
Announcements
• Teaching Assistant: Pan Fang

• Office: Stanley Thomas 309

• Office hours: Tue 3:30-5:30 pm

• Email: pfang@tulane.edu

• Quiz 1 is on this Thursday 

• Class participation (5% - extra credit) 

• Raising and answering questions

• Presenting solutions to homework problems in the labs

• Class enrollment: “free to all’’ after this Friday

mailto:pfang@tulane.edu


Propositional Logic

CMPS/MATH 2170: Discrete Mathematics



Logic and Proofs

• Logic is the basis of mathematical reasoning
• gives precise meaning to mathematical statements

• provides rules to construct a correct mathematical argument: a proof

• Proofs are used in computer science to establish
• correctness of a computer program

• complexity of a computing problem

• performance of an algorithm

• security of a system

• …
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Outline

• Propositional logic (2 lectures)

• Predicate logic (2 lectures)

• Proofs (3-4 lectures)
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Propositional logic

• Two building blocks (1.1)

• Propositions

• Logical operators

• Applications (1.2)

• System specification, logical circuits, etc.

• Key learning outcome

• Establish the logical equivalence of two mathematical statements (1.3)
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Propositions

• Definition: A proposition is a declarative sentence that is either true or false, 
but not both

• Examples

• The French Quarter is in located in New Orleans

• 2 is rational
• When is the midterm?

• "# ≥ 0 for all real numbers "
• " + ' = 5

proposition true

proposition false

Not a proposition

proposition true

Not a proposition
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Propositions

• The value of a proposition is either true (T) or false (F), called its truth 
value

• Propositional variables: !, #, $, %, …

• Compound propositions can be formed from simple propositions using 
connectives (logical operators)
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Negation ¬
• Let " be a proposition. The negation of ", denoted by 
¬", is a proposition with the opposite truth value 
than the truth value of ".
• Read ¬" as: “not p” or “It is not the case that "”

• Example: 
• Let " denote “The French Quarter is located in New Orleans”
• ¬" can be stated as

“The French Quarter is not located in New Orleans”

“It is not the case that the French Quarter is located in New Orleans”

" ¬"
T
F

F
T

Truth Table
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Conjunction  ∧

• Example

• " = “ 2 is rational”, $ = “&' ≥ 0 for all real numbers &”

• " ∧ $ = “ 2 is rational and &' ≥ 0 for all real numbers &”, which is

• Let " and $ be two propositions. The conjunction of 
" and $, denoted by " ∧ $, is true when both " and $
are true, and is false otherwise.

• Read " ∧ $ as “" and $” 

" $ " ∧ $
T
T
F
F

T
F
T
F

T
F
F
F

Truth Table

9
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Disjunction  ∨

• Example

" = “ 2 is rational”, $ = “&' ≥ 0 for all real numbers &”

" ∨ $ = “ 2 is rational or &' ≥ 0 for all real numbers &”, which is true

• Let " and $ be two propositions. The disjunction of "
and $, denoted by " ∨ $, is false when both " and $
are false, and is true otherwise.

• Read " ∨ $ as “" or $”  

" $ " ∨ $
T
T
F
F

T
F
T
F

T
T
T
F

Truth Table
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Inclusive Or vs. Exclusive Or

• “Students who have taken calculus or intro to CS can take this class”
• a student can take this class if the student has taken either calculus or intro to 

CS or both.

• Inclusive Or 

• “Students who have taken calculus or intro to CS, but not both, can take this 
class” 
• Exclusive Or

• Natural language can be ambiguous: e.g., “Soup or salad comes with an entrée”

11

corresponds to Disjunction



Exclusive Or  ⊕
• Let " and # be two propositions. The exclusive or of 
" and #, denoted by " ⊕ #, is true when exactly one 
of " and # is true, and is false otherwise.

• Read " ⊕ # as “" xor #”, “" or #, but not both”  

" # " ⊕ #
T
T
F
F

T
F
T
F

F
T
T
F

Truth Table

12



Conditional Statements →
• Example:  “If I am elected, then I will lower taxes”

• We can write it as " → # where " = “I am elected”, # = “I will lower taxes”

• When is this proposition true	and when is it false?
• If I am elected and I lower taxes =>

• If I am elected but I do not lower taxes =>

• If I am not elected =>

true
false

true
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Conditional Statements  →
• Let " and # be two propositions. The conditional 

statement " → # is false when " is true and # is false, and 
true otherwise. " is called hypothesis (or antecedent or 
premise) and # is called conclusion (or consequence)

• Read " → # as “" implies #”  
“if ", then #”    
“# if "”    
“" only if #”    
“" is a sufficient condition for #”  
“# is a necessary condition for "”, etc. 

