Number Theory and Cryptography

CMPS/MATH 2170: Discrete Mathematics

Outline

- Divisibility and Modular Arithmetic (4.1)
- Primes and GCD (4.3)
- Solving Congruences (4.4)
- Cryptography (4.6)

Division

Definition: Let $a, b \in \mathbb{Z}$ with $a \neq 0$. we say a divides b if $b / a \in \mathbb{Z}$

- equivalently, $b=k a$ for some $k \in \mathbb{Z}$
- we use $a \mid b$ to denote a divides b (or b is divisible by a)
- if $a \mid b$, we say that a is a factor or divisor of b

Ex. 1: Determine whether
a. $3 \mid 7$
b. $3 \mid 12$

Ex. 2: How many positive integers not exceeding n are divisible by 3 ? $\lfloor n / 3\rfloor$

Division (cont.)

Theorem: Let $a, b, c \in \mathbb{Z}$ and $a \neq 0$. Then
(i) If $a \mid b$ and $a \mid c$, then $a \mid(b+c)$
(ii) If $a \mid b$, then $a \mid b c$
(iii) If $a \mid b$ and $b \mid c(b \neq 0)$, then $a \mid c$

Prime Numbers

Definition: An integer $p>1$ is called prime if the only positive factors of p are 1 and p

- p is prime $\Leftrightarrow \forall a \in \mathbb{Z}^{+}: a \mid p \rightarrow a=1$ or $a=p$

Definition: An integer > 1 that is not prime is called composite

- 1 is neither prime nor composite

The Fundamental Theorem of Arithmetic

Theorem: Every positive integer >1 can be written uniquely as a prime or as the product of two or more primes written in a non-decreasing order

- "prime factorization of an integer"

$$
\text { Ex: } \begin{aligned}
100 & =2 \cdot 2 \cdot 5 \cdot 5=2^{2} \cdot 5^{2} \\
641 & =641 \\
999 & =3 \cdot 3 \cdot 3 \cdot 37=3^{3} \cdot 37
\end{aligned}
$$

\square prime factorization is hard for large numbers

Proof of the fundamental theorem:

1. existence: strong induction
2. uniqueness: to be proved

Applications of the Fundamental Theorem

Theorem: A composite n has a prime divisor $\leq \sqrt{n}$.
Corollary: An integer $p>1$ is a prime if it is not divisible by any prime $\leq \sqrt{p}$.
Ex: Show that 101 is prime
Theorem: There are infinitely many primes

- A proof given by Euclid in The Elements

Two Great Open Problems on Primes

- Goldbach's conjecture (1742): every even number $n>2$ is the sum of two primes
- Every even number $n>2$ is the sum of at most 6 primes (1995)
- Every even number $n>2$ is the sum of a prime and a number that is either prime or the product of two primes $(1+2,1966)$
- Twin prime conjecture (before 1849): there are infinitely many twin primes
- Twin prime pairs: $(3,5),(5,7),(11,13),(17,19),(29,31), \ldots$
- There are infinitely many pairs of prime numbers that differ by 246 or less (2014)

Greatest Common Divisors

Definition: Let $a, b \in \mathbb{Z}$, not both zero. The largest integer d such that $d \mid a$ and $d \mid b$ is called the greatest common divisor of a and b, denoted by $d=\operatorname{gcd}(a, b)$

Ex: $\operatorname{gcd}(24,36)=12$

$$
\begin{aligned}
& \operatorname{gcd}(17,22)=1 \\
& \operatorname{gcd}(120,500)=\operatorname{gcd}\left(2^{3} \cdot 3 \cdot 5,2^{2} \cdot 5^{3}\right)=2^{2} \cdot 5=20 \\
& \operatorname{gcd}\left(p_{1}^{a_{1}} \cdot p_{2}^{a_{2}} \cdots p_{n}^{a_{n}}, p_{1}^{b_{1}} \cdot p_{2}^{b_{2}} \cdots p_{n}^{b_{n}}\right)=p_{1}^{\min \left(a_{1}, b_{1}\right)} \cdot p_{2}^{\min \left(a_{2}, b_{2}\right)} \cdots p_{n}^{\min \left(a_{n}, b_{n}\right)}
\end{aligned}
$$

- Is there a more efficient way to find gcd?

