## Midterm Review

CMPS/MATH 2170: Discrete Mathematics

## Overview

- Midterm
- closed book, closed notes, one page cheat sheet (single-sided) allowed
- Time \& Place: Thursday, Oct 18, 5:00 pm- 6:15 pm, Gibson Hall 126
- Office hours in the week of Oct 15
- Lecturer: MTW 11-12 pm, Stanly Thomas 307B
- TA: Tue 3:30-5:30 pm, Stanly Thomas 309


## Topics

Propositional logic: 1.1-1.3
Predicate logic: 1.4-1.5
Intro to Proofs: 1.6-1.8
Sets and Set Operations: 2.1-2.2
Functions: 2.3
Cardinality of Sets: 2.5
Mathematical Induction: 5.1

## Propositional Logic (1.1-1.3)

- A proposition is a declarative sentence that is either true or false, but not both
- Compound propositions can be formed from simple propositions using connectives (logical operators)
- Logical operators: $\neg, \wedge, \vee, \oplus, \rightarrow, \leftrightarrow$
- Translation: from English to logic, and logic to English
- Logical equivalences: $A \equiv B$ ( $A \leftrightarrow B$ is a tautology)
- Proving logical equivalences using truth tables
- Proving logical equivalences using known logical equivalences
- Representing Truth Tables: Disjunetive Normal Form(DNF)


## Key Logical Equivalences

- Identity laws: $\quad p \wedge \mathbf{T} \equiv p \quad p \vee \mathbf{F} \equiv p$
- Domination laws: $\quad p \vee \mathbf{T} \equiv \mathbf{T} \quad p \wedge \mathbf{F} \equiv \mathbf{F}$
- Idempotent laws: $\quad p \vee p \equiv p \quad p \wedge p \equiv p$
- Double negation law: $\neg(\neg p) \equiv p$
- Negation laws: $\quad p \vee \neg p \equiv \mathbf{T} \quad p \wedge \neg p \equiv \mathbf{F}$
$>p$ and $q$ can be substituted by any propositional forms.


## Key Logical Equivalences

- Commutative laws:

$$
p \vee q \equiv q \vee p \quad p \wedge q \equiv q \wedge p
$$

- Associative laws:

$$
(p \vee q) \vee r \equiv p \vee(q \vee r) \quad(p \wedge q) \wedge r \equiv p \wedge(q \wedge r)
$$

- Distributive Laws:

$$
\begin{aligned}
& p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r) \\
& p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r)
\end{aligned}
$$

- De Morgan's laws:

$$
\neg(p \wedge q) \equiv \neg p \vee \neg q \quad \neg(p \vee q) \equiv \neg p \wedge \neg q
$$

- Absorption laws:

$$
p \vee(p \wedge q) \equiv p \quad p \wedge(p \vee q) \equiv p
$$

## Key Logical Equivalences

- Implication law: $\quad p \rightarrow q \equiv \neg p \vee q$
- Contrapositive law: $\quad p \rightarrow q \equiv \neg q \rightarrow \neg p$
- Logical equivalences involving biconditional statements

$$
\begin{aligned}
& p \leftrightarrow q \equiv(p \rightarrow q) \wedge(q \rightarrow p) \\
& p \leftrightarrow q \equiv \neg q \leftrightarrow \neg p
\end{aligned}
$$

## Predicates and Quantifiers (1.4-1.5)

- Statements involving subjects, predicates, and quantifiers
- Quantifiers: $\forall x P(x), \exists x P(x)$
- Nested Quantifiers
- Negating quantifiers using De Morgan's laws:

$$
\neg \forall x P(x) \equiv \exists x \neg P(x), \neg \exists x P(x) \equiv \forall x \neg P(x)
$$

- Translations of statements involving quantifiers
- E.g., "Every real number has an inverse"