" # " → #
T
T
F
F

T
F
T
F

T
F
T
T

Truth Table
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Biconditional Statements  ↔

• Example

• " = “it is sunny”, # = “we will go to beach”

" ↔ # = “We will go to beach if and only if it is sunny”, which means

• If it is sunny, then we will definitely go to beach

• If it is not sunny, then we will definitely not go to beach 

• Let " and # be two propositions. The biconditional
statement " ↔ # is true when " and # have the same truth 
value, and is false otherwise.

• Read " ↔ # as “" if and only if #”  “" iff #”

“" is necessary and sufficient for #”    

" # " ↔ #
T
T
F
F

T
F
T
F

T
F
F
T

Truth Table

15



Biconditional Statements 

• Ex: check that ! ↔ # has the same truth value as (! → #) ∧ (# → !)

! # ! → # # → ! ! ↔ # ! → # ∧ (# → !)
T
T
F
F

T
F
T
F

T
F
T
T

T
T
F
T

T
F
F
T

T
F
F
T
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Propositional Forms

• A propositional form (or logical expression) is an expression involving 
propositional variables and connectives such that, if all the variables are 
replaced by propositions then the form becomes a (compound) proposition.

• Ex: ¬" → $ ∨ (" ∧ $)

" $ ¬" ¬" → $ " ∧ $ ¬" → $ ∨ (" ∧ $)
T
T
F
F

T
F
T
F

F
F
T
T

T
T
T
F

T
F
F
F

T
T
T
F

Precedence of 
logical operators: 

highest       ¬
∧
∨
→

lowest        ↔
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System Specifications

• System and software engineers take requirements in English and express 
them in a precise specification language based on logic.

• Ex: Express in propositional logic:

“The automated reply cannot be sent when the file system is full”

• One possible solution

• p – “The automated reply can be sent”,  q – “The file system is full.”

• We	can	write	the	statement	as:
/ → ¬ 2
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Consistent System Specifications

• Definition: A list of propositions is consistent if it is possible to assign 
truth values to the proposition variables so that each proposition is true.

• Ex: Are these specifications consistent?

“The diagnostic message is stored in the buffer or it is retransmitted.”

“The diagnostic message is not stored in the buffer.”

“If the diagnostic message is stored in the buffer, then it is retransmitted.”

! "
! ∨ "

¬!

! → "
Yes, we can set ! = F, " = T
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Logical Circuits

• A logical circuit (or digital circuit) receives input signals !", !$, … , !&, each a bit 
[either 0 (off) or 1 (on)], and produces output signals

• 0 – False,  1 – True

• Focus on circuits with a single output signal

• Three basic circuits (gates)

20



Logical Circuits

• A combinatorial circuit

• More in Section 1.2 and Chapter 12 
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Review

• Proposition: a declarative sentence that is either true or false, but not both

• Compound propositions can be formed from simple propositions using 
connectives: ¬ , ∧ , ∨ , ⊕ , → , ↔

• Propositional form: an expression involving propositional variables and 
connectives 

• A propositional form is also called a compound proposition in the textbook

• Can be studied using truth table

• Applications: system specifications, logical circuits
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Logical Equivalences

• We have seen that ! ↔ # has the same truth value as (! → #) ∧ (# → !), 
i.e., that are logically equivalent

• Two propositional forms ( and ) are logically equivalent if they have the 
same truth table, denoted by ( ≡ )
• Why interested in logical equivalence?
• Construct proofs: replacing a statement with another statement with the same 

truth value 

• Simplify logical expressions: circuit minimization
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De Morgan’s Laws

• Find the negation of 

“Heather will go to the concert or Steve will go to the concert”

“It’s not the case that Heather will go to the concert or Steve will go to the concert

“Heather will not go to the concert and Steve will not go to the concert”

! ∨ #
! #

24

≡ ¬! ∧ ¬#

¬(! ∨ #)