Least Common Multiples

Let $a, b \in \mathbb{Z}, a, b \neq 0$. The smallest positive integer that is divisible by both a and b is called the least common multiple of a and b, denoted by $\operatorname{lcm}(a, b)$
$\operatorname{Ex}: \operatorname{lcm}(24,36)=\operatorname{lcm}\left(2^{3} \cdot 3,2^{2} \cdot 3^{2}\right)=2^{3} \cdot 3^{2}=72$
$\operatorname{lcm}\left(p_{1}^{a_{1}} \cdot p_{2}^{a_{2}} \cdots p_{n}^{a_{n}}, p_{1}^{b_{1}} \cdot p_{2}^{b_{2}} \cdots p_{n}^{b_{n}}\right)=p_{1}^{\max \left(a_{1}, b_{1}\right)} \cdot p_{2}^{\max \left(a_{2}, b_{2}\right)} \cdots p_{n}^{\max \left(a_{n}, b_{n}\right)}$
Theorem: For any positive integers a and $b, a b=\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b)$

The Division Algorithm

Theorem: Let $a \in \mathbb{Z}$ and $d \in \mathbb{Z}^{+}$. Then there are unique $q, r \in \mathbb{Z}$, with $0 \leq r<d$, such that

Ex: $a=101, d=2$

$$
a=-11, d=3
$$

$q=a \operatorname{div} d=\lfloor a / d\rfloor$
$r=a \bmod d=a-d\lfloor a / d\rfloor \quad d \mid a \Leftrightarrow a \bmod d=0$

The Division Algorithm

Theorem: Let $a \in \mathbb{Z}$ and $d \in \mathbb{Z}^{+}$. Then there are unique $q, r \in \mathbb{Z}$, with $0 \leq$ $r<d$, such that $a=d q+r$

1. Existence (5.2 Example 5): use the well-ordering property: "Every nonempty subset of \mathbb{N} has a least element"
2. Uniqueness (exercise)

The Euclidean Algorithm

\square A useful fact about the division algorithm:
Theorem: Let $a=b q+r$, where $a, b, q, r \in \mathbb{Z}$. Then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$
\square A more efficient way to find gcd:
Euclidean Algorithm: find $\operatorname{gcd}(a, b)$ by successively applying the division algorithm

The Euclidean Algorithm

Ex: Find gcd $(287,91)$ using the Euclidean Algorithm

$$
\begin{gathered}
287=91 \cdot 3+14 \quad \operatorname{gcd}(287,91)=\operatorname{gcd}(91,14) \\
91=14 \cdot 6+7 \quad \operatorname{gcd}(91,14)=\operatorname{gcd}(14,7) \\
\Rightarrow \operatorname{gcd}(287,91)=\operatorname{gcd}(91,14)=\operatorname{gcd}(14,7)=7
\end{gathered}
$$

GCDs as Linear Combinations

Bezout's Theorem: Let $a, b \in \mathbb{Z}^{+}$. There exist $s, t \in \mathbb{Z}$ such that

$$
\operatorname{gcd}(a, b)=s a+t b
$$

Ex: Find $s, t \in \mathbb{Z}$ such that $\operatorname{gcd}(54,15)=s \cdot 54+t \cdot 15$

$$
\begin{aligned}
& 54=3 \cdot 15+9 \\
& 9=54-3 \cdot 15 \\
& 15=1 \cdot 9+6 \\
& 6=15-1 \cdot 9 \\
& 9=1 \cdot 6+3 \\
& \operatorname{gcd}(54,15)=\operatorname{gcd}(15,9) \\
& =\operatorname{gcd}(9,6) \\
& =\operatorname{gcd}(6,3) \\
& =3 \\
& 3=9-1 \cdot 6 \\
& \text { Backward substitution gives } \\
& 3=9-1 \cdot 6 \\
& =9-1 \cdot(15-1 \cdot 9) \\
& =2 \cdot 9-1 \cdot 15 \\
& =2 \cdot(54-3 \cdot 15)-1 \cdot 15 \\
& =2 \cdot 54-7 \cdot 15 \\
& \Rightarrow s=2, t=-7
\end{aligned}
$$

