 141578 mod 2537 using fast modular exponentiation

Do we have ! = -9(%9(!))?  

Security of RSA:  It is hard to guess - given (#, %) (hard to factor # = :; for large : and ;)

Need to show !) . ≡ ! mod :; (Section 4.6)



Public Key Cryptography

• Alice has a key pair ! = !#$%, !#'() , Bob only knows !#$%
• Need to make sure * = +,-./0(2,-34(*))

*

Type equation here.D = 2,-34 * * = +,-./0 D

Bob

*
Alice

D

encryption decryption

Eve



Digital Signature 

• Alice has a key pair ! = !#$%, !#'()
• Need to make sure * = +,-./(1,-234(*))

*

Type equation here.* = +,-./ D D = 1,-234 *

Bob

*
Alice

D

verification signing

Eve