¬ ! ∨ # ≡ ¬! ∧ ¬#



De Morgan’s Laws

¬ " ∧ $ ≡ ¬" ∨ ¬$
¬ " ∨ $ ≡ ¬" ∧ ¬$

" $ " ∧ $ ¬(" ∧ $) ¬" ¬$ ¬" ∨ ¬$
T
T
F
F

T
F
T
F

T
F
F
F

F
T
T
T

F
F
T
T

F
T
F
T

F
T
T
T

Augustus De Morgan
(from Wikipedia)
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Using De Morgan’s Laws

• Text Searching

! = The document contains the word “laptop”

# = The document contains the word “phone”

¬ ! ∨ # = The document does not contain the words “laptop” or “phone”

¬! ∧ ¬# = The document does not contain the word “laptop” and the document does 
not contain the word “phone”

26



Logical Equivalences

• A propositional form is called a tautology if it is always true (T)

• A propositional form is called a tautology if no matter what the truth values 
of the propositional variables that occur in it, the compound proposition 
obtained is always true. 

• E.g., ! ∨ ¬ !
• Ex: Determine if ¬ ! → % → ! is a tautology 

• A propositional form is called a contradiction if it is always false (F)

• E.g., ! ∧ ¬ !
• ' and ( are logically equivalent if ' ↔ ( is a tautology. 

27



Logical Equivalences

• How to prove logical equivalence?

• Using truth tables

• A truth table with ! variables has 2# rows

• Using known logical equivalence to establish new ones

• First establish a list of key logical equivalences

28



Key Logical Equivalences

• Identity laws: 

• Domination laws: 

• Idempotent laws: 

• Double negation law:     

• Negation laws:

Ø! and " can be substituted by any propositional forms. 

29

! ∧ $ ≡ ! ! ∨ ' ≡ !

! ∨ $ ≡ $ ! ∧ ' ≡ '

! ∨ ! ≡ ! ! ∧ ! ≡ !

¬ ¬! ≡ !

! ∨ ¬! ≡ $ ! ∧ ¬! ≡ '



Key Logical Equivalences

• Commutative laws: 

• Associative laws: 

• Distributive Laws: 

• De Morgan’s laws: 

• Absorption laws: 

30

! ∨ # ≡ # ∨ ! ! ∧ # ≡ # ∧ !

! ∨ # ∨ & ≡ ! ∨ # ∨ & ! ∧ # ∧ & ≡ ! ∧ (# ∧ &)
! ∨ # ∧ & ≡ ! ∨ # ∧ ! ∨ &
! ∧ # ∨ & ≡ ! ∧ # ∨ (! ∧ &)

¬ ! ∧ # ≡ ¬! ∨ ¬# ¬ ! ∨ # ≡ ¬! ∧ ¬#

! ∨ ! ∧ # ≡ ! ! ∧ ! ∨ # ≡ !



Key Logical Equivalences

• Implication law: 

• Contrapositive law:

• Logical equivalences involving biconditional statements

31

! → # ≡ ¬! ∨ #

! → # ≡ ¬# → ¬!

! ↔ # ≡ (! → #) ∧ (# → !)
! ↔ # ≡ ¬# ↔ ¬!



Announcement 

• Office hours next week:  Tuesday and Wednesday 11-12 pm  
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Proving Logical Equivalences
• Using truth tables

• Using known logical equivalences to prove new ones

• Substitution
¬ ¬" ∧ $ ≡ " ∧ $

• To prove & ≡ ', we produce a series of equivalences beginning with & and ending with '
& ≡ &(
&( ≡ &)

⋅
⋅
⋅

&+ ≡ '
33



Constructing New Logical Equivalences

• Use known logical equivalences to prove the following:

¬ " → $ ≡ " ∧ ¬$

" ∧ $ → (" ∨ $) ≡ *
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Representing Truth Tables

• Q: Given a truth table, how to find a logical expression that represents it?

• E.g.: how to design a digital circuit that implements a given truth table?