## Rules of Inference (1.6)

- An argument: a sequence of propositions that end with a conclusion
- A valid argument: it is impossible for all the premises to be true and the conclusion to be false
- Rules of Interference: templates of valid arguments
- Know how to use rules of inference to establish formal proofs


## TABLE 1 Rules of Inference.

| Rule of Inference | Tautology | Name |
| :---: | :---: | :---: |
| $\begin{gathered} \begin{array}{c} p \\ p \rightarrow q \end{array} \\ \therefore \frac{q}{q} \end{gathered}$ | $(p \wedge(p \rightarrow q)) \rightarrow q$ | Modus ponens |
| $\begin{aligned} & \neg q \\ \therefore & \frac{p \rightarrow q}{\neg p} \end{aligned}$ | $(\neg q \wedge(p \rightarrow q)) \rightarrow \neg p$ | Modus tollens |
| $\begin{aligned} & \quad p \rightarrow q \\ &=\frac{q \rightarrow r}{p \rightarrow r} \end{aligned}$ | $((p \rightarrow q) \wedge(q \rightarrow r)) \rightarrow(p \rightarrow r)$ | Hypothetical syllogism |
| $\begin{aligned} & p \vee q \\ & \therefore \neg p \\ & \therefore \end{aligned}$ | $((p \vee q) \wedge \neg p) \rightarrow q$ | Disjunctive syllogism |


| $\therefore \frac{p}{p \vee q}$ | $p \rightarrow(p \vee q)$ | Addition |
| :--- | :--- | :--- |
| $\therefore \frac{p \wedge q}{p}$ | $(p \wedge q) \rightarrow p$ | Simplification |
| $p$ | $((p) \wedge(q)) \rightarrow(p \wedge q)$ | Conjunction |
| $\therefore \frac{q}{p \wedge q}$ |  |  |
|  | $p \vee q$ | $((p \vee q) \wedge(\neg p \vee r)) \rightarrow(q \vee r)$ |
| $\therefore \frac{\neg p \vee r}{q \vee r}$ |  | Resolution |

## TABLE 2 Rules of Inference for Quantified Statements.

| Rule of Inference | Name |
| :--- | :--- |
| $\therefore \frac{\forall x P(x)}{P(c)}$ | Universal instantiation |
| $\therefore \frac{P(c) \text { for an arbitrary } c}{\forall x P(x)}$ | Universal generalization |
|  | $\therefore \frac{\exists x P(x)}{P(c) \text { for some element } c}$ |
|  | Existential instantiation |
| $\exists x P(x)$ | Existential generalization |

## Using Rules of Inference to Build Arguments

Ex. 3: Suppose all these statements are known:

$$
\begin{aligned}
& \text { ["It is not sunny this afternoon and it is colder than yesterday" } \quad \neg p \quad \neg p \wedge q \\
& \frac{\text { "We will go swimming only if it is sunny this afternoon }}{r} \\
& r \rightarrow p \\
& \text { "If we do not go swimming, then we will take a canoe trip" } \\
& \neg r \rightarrow s \\
& \neg r \quad s \\
& \text { "If we take a canoe trip, then we will be home by sunset" } \\
& S \quad t \\
& \text { conclusion Show that "We will be home by sunset" } \\
& s \rightarrow t
\end{aligned}
$$

## Intro to Proofs (1.7-1.8)

- Direct Proofs: want to show $p \rightarrow q$
- Proof by Contraposition: want to prove $p \rightarrow q$, actually prove $\neg q \rightarrow \neg p$
- Proof by Contradiction: want to prove $p$, actually prove $\neg p \rightarrow \mathbf{F}$
- Proof by Cases
- Prove a collection of statements are equivalent
- Existence and Uniqueness Proofs
- Know basic facts about integers, rational, and irrational numbers


