Midterm Review

CMPS/MATH 2170: Discrete Mathematics

Overview

- Midterm
 - closed book, closed notes, one page cheat sheet (single-sided) allowed
 - Time & Place: Thursday, Oct 18, 5:00 pm- 6:15 pm, Gibson Hall 126
- Office hours in the week of Oct 15
 - Lecturer: MTW 11-12 pm, Stanly Thomas 307B
 - TA: Tue 3:30-5:30 pm, Stanly Thomas 309

Topics

Propositional logic: 1.1-1.3

Predicate logic: 1.4-1.5

Intro to Proofs: 1.6-1.8

Sets and Set Operations: 2.1-2.2

Functions: 2.3

Cardinality of Sets: 2.5

Mathematical Induction: 5.1

Propositional Logic (1.1-1.3)

- A *proposition* is a declarative sentence that is either true or false, but not both
- *Compound propositions* can be formed from simple propositions using connectives (logical operators)
- Logical operators: \neg , \land , \lor , \bigoplus , \rightarrow , \leftrightarrow
- Translation: from English to logic, and logic to English
- Logical equivalences: $A \equiv B \ (A \leftrightarrow B \text{ is a tautology})$
 - Proving logical equivalences using truth tables
 - Proving logical equivalences using known logical equivalences
- Representing Truth Tables: Disjunctive Normal Form (DNF)

Key Logical Equivalences

- Identity laws: $p \wedge \mathbf{T} \equiv p \quad p \vee \mathbf{F} \equiv p$
- Domination laws: $p \lor \mathbf{T} \equiv \mathbf{T}$ $p \land \mathbf{F} \equiv \mathbf{F}$
- Idempotent laws: $p \lor p \equiv p$ $p \land p \equiv p$
- Double negation law: $\neg(\neg p) \equiv p$
- Negation laws: $p \lor \neg p \equiv \mathbf{T} \quad p \land \neg p \equiv \mathbf{F}$

 $\succ p$ and q can be substituted by any propositional forms.

Key Logical Equivalences

- Commutative laws:
- Associative laws:
- Distributive Laws:

 $p \lor q \equiv q \lor p \qquad p \land q \equiv q \land p$ (p \lor q) \lor r \equiv p \lor (q \lor r) \qquad (p \land q) \land r \equiv p \land (q \land r) $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$

- De Morgan's laws:
- Absorption laws:

 $\neg (p \land q) \equiv \neg p \lor \neg q \quad \neg (p \lor q) \equiv \neg p \land \neg q$ $p \lor (p \land q) \equiv p \quad p \land (p \lor q) \equiv p$

Key Logical Equivalences

- Implication law: $p \rightarrow q \equiv \neg p \lor q$
- Contrapositive law: $p \rightarrow q \equiv \neg q \rightarrow \neg p$
- Logical equivalences involving biconditional statements

$$p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$$
$$p \leftrightarrow q \equiv \neg q \leftrightarrow \neg p$$

Predicates and Quantifiers (1.4-1.5)

- Statements involving subjects, predicates, and quantifiers
- Quantifiers: $\forall x P(x), \exists x P(x)$
- Nested Quantifiers
- Negating quantifiers using De Morgan's laws:

 $\neg \forall x P(x) \equiv \exists x \neg P(x), \neg \exists x P(x) \equiv \forall x \neg P(x)$

- Translations of statements involving quantifiers
 - E.g., "Every real number has an inverse"

Rules of Inference (1.6)

- An argument: a sequence of propositions that end with a conclusion
- A valid argument: it is impossible for all the premises to be true and the conclusion to be false
- Rules of Interference: templates of valid arguments
 - Know how to use rules of inference to establish formal proofs

TABLE 1 Rules of Inference.						
Rule of Inference	Tautology	Name				
$ \begin{array}{c} p \\ p \rightarrow q \\ \therefore q \end{array} $	$(p \land (p \to q)) \to q$	Modus ponens				
$ \begin{array}{c} \neg q \\ p \to q \\ \therefore \ \overline{\neg p} \end{array} $	$(\neg q \land (p \to q)) \to \neg p$	Modus tollens				
$p \to q$ $\frac{q \to r}{p \to r}$	$((p \to q) \land (q \to r)) \to (p \to r)$	Hypothetical syllogism				
$ \begin{array}{c} p \lor q \\ \neg p \\ \hline q \end{array} $	$((p \lor q) \land \neg p) \to q$	Disjunctive syllogism				

$\therefore \frac{p}{p \lor q}$	$p \to (p \lor q)$	Addition
$\therefore \frac{p \wedge q}{p}$	$(p \land q) \rightarrow p$	Simplification
$ \begin{array}{c} p\\ q\\ \therefore \overline{p \wedge q} \end{array} $	$((p) \land (q)) \rightarrow (p \land q)$	Conjunction
$p \lor q$ $\neg p \lor r$ $\therefore q \lor r$	$((p \lor q) \land (\neg p \lor r)) \to (q \lor r)$	Resolution