• A: any truth table can be represented by a logical expression using only three 
operators: {∧, ∨, ¬}

• Any logical expression has a Disjunctive Normal Form (DNF)

• Section 1.3 Exercise 42, Section 12.2
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Disjunctive Normal Form (DNF)

! " #(!, ")
T
T
F
F

T
F
T
F

F
T
T
T

! " ' #(!, ", ')
T
T
T
T
F
F
F
F

T
T
F
F
T
T
F
F

T
F
T
F
T
F
T
F

F
T
F
F
F
T
F
F

# !, " ≡ (! ∧ ¬ ") ∨ (¬! ∧ ") ∨ (¬! ∧ ¬")

# !, ", ' ≡ ! ∧ " ∧ ¬' ∨ (¬! ∧ " ∧ ¬')
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Disjunctive Normal Form (DNF)

! " #(!, ")
T
T
F
F

T
F
T
F

F
T
T
T

(! ∧ ¬ ") ∨ (¬! ∧ ") ∨ (¬! ∧ ¬")

• A literal: a propositional variable or its negation, e.g., !, ¬!, ", ¬"

• A minterm: a conjunction of distinct literals, ! ∧ ¬ ", ¬! ∧ ", ¬! ∧ ¬"

• A Disjunctive Normal Form: a disjunction of distinct minterms (disjunction of 
conjunctions) 
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Functional Completeness
• We have just shown that {∧, ∨, ¬} is functionally complete

• A set of logical operators are called functionally complete if every truth table 
can be represented using them

• Section 1.3 Exercise 43, Section 12.2

• {∧, ¬} is functionally complete

• It is sufficient to show that ' ∨ ( ≡ ¬(¬' ∧ ¬()

• {∨, ¬} is functionally complete

• {∧, ∨} is not functionally complete
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Functional Completeness

• Q: Is it possible to use only one operator to represent all truth tables? 

• A: Yes, use !"!# or !$% (see HW2)

39

& ' & ↓ '
T
T
F
F

T
F
T
F

F
F
F
T

Truth Table for !$% (↓)



Propositional logic

• Two building blocks (1.1)

• Propositions

• Logical operators

• Applications (1.2)

• System specification, logical circuits, etc.

• Key learning outcome

• Establish the logical equivalence of two mathematical statements (1.3)

• Functional completeness (12.2)
40



Predicate Logic
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Predicates and Quantifiers

• Develop terminology to express more complicated statements 
mathematically

“Every computer in this network is functioning properly”

“There exists an ! ∈ ℝ such that ! > 3”

“There exist !, ' ∈ ℝ such that ! = ' + 3”

∀ Subject ! Domain + Predicate ∀! ∈ +: 5(!)

∃ ! Domain :(!) ∃! ∈ ℝ::(!)

5(!)

∃ ! ∈ ℝ, ' ∈ ℝ: ; !, ';(!, ')



Propositional Functions

• A statement !(#$, #&, … , #() is the value of a propositional function ! at the 
the *-tuple (#$, #&, … , #()
• ! is also called an *-place predicate

• Examples

§ Let + # denote the statement "(# > 3) ∨ (# < −1)", 
§ Let 3(#, 4) denote the statement "# = 4 + 3", then 3 1,2 =

• Create a proposition from a propositional function
• Assign values to #$, #&, … , #(
• use quantifiers

8 9
8

then + 2 = + 4 =



Universal Quantifier

• Definition: The statement “!(#) for all values # in the domain” is called 
the “universal quantification” of ! # . We denote it by 

∀# ! # : read as “for all # !(#)” or “for every # !(#)”
∀ is called the “universal quantifier” 

• ∀# ! # is true if ! # is true for every # in the domain

• ∀# ! # is false if there is an # in the domain for which ! # is false
• an element # for which ! # is false is called a counterexample of ∀# ! #



Universal Quantifier

• True or False?

∀" ∈ ℝ: " + 1 > "

≡ ∀": " + 1 > " where the domain is the real numbers

≡ ∀" " + 1 > " where the domain is the real numbers 

True



Universal Quantifier

• True or False?

∀": "$ > 0 where the domain is all integers ℤ

∀": "$ > 0 where the domain is all non-zero integers ℤ\{0}

False

True



Universal Quantifier

• True or False: ∀": "$ < 10 where the domain consists of the positive integers 
not exceeding 4

• Let ( " denote the statement “"$ < 10” 

• Then ∀" ( " is the same as ( 1 ∧ ( 2 ∧ ( 3 ∧ ((4)

• If the elements in the domain can be listed, say, "/, "$, … , "2, then

∀" ( " ≡ ( "/ ∧ ( "$ ∧ …∧ ( "2

False



Existential Quantifier

• Definition: The statement “There exisits an element ! in the domain such that 
"(!)” is called the “existential quantification” of " ! . We denote it by 

∃! " ! : read as “There is an ! such that "(!)” or “For some ! "(!)”
∃ is called the “existential quantifier” 

• ∃! " ! is true if there is an ! in the domain for which " ! is true

• ∃! " ! is false if " ! is false for every ! in the domain 
• True or False?