## Set Theory (2.1-2.2)

- A set is an unordered collection of objects (duplicates not allowed)
- $A=\{1,3,5,7,9\}=\left\{x \in \mathbb{Z}^{+} \mid x\right.$ is odd and $\left.\mathrm{x}<10\right\}$
- Often used sets: $\mathbb{N}, \mathbb{Z}, \mathbb{Z}^{+}, \mathbb{Q}, \mathbb{R}, \mathbb{R}^{+}, \mathbb{C}$
- Set relations: element of, subset of, equality
- To prove $A \subseteq B$, show that for any $a$, if $a \in A$ then $a \in B$
- To prove $A=B$, show that $A \subseteq B$ and $B \subseteq A$
- Power sets
- Cartesian products of sets
- Set operations: $A \cup B, A \cap B, A \backslash B, \bar{A}$


## Set Identities

## TABLE 1 Set Identities.

| Identity | Name |
| :--- | :--- |
| $A \cup \emptyset=A$ | Identity laws |
| $A \cap U=A$ |  |
| $A \cup U=U$ | Domination laws |
| $A \cap \emptyset=\emptyset$ | Idempotent laws |
| $A \cup A=A$ |  |
| $A \cap A=A$ | Complementation law |
| $\overline{(\bar{A})}=A$ | Commutative laws |
| $A \cup B=B \cup A$ |  |
| $A \cap B=B \cap A$ |  |


| $A \cup(B \cup C)=(A \cup B) \cup C$ | Associative laws |
| :--- | :--- |
| $A \cap(B \cap C)=(A \cap B) \cap C$ |  |
| $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$ | Distributive laws |
| $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$ |  |
| $\overline{A \cup B}=\bar{A} \cap \bar{B}$ | De Morgan's laws |
| $\overline{A \cap B}=\bar{A} \cup \bar{B}$ | Absorption laws |
| $A \cup(A \cap B)=A$ |  |
| $A \cap(A \cup B)=A$ | Complement laws |
| $A \cup \bar{A}=U$ |  |
| $A \cap \bar{A}=\emptyset$ |  |

## Functions (2.3)

- Definition of a function: domain, codomain, range, image, preimage
- Injection, Surjection, Bijection - you should be able to prove or disprove a function is any of these, and give examples
- Pay attention to the domain and the codomain of a function
- Inverse Functions
- Composition of Functions
- Floor and Ceiling Functions


## Cardinality (2.5)

- Finite set: $|S|=n$ if $S$ contains $n$ distinct elements

$$
\begin{aligned}
& |\mathcal{P}(A)|=2^{|A|} \\
& |A \times B|=|A||B| \\
& |A \cup B|=|A|+|B|-|A \cap B|
\end{aligned}
$$

- $|A|=|B|$ if there is a bijection between $A$ and $B$
- $|A| \leq|B|$ if there is an injection from $A$ to $B$
- A set $S$ is countably infinite if $|S|=\left|\mathbb{Z}^{+}\right|: O^{+}, \mathbb{Z}, \mathbb{Q}^{+}$
- A set is countable if it is finite or countably infinite
- Uncountable sets: $\mathbb{R},(0,1)$


## Cardinality

- To show that a set $A$ is countably infinite
- Find a bijection between $\mathbb{Z}^{+}$and $A$
- Find a way to list the elements of $A$ in a sequence
- Show that $A$ is a subset of a countable set
- To show that a set $A$ is uncountable
- Find an injection from an uncountable set to $A$
- Show that $A$ is a superset of an uncountable set


## Mathematical Induction (5.1)

- Want to prove $\forall n \in \mathbb{Z}^{+}: P(n)$
- Base case: verify that $P(1)$ is true
- Inductive step: show that $P(k) \rightarrow P(k+1)$ for any $k \in \mathbb{Z}^{+}$
- Want to prove $P(n)$ is true for $n=b, b+1, b+2, \ldots$, where $b \in \mathbb{Z}$
- Base case: verify that $P(b)$ is true
- Inductive step: show that $P(k) \rightarrow P(k+1)$ for any $k=b, b+1, b+2, \ldots$