Applications of Bezout's Theorem

Lemma: If $a, b, c \in \mathbb{Z}^{+}$such that $\operatorname{gcd}(a, b)=1$ and $a \mid b c$, then $a \mid c$

- We say that a and b are relatively prime if $\operatorname{gcd}(a, b)=1$

Corollary: If p is a prime and $p \mid a_{1} a_{2} \ldots a_{n}$ where each a_{i} is an integer, then $p \mid a_{i}$ for some i.

The Fundamental Theorem of Arithmetic: Every positive integer >1 can be written uniquely as a prime or as the product of two or more primes where the primer factors are written in non-decreasing order

Proof: 1. existence: strong induction
2. uniqueness: using the above corollary

Wrap Up

1. Divisibility: $a \mid b \Leftrightarrow b=k a$ for some integer k
2. Primes

- the Fundamental theorem of Arithmetic
- A composite n has a prime divisor $\leq \sqrt{n}$
- there are infinite many primes

3. Greatest common divisor and least common multiple
4. Division algorithm: $a=d q+r, 0 \leq r<d$

- $\operatorname{gcd}(a, d)=\operatorname{gcd}(d, r)$

5. Euclidean algorithm: find gcd by successively applying the division algorithm
6. Bezout's Theorem: $\operatorname{gcd}(a, b)=s a+t b$

- If $\operatorname{gcd}(a, b)=1$ and $a \mid b c$, then $a \mid c$

Congruences

Definition: Let $a, b \in \mathbb{Z}, m \in \mathbb{Z}^{+}$, we say a is congruent to b modulo m if $m \mid(a-b)$

- If a is congruent to b modulo m, we write $a \equiv b(\bmod m)$
- Examples
- $17 \equiv 5(\bmod 6) ? \quad 14 \equiv 2(\bmod 12)$
- $11 \equiv 8(\bmod 2) ? \quad 23 \equiv 11(\bmod 12)$
- $a \equiv b(\bmod m) \Leftrightarrow m \mid(a-b)$

$\Leftrightarrow a-b=k m$ for some $k \in \mathbb{Z}$
$\Leftrightarrow a=k m+b$ for some $k \in \mathbb{Z}$

Congruences (cont.)

Theorem: Let $a, b, c, d \in \mathbb{Z}, m \in \mathbb{Z}^{+}$

- $a \equiv b(\bmod m) \Leftrightarrow(a \bmod m)=(b \bmod m)$
- If $a \equiv b(\bmod m)$ and $b \equiv c(\bmod m)$, then $a \equiv c(\bmod m)$
- If $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$, then $a+c \equiv b+d(\bmod m)$ and $a c \equiv b d(\bmod m)$

Theorem: Let $a \in \mathbb{Z}, m \in \mathbb{Z}^{+}$. There is a unique $a_{0} \in\{0,1, \ldots, m-1\}$ such that $a \equiv a_{0}(\bmod m)$.

Arithmetic Modulo m

$\mathbb{Z}_{m}=\{0,1, \ldots, m-1\}$
Addition modulo $m: \quad a+{ }_{m} b=(a+b) \bmod m$
Multiplication modulo $m: \quad a \cdot m b=(a \cdot b) \bmod m$
Ex: $6+{ }_{12} 9,7 \cdot{ }_{11} 8$

- $a+_{m} b=c \Rightarrow a+b \equiv c(\bmod m)$
- $a \cdot{ }_{m} b=c \Rightarrow a \cdot b \equiv c(\bmod m)$