∃! (! > 3) where the domain is the real numbers

∃! ! = ! + 1 where the domain is the real numbers

True

False



Existential Quantifier

• True or False: ∃": "$ < 10 where the domain consists of the positive integers 
not exceeding 4

• Let ( " denote the statement “"$ < 10” 

• Then ∃" ( " is the same as ( 1 ∨ ( 2 ∨ ( 3 ∨ ((4)

• If the elements in the domain can be listed, say, "/, "$, … , "2, then

∃" ( " ≡ ( "/ ∨ ( "$ ∨ …∨ ( "2

True



Examples

Express these mathematical statements using predicates, quantifiers, logical 
connectives, and mathematical operators, where the domain consists of all real 
numbers.

“There exists a number that is equal to itself squared.”

“The square of any number is nonnegative.” ∀": "$ ≥ 0

∃": " = "$

"∀"$ "$ ≥ 0

"∃ " = "$



Quantifiers with Restricted Domains

“Every computer in this network is functioning properly”

∀ " Domain # Predicate ,(")

∃" ∈ #: , "

∀" ∈ #: , " ≡ ∀" " ∈ # → , " “For every computer, if it is 
in this network, then it is 
functioning properly”

“Some computer in this network is functioning properly”
“There is a computer such 
that it is in this network and 
it is functioning properly”

≡ ∃" " ∈ # ∧ , "



Logical Equivalences

• Definition: Two statements involving predicates and quantifiers are 
logically equivalent if and only if they have the same truth value no 
matter which predicates are substituted into these statements and 
which domain is used for the variables  

• Ex: ∀"($ " ∧ & " ) ≡ ∀"$ " ∧ ∀"& " (where the same domain is 
used throughout) 



Negating Quantified Expressions

¬ ∀# $ # ≡ ∃# ¬$ #
¬ ∃# $ # ≡ ∀# ¬$ #

“Every computer in this network is functioning properly”

“Not every computer in this network is functioning properly” 

≡ “There is a computer in this network that is not functioning properly”

(De Morgan’s laws for quantifiers)

∀# $ #
¬∀# $ #

∃# ¬$ #



Negating Quantified Expressions

De Morgan’s laws for quantifiers

¬ ∀# $ # ≡ ∃# ¬$ # ¬ ∃# $ # ≡ ∀# ¬$ #

When the domain has ' elements #(, #*, … , #,
∀#$ # ≡ $ #( ∧ $ #* ∧ …∧ $(#,)

¬∀# $ # ≡ ¬ $ #( ∧ $ #* ∧ …∧ $ #,
≡ ¬$ #( ∨ ¬$ #* ∨ …∨ ¬$(#,)
≡ ∃#¬$ #

(De Morgan’s laws)



Negating Quantified Expressions

• Ex.1:  What is the negation of ∀" ("$ > ")

• Ex.2:  Show that ¬∀"(( " → * " ) ≡ ∃" (( " ∧ ¬*("))

∃" ("$ ≤ ")



Nested Quantifiers

• Ex.1: Every real number has an inverse

“For any ! ∈ ℝ, there exist % ∈ ℝ such that ! + % = 0”

) !

∀! ∈ ℝ ∃% ∈ ℝ ! + % = 0

∀! ∃ % ! + % = 0 where the domain for ! and % consists of all real numbers

= ∃% ∈ ℝ ! + % = 0



Nested Quantifiers

• Ex.2:  ∀" ∃ $ " + $ = 0
∃$∀" (" + $ = 0)
In general, ∀"∃$ *(", $) ≢ ∃$∀" *(", $)

• Ex.3:  Commutative law for the addition of real numbers

∀"∀$ (" + $ = $ + ") where the domain consists of all real numbers 

false ⇒ the order of quantifiers matters

True



Nested Quantifiers

• Ex. 4:  The sum of two positive integers is positive

• Ex. 5 lim
$→&

' ( = * where ':ℝ → ℝ

∀(∀.: ( > 0 ∧ . > 0 → (( + . > 0) where the domain is all integers

∀5 > 0 ∃7 > 0 ∀(: 0 < ( − : < 7 → ' ( − * < 5
where the domain is real numbers



Negation of Nested Quantifiers

Q: What is the negation of ∃"∀$ ($ + " = 0)?