TABLE 2 Rules of Inference for Quantified Statements.					
Rule of Inference	Name				
$\therefore \frac{\forall x P(x)}{P(c)}$	Universal instantiation				
$\therefore \frac{P(c) \text{ for an arbitrary } c}{\forall x P(x)}$	Universal generalization				
$\therefore \frac{\exists x P(x)}{P(c) \text{ for some element } c}$	Existential instantiation				
$\therefore \frac{P(c) \text{ for some element } c}{\exists x P(x)}$	Existential generalization				

Using Rules of Inference to Build Arguments

Ex. 3: Suppose all these statements are known:

Intro to Proofs (1.7-1.8)

- Direct Proofs: want to show $p \rightarrow q$
- Proof by Contraposition: want to prove $p \rightarrow q$, actually prove $\neg q \rightarrow \neg p$
- Proof by Contradiction: want to prove p, actually prove $\neg p \rightarrow \mathbf{F}$
- Proof by Cases
- Prove a collection of statements are equivalent
- Existence and Uniqueness Proofs
- Know basic facts about integers, rational, and irrational numbers

Set Theory (2.1-2.2)

- A set is an unordered collection of objects (duplicates not allowed)
 - $A = \{1, 3, 5, 7, 9\} = \{x \in \mathbb{Z}^+ | x \text{ is odd and } x < 10\}$
 - Often used sets: \mathbb{N} , \mathbb{Z} , \mathbb{Z}^+ , \mathbb{Q} , \mathbb{R} , \mathbb{R}^+ , \mathbb{C}
- Set relations: element of, subset of, equality
 - To prove $A \subseteq B$, show that for any a, if $a \in A$ then $a \in B$
 - To prove A = B, show that $A \subseteq B$ and $B \subseteq A$
- Power sets
- Cartesian products of sets
- Set operations: $A \cup B$, $A \cap B$, $A \setminus B$, \overline{A}

Set Identities

TABLE 1 Set Identities.			
Identity	Name	$A \cup (B \cup C) = (A \cup B) \cup C$	Associative laws
$A \cup \emptyset = A$	Identity laws	$A \cap (B \cap C) = (A \cap B) \cap C$	
$A \cap U = A$		$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	Distributive laws
$A \cup U = U$	Domination laws	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	
$A \cap \emptyset = \emptyset$		$\overline{A \cup B} = \overline{A} \cap \overline{B}$	De Morgan's laws
$A \cup A = A$	Idempotent laws	$\overline{A \cap B} = \overline{A} \cup \overline{B}$	
$A \cap A = A$		$A \cup (A \cap B) = A$	Absorption laws
$\overline{(\overline{A})} = A$	Complementation law	$A \cap (A \cup B) = A$	
$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative laws	$A \cup \overline{A} = U$ $A \cap \overline{A} = \emptyset$	Complement laws
$A \mapsto D = D \mapsto A$		a = p	

Functions (2.3)

- Definition of a function: domain, codomain, range, image, preimage
- Injection, Surjection, Bijection you should be able to prove or disprove a function is any of these, and give examples
 - Pay attention to the domain and the codomain of a function
- Inverse Functions
- Composition of Functions
- Floor and Ceiling Functions

Cardinality (2.5)

• Finite set: |S| = n if S contains n distinct elements

 $|\mathcal{P}(A)| = 2^{|A|}$ $|A \times B| = |A||B|$ $|A \cup B| = |A| + |B| - |A \cap B|$

- |A| = |B| if there is a bijection between A and B
- $|A| \leq |B|$ if there is an injection from A to B
- A set *S* is countably infinite if $|S| = |\mathbb{Z}^+|: O^+, \mathbb{Z}, \mathbb{Q}^+$
- A set is countable if it is finite or countably infinite
- Uncountable sets: \mathbb{R} , (0,1)

Cardinality

- To show that a set *A* is countably infinite
 - Find a bijection between \mathbb{Z}^+ and A
 - Find a way to list the elements of *A* in a sequence
 - Show that *A* is a subset of a countable set
- To show that a set *A* is uncountable
 - Find an injection from an uncountable set to *A*
 - Show that *A* is a superset of an uncountable set

Mathematical Induction (5.1)

- Want to prove $\forall n \in \mathbb{Z}^+$: P(n)
 - Base case: verify that P(1) is true
 - Inductive step: show that $P(k) \rightarrow P(k+1)$ for any $k \in \mathbb{Z}^+$
- Want to prove P(n) is true for n = b, b + 1, b + 2, ..., where $b \in \mathbb{Z}$
 - Base case: verify that P(b) is true
 - Inductive step: show that $P(k) \rightarrow P(k+1)$ for any k = b, b + 1, b + 2, ...