Properties of \mathbb{Z}_{m}

For any $a, b, c \in \mathbb{Z}_{m}$

- Closure:

$$
\begin{aligned}
& a+_{m} b \in \mathbb{Z}_{m} \\
& a \cdot{ }_{m} b \in \mathbb{Z}_{m}
\end{aligned}
$$

- Associativity:

$$
\begin{aligned}
& \left(a+_{m} b\right)+_{m} c=a+_{m}\left(b+_{m} c\right) \\
& \left(a \cdot{ }_{m} b\right) \cdot{ }_{m} c=a \cdot{ }_{m}\left(b \cdot{ }_{m} c\right)
\end{aligned}
$$

- Commutativity: $\quad a+_{m} b=b+_{m} a$

$$
a \cdot{ }_{m} b=b \cdot{ }_{m} a
$$

Properties of \mathbb{Z}_{m}

For any $a, b, c \in \mathbb{Z}_{m}$

- Distributivity:

$$
\begin{aligned}
& a \cdot{ }_{m}\left(b+_{m} c\right)=a \cdot{ }_{m} b+_{m} a \cdot{ }_{m} c \\
& \left(a+_{m} b\right) \cdot{ }_{m} c=a \cdot{ }_{m} c+_{m} b \cdot{ }_{m} c
\end{aligned}
$$

- Identity elements: $\quad a+_{m} 0=0+_{m} a=a$

$$
a \cdot m 1=1 \cdot{ }_{m} a=a
$$

- Additive inverse: \quad For every $a \in \mathbb{Z}_{m}$, there is $b \in \mathbb{Z}_{m}$, such that $a+_{m} b=0$

$$
\begin{aligned}
& 0+_{m} 0=0 \\
& a+_{m}(m-a)=0 \text { for } a \neq 0
\end{aligned}
$$

Properties of \mathbb{Z}_{m}

- For $a \in \mathbb{Z}_{m}, b \in \mathbb{Z}_{m}$ is a multiplicative inverse of a if $a \cdot m b=1$,
- does 2 have a multiplicative inverse in \mathbb{Z}_{4} ? No
- does 2 have a multiplicative inverse modulo \mathbb{Z}_{5} ? Yes $2 \cdot 3 \equiv 1(\bmod 5)$
- Theorem: a has a multiplicative inverse in \mathbb{Z}_{m} if and only if $\operatorname{gcd}(a, m)=1$.
- Corollary: Every non-zero element has a multiplicative inverse in \mathbb{Z}_{p} when p is prime

Additive Inverse and Multiplicative Inverse

- For $a, b \in \mathbb{Z}$,
- b is an additive inverse of a modulo $m \in \mathbb{Z}^{+}$if $a+b \equiv 0(\bmod m)$
- b is an multiplicative inverse of a modulo $m \in \mathbb{Z}^{+}$if $a \cdot b \equiv 1(\bmod m)$
- Theorem: $a \in \mathbb{Z}$ and $a \neq 0$ has a multiplicative inverse modulo $m \in \mathbb{Z}^{+}$if and only if $\operatorname{gcd}(a, m)=1$. Furthermore, an inverse, when it exists, is unique modulo m.

Find Multiplicative Inverses

Ex 1: Find a multiplicative inverse of 3 modulo 7

$$
3 x \equiv 1 \equiv 8 \equiv 15(\bmod 7) \Rightarrow x \equiv 5(\bmod 7)
$$

Ex 2: Find a multiplicative inverse of 5 modulo 3

$$
5 x \equiv 1 \equiv 4 \equiv 7 \equiv 10(\bmod 3) \Rightarrow x \equiv 2(\bmod 3)
$$

Use Bezout's Theorem to find an inverse of a modulo m, where $\operatorname{gcd}(a, m)=1$

- find $s, t \in \mathbb{Z}$ such that $s a+t m=1$
- s is a multiplicative inverse of a modulo m

Ex 3: Find an inverse of 101 modulo 4620 (4.4 Example 2)