A:  ¬∃"∀$ $ + " = 0 ≡ ∀"¬∀$ $ + " = 0
≡ ∀"∃$ ¬ $ + " = 0
≡ ∀"∃$ $ + " ≠ 0



Introduction to Proofs
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Introduction to Proofs

• Rules of Inference (1.6)

• Basic Proof Techniques (1.7)

• More Proof Techniques (1.8)



Proofs and Valid Arguments

• Mathematical Proof = Sequence of valid arguments that 
establish the truth of a mathematical statement

• An argument:  a sequence of propositions that end with a 
conclusion

• A valid argument: it is impossible for all the premises to be true 
and the conclusion to be false

• Rules of inference: simple valid argument forms (templates of valid 
arguments) 

!"
!#

∴ %
!&
⋮

premises
(hypothesis) 

conclusion
!# ∧ !" ∧ ⋯∧ !& → % ≡ ,



Rules of Inference

“If you have a current password, then you can log onto the network.”

“You have a current password”

Therefore, 

“You can log onto the network”

!

! " ! → "

∴ "

! → " ∧ ! → " ≡ ' Modus ponens (Latin for "mode that affirms by affirming")

!

"

Ex.1: 

premises

conclusion



Rules of Inference

“If you have a current password, then you can log onto the network.”

“You cannot log onto the network”

Therefore, 

“You don’t have a current password”

¬"

# " # → "

∴ ¬ #

( # → " ∧ ¬" ) → ¬ # ≡ * Modus tollens (Latin for "mode that denies by denying")

¬"

¬#

Ex.2



Rules of Inference

Ex.3:

Ex.4: 

It is below freezing now
Therefore, it is either below freezing or raining now 

It is below freezing and raining now. 

Therefore, it is below freezing now 

!
∴ ! ∨ $

!

! $

! ∧ $
∴ !

(addition)

(simplification)







Using Rules of Inference to Build Arguments

Ex.5:  Suppose all these statements are known:  

“It is not sunny this afternoon and it is colder than yesterday”

“We will go swimming only if it is sunny this afternoon

“If we do not go swimming, then we will take a canoe trip”

“If we take a canoe trip, then we will be home by sunset”

Show that “We will be home by sunset”

premises

conclusion

¬" # ¬" ∧ #

"% % → "

¬% '
¬% → '

' (
' → (

(



Rules of Inference for Propositional Logic

Ex.6:  Show that:  

“If you send me an e-mail message, then I will finish writing the program”

“If you do not send me an e-mail message, then I will  go to sleep early”

“If I go to sleep early, then I will wake up feeling refreshed”

⇒ “If I do not finish writing the program, then I will wake up feeling refreshed”

premises

conclusion

" #

¬" %

% &

" → #

¬" → %

% → &

¬# → &
¬# &





Rules of Inference for Quantified Statements 

Ex.7: Show that 

“A student in this class has not read the book”, and

“Everyone in this class passed the first exam”

imply the conclusion

“Someone who passed the first exam has not read the book” 

! "(!) ¬&(!)
∃!: " ! ∧ ¬&(!)

∃

∀! "(!) +(!)
∀!: " ! → +(!)

∃! +(!) ¬&(!)
∃!: + ! ∧ ¬&(!)



1. ∃$: & $ ∧ ¬) $
2. & + ∧ ¬)(+)
3. & +
4. ∀$: & $ → 2($)
5. & + → 2(+)
6. 2(+)
7. ¬)(+)
8. 2 + ∧ ¬)(+)
9. ∃$: 2 $ ∧ ¬)($)

∃$: & $ ∧ ¬)($)
∀$: & $ → 2($)

∃$: 2 $ ∧ ¬)($)

Premise

Existential instantiation from (1)

Simplification from (2)

Premise

Universal instantiation from (4)

Modus ponens from (3) and (5)

Simplification from (2)

Conjunction from (6) and (7)

Existential generalization from (8)



Introduction to Proofs

Proof: Sequence of valid arguments that establish the truth of a theorem 

Theorem: A proposition that can be proved to be true
• Lemma: simple “helper” theorem

• Corollary: An almost immediate implication of a theorem

• Conjecture: proposition for which it is not known whether it is true or false

• Formal vs. informal proofs

• We will assume usual axioms regarding real numbers and integers (Appendix 1) 
and geometry. 