Solving Linear Congruences

Problem: Given $a, b \in \mathbb{Z}, m \in \mathbb{Z}^{+}$, find $x \in \mathbb{Z}$ such that

$$
a x \equiv b(\bmod m)
$$

Let us first assume $\operatorname{gcd}(a, m)=1$.
Ex: Find the solution of $3 x \equiv 4(\bmod 7)$

$$
\begin{aligned}
& 3 x \equiv 4 \equiv 11 \equiv 18(\bmod 7) \\
\Rightarrow & x \equiv 6(\bmod 7)
\end{aligned}
$$

Solving Linear Congruences

Problem: Given $a, b \in \mathbb{Z}, m \in \mathbb{Z}^{+}$, find all $x \in \mathbb{Z}$ such that

$$
a x \equiv b(\bmod m)
$$

Q: What if $\operatorname{gcd}(a, m)=d>1$?
A: For the linear congruence to have a solution, we must have $d \mid b$
\Rightarrow We only need to solve $a^{\prime} x \equiv b^{\prime}\left(\bmod m^{\prime}\right)$ where $a^{\prime}=\frac{a}{d}, b^{\prime}=\frac{b}{d}$, and $m^{\prime}=\frac{m}{d}$
Ex: Find the solution of $15 x \equiv 6(\bmod 9)$

Modular Exponentiation and Fermat's Little Theorem

Ex: Find $2^{7} \bmod 7$

Fermat's Little Theorem: If p is prime, then for every integer a we have

Pierre de Fermat

$$
a^{p} \equiv a(\bmod p)
$$

To compute $a^{n} \bmod p$ where p is prime and $p \nmid a$

- First write $n=q(p-1)+r$ where $0 \leq r<p-1$
- Then $a^{n}=a^{q(p-1)+r}$

$$
\begin{aligned}
& =\left(a^{p-1}\right)^{q} a^{r} \\
& \equiv 1^{q} a^{r}(\bmod p) \\
& \equiv a^{r}(\bmod p)
\end{aligned}
$$

Fast Modular Exponentiation

Ex: Find $3^{36} \bmod 645$
$36=2^{5}+2^{2}$
$3^{2^{1}} \bmod 645=9$
$3^{2^{2}} \bmod 645=9^{2} \bmod 645=81$
$3^{2^{3}} \bmod 645=81^{2} \bmod 645=6561 \bmod 645=111$
$3^{2^{4}} \bmod 645=111^{2} \bmod 645=12,321 \bmod 645=66$
$3^{2^{5}} \bmod 645=66^{2} \bmod 645=4356 \bmod 645=486$
$3^{36} \bmod 645=3^{2^{5}} \cdot 3^{2^{2}} \bmod 645=486 \cdot 81 \bmod 645=21$

Outline

- Divisibility and Modular Arithmetic (4.1)
- Primes and GCD (4.3)
- Solving Congruences (4.4)
- Cryptography (4.6)

Introduction to Cryptography

- Classical Cryptography
- Shift Cipher
- Affine Cipher
- Public Key Cryptography
- RSA

Symmetric Key Cryptography

Symmetric Key Cryptography

- Bob and Alice need to share the secret key k
- Need to make sure $m=d_{k}\left(e_{k}(m)\right)$

Shift Cipher

- Caesar Cipher: shift each letter three letters forward in the alphabet
- Plain: $A B C D E F \ldots T V W X Y Z$
- Cipher: defghi ...w x y z abc
- Ex: TULANE \rightarrow wxodqh
- Mathematically, encode letters as numbers in $\mathbb{Z}_{26}=\{0,1, \ldots, 25\}$
- A B C D E F \ldots.. U V W X \quad Y $\quad Z$
- 0122345 ... 202122232425
- Encryption: $c=e_{k}(m)=(m+k) \bmod 26$
- Decryption: $m=d_{k}(c)=(c-k) \bmod 26$
m : plaintext, c : ciphertext, k : key
- Do we have $m=d_{k}\left(e_{k}(m)\right)$?

Affine Cipher

- Encryption: $c=(a \cdot m+b) \bmod 26$
- (a, b) is the key where $a, b \in \mathbb{Z}_{26}$ and $\operatorname{gcd}(a, 26)=1$
- Ex: $a=7, b=3, m=10\left({ }^{\prime} K\right.$ '), what is c ? $c=21$ ('v')
- Decryption: $m=\bar{a}(c-b) \bmod 26$
- $\bar{a} \in \mathbb{Z}_{26}, a \bar{a} \equiv 1(\bmod 26)$
- Do we have $m=d_{k}\left(e_{k}(m)\right)$?

Public Key Cryptography

Anyone can send a secret (encrypted) message to the receiver, without any prior contact, using publicly available info.

Public Key Cryptography

- Invented by Diffie \& Hellman in 1976
- They shared the 2015 Turing Award
- Why Public Key Cryptography?
- Key distribution
- Digital signature

Public Key Cryptography

- Alice has a key pair $k=\left(k_{p u b}, k_{\text {priv }}\right)$, Bob only knows $k_{p u b}$
- Need to make sure $m=d_{k_{p r i v}}\left(e_{k_{p u b}}(m)\right)$

The RSA Cryptosystem

- One of the first practical public key cryptosystems

- Invented by Ronald Rivest, Adi Shamir, and Lenoard Adleman in 1976
- They shared the 2002 Turing Award
- Based on the difficulty of factoring large numbers into primes

The RSA Cryptosystem

Message Encoding:

1. Each letter is encoded into a two-digit number

A	B	C	\ldots	I	J	K	L	\ldots	O	P	Q	R	S	T	U	V	W	X	Y	Z
00	01	02	$\ldots .08$	09	10	11	\ldots	14	15	16	17	18	19	20	21	22	23	24	25	

2. A message is divided into N letter blocks such that the maximum $2 N$ digits does not exceed n

Ex: $n=2537$, a message is divided into 2 letter blocks ($2525<2537<252525$)

- Message STOP is translated into two blocks 18191415

Plain and cipher texts are numbers in $\mathbb{Z}_{n}=\{0,1, \ldots, n-1\}$.

The RSA Cryptosystem

Key generation (by Alice):

1. Select two large primes $p, q, p \neq q$
2. $n=p \cdot q$
3. Select a small odd integer e that is relatively prime to $(p-1)(q-1)$
4. Compute d such that $d e \equiv 1(\bmod (p-1)(q-1))$
5. $k_{p u b}=(n, e)$ is the public key
6. $k_{\text {priv }}=(n, d)$ is the private key

$$
\begin{gathered}
\text { Ex: } p=43 q=59 \quad n=p \cdot q=2537 \quad e=13 \quad d=361 \\
\quad k_{p u b}=(2537,13), k_{p r i v}=(2537,361)
\end{gathered}
$$

RSA Encryption and Decryption

To encrypt a plaintext m use the public key (n, e)

$$
c=m^{e} \bmod n
$$

To decrypt a ciphertext c use the private key (n, d)

$$
m=c^{d} \bmod n
$$

Ex: Encrypt the message STOP with the public key $(2537,13)$

- Message STOP is translated into two blocks 18191415
- Compute $1819^{13} \bmod 2537,1415^{13} \bmod 2537$ using fast modular exponentiation

Do we have $m=d_{k}\left(e_{k}(m)\right) ?$ Need to show $\left(m^{e}\right)^{d} \equiv m(\bmod p q)($ Section 4.6)
Security of RSA: It is hard to guess d given (n, e) (hard to factor $n=p q$ for large p and q)

Public Key Cryptography

- Alice has a key pair $k=\left(k_{p u b}, k_{\text {priv }}\right)$, Bob only knows $k_{\text {pub }}$
- Need to make sure $m=d_{k_{p r i v}}\left(e_{k_{p u b}}(m)\right)$

Digital Signature

- Alice has a key pair $k=\left(k_{\text {pub }}, k_{\text {priv }}\right)$
- Need to make sure $m=e_{k_{p u b}}\left(d_{k_{p r i v}}(m)\right)$