Direct Proofs

• Want to show ! → #
• Assume ! is true. Construct a sequence of implications using rules of 

inference, with the final step showing that # must also be true

• Give a direct proof of the theorem
Theorem 1: If $ is an odd integer, then $% is odd

Theorem 1’: For all integers $ ∈ ℤ, if $ is an odd integer, then $% is odd

• To prove ∀*: , * → - * , show that , . → - . for an arbitrary 
element . in the domain, and then apply universal generalization 

! #



Direct Proofs

• Theorem 1: If ! is an odd integer, then !" is odd

• Definition: The integer ! is even if there exists an integer # such that ! =
2#, and ! is odd if there exists an integer # such that ! = 2# + 1.



Proof by Contraposition

• Want to prove: ! → #
• Actually prove: ¬# → ¬ !
• This is ok because ! → # ≡ ¬# → ¬ ! contrapositive law

Theorem 2: if 3 is an integer and 34 is odd, then 3 is odd

Theorem 1’: if 3 is an integer and 34 is even, then 3 is even



Proofs by Contradiction

• Want to prove:  !
• Actually prove: ¬! → $
• This is ok because ! ≡ ¬! → $
• How to find a contradiction? ¬! → (' ∧ ¬') for some '

Theorem 3:  2 is irrational 
Fact: for every rational number +, there exist integers , and - with + =
,/-, where - ≠ 0 and , and - have no common factors.



Proofs of Equivalence

• Want to prove:  ! ↔ #
• Actually prove: (! → #) ∧ (# → !)
• This is ok because ! ↔ # ≡ ! → # ∧ # → !

Theorem 4: If ) is an integer, then ) is odd if and only if )* is odd
Proof:

follows from Theorem 1 “If ) is an odd integer, then )* is odd”
follows from Theorem 2 “if ) is an integer and )* is odd, then ) is odd”

! #
! → #:
# → !:



Proofs of Equivalence

• Want to prove:  ! ↔ # ↔ $
• Option 1:  Prove ! → #

# → !
# → $
$ → #

• Option 2:  Prove ! → #
# → $
$ → !



Proof by Cases

• Wants to show ("#∨ "% ∨ ⋯∨ "') → *
• Actually prove: "# → *

"% → *
⋮

"' → *
• This is ok because ("#∨ "% …∨ "') → *

≡ "# → * ∧ "% → * ∧ ⋯∧ "' → *



Proof by Cases

• Wants to show ("#∨ "% ∨ ⋯∨ "') → *
• Actually prove: "# → *

"% → *
⋮

"' → *

Theorem 5: |-.| = |-||.| for any real numbers - and .

Theorem 6: there are no solutions in integers - and . of -% + 3.% = 8

Case 1Case 2

Case 3Case 4

.

-



Existence Proofs

• Want to prove ∃": $(")

Theorem 7: There is a positive integer that can be written as the sum of cubes of 
positives in two different ways. 
Proof: Constructive existence proof: Find ' such that $ ' is true

Exhaustive search (computer): 

' = 1729 = 10. + 9. = 12. + 1.

Theorem 8: Show that there exist irrational numbers " and 0 such that "1 is rational 

Proof: Non-constructive existence proof: consider 2 2



Uniqueness Proofs

• Want to show there is a unique ! such that " !
• Existence: there is an ! has the desired property
• Uniqueness: for any # ≠ !, # does not have the property

Theorem 9: if % and & are real numbers and % ≠ 0, then there is a unique real 
number ( such that %( + & = 0. 



Counterexamples

• Want to disprove ∀": $(")
• It is sufficient to find a counterexample ' such that $ ' = )
Ex: Prove or disprove: every positive integer is the sum of squares of two 
integers

3 ≠ 0- + 0-, 3 ≠ 0- + 1-, 3 ≠ 1- + 1-, 3 ≠ 2- + "- for any " ∈ ℤ
⇒ 3 is a counterexample



Forward Reasoning vs. Backward Reasoning

Theorem 10: (" + $)/2 > "$ for all positive distinct ", $
Proof 1:  backward reasoning

(" + $)/2 > "$
" + $ */4 > "$
" + $ * > 4"$

"* + 2"$ + $* > 4"$
"* − 2"$ + $* > 0

(" − $)* > 0
Proof 2:  forward reasoning

true because " ≠ $

" + $ */4 > "$ → (" + $)/2 > "$
true because " and $ are positive


