Induction and Recursion

CMPS/MATH 2170: Discrete Mathematics

Outline

- Mathematical induction (5.1)
- Sequences and Summations (2.4)
- Strong induction (5.2)
- Recursive definitions (5.3)
- Recurrence Relations (8.1)

Principle of Mathematical Induction

- Want to know if we can reach every step on a infinite ladder
- Suppose we know two things
- We can reach the first rung of the ladder
- If we can reach a particular rung of the ladder, then we can reach the next rung
- Can we conclude that we can reach every rung?

Mathematical Induction

- Want to show: $\forall n \in \mathbb{Z}^{+}: P(n)$

Proof by induction on n

- Base case: verify that $P(1)$ is true
- Inductive step: show that $P(k) \rightarrow P(k+1)$ for any $k \in \mathbb{Z}^{+}$

Inductive hypothesis: Assume $P(k)$ is true
Want to prove $P(k+1)$ is true

Examples

Ex. 1: Prove that 3 divides $n^{3}-n$ for any $n \in \mathbb{Z}^{+}$

$$
P(n)
$$

Mathematical Induction

- Want to show: $\forall n \in \mathbb{Z}^{+}: P(n)$ for $n=b, b+1, b+2, \ldots$, where $b \in \mathbb{Z}$
- Proof by induction on n

$$
P(b)
$$

- Base case: verify that $P(1)$ is true
- Inductive step: show that $P(k) \rightarrow P(k+1)$ for any $k \in \mathbb{Z}^{+} k \in \mathbb{Z}$ and $k \geq b$

Inductive hypothesis: Assume $P(k)$ is true
Want to prove $P(k+1)$ is true

Examples

Ex. 1: Prove that 3 divides $n^{3}-n$ for any $n \in \mathbb{Z}^{+}$

Ex. 2: Prove $n^{2}<2^{n}$ for all integers $n>4$

Ex. 3: Prove that a finite set with n elements has 2^{n} subsets

Ex. 4: Prove that every amount of postage of 12 cents or more can be formed using just 4 -cent and 5 -cent stamps.

More about Mathematical Induction

- Why Mathematical Induction is valid?
- Implied by the Weak Ordering Property:
"Every nonempty subset of \mathbb{Z}^{+}has a least element"
- Pros
- Can be used to prove a wide variety of "forall" conjectures
- Easy to follow
- Cons
- Cannot be used to find new theorems
- Lack of insight

Outline

- Mathematical induction (5.1)
- Sequences and Summations (2.4)
- Strong induction (5.2)
- Recursive definitions (5.3)
- Recurrence Relations (8.1)

Sequences

- Informally, a sequence is an ordered list of objects
- List all positive even integers: $2,4,6,8,10, \ldots$
- We can describe the sequence as $\left\{a_{i}\right\}_{i \in \mathbb{Z}^{+}}$where $a_{i}=2 i$
- Formally, a sequence is a function with domain \mathbb{Z}^{+}or \mathbb{N} :
- the above sequene can be defined by

$$
\begin{aligned}
f: & \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+} \\
& i \mapsto 2 i
\end{aligned}
$$

Arithmetic Progression

- Consider a sequence: $1,4,7,10,13,16,19 \ldots$
- We can represent it as $a_{i}=1+3 \cdot i, i \geq 0$
- An arithmetic progression is a sequence $\left\{a_{i}\right\}_{i \in \mathbb{N}}$ with $a_{i}=b+c \cdot i$, for $b, c \in \mathbb{R}$

$$
\begin{aligned}
& a_{0}=b \\
& a_{1}=b+c \\
& a_{2}=b+2 c
\end{aligned}
$$

$$
f: \mathbb{N} \rightarrow \mathbb{R}
$$

$$
i \mapsto b+c i
$$

Geometric Progression

- Consider a sequence: $3,6,12,24,48,96, \ldots$
- We can represent it as $a_{i}=3 \cdot 2^{i}, \quad i \geq 0$
- A geometric progression is a sequence $\left\{a_{i}\right\}_{i \in \mathbb{N}}$ with $a_{i}=b \cdot c^{i}$, for $b, c \in \mathbb{R}$

$$
\begin{aligned}
& a_{0}=b \\
& a_{1}=b c \\
& a_{2}=b c^{2}
\end{aligned}
$$

$$
f: \mathbb{N} \rightarrow \mathbb{R}
$$

$$
i \mapsto b c^{i}
$$

Summations

For a sequence $\left\{a_{i}\right\}$, we write

$$
\begin{aligned}
& \sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+\cdots+a_{n} \\
& \sum_{i=m}^{n} a_{i}=a_{m}+a_{m+1}+\cdots+a_{n}
\end{aligned}
$$

Summations

Ex.1: Sums of Arithmetic Progressions

$$
\forall n \in \mathbb{N}: \sum_{i=0}^{n} i=\frac{n(n+1)}{2}
$$

Ex.2: Sums of Geometric Progressions

$$
\forall n \in \mathbb{N}: \quad \sum_{i=0}^{n} c^{i}=\frac{c^{n+1}-1}{c-1} \quad \text { where } c \neq 1
$$

Proof by Mathematical Induction

Summations

$$
\begin{aligned}
& \sum_{i=5}^{10} 2^{i}=\sum_{i=0}^{10} 2^{i}-\sum_{i=0}^{4} 2^{i} \\
& \sum_{i=5}^{10} 2^{i}=\sum_{j=0}^{5} 2^{j+5}=32 \times \sum_{j=0}^{5} 2^{j}
\end{aligned}
$$

Index substitution: $j=i-5$

Outline

- Mathematical induction (5.1)
- Sequences and Summations (2.4)
- Strong induction (5.2)
- Recursive definitions (5.3)
- Recurrence Relations (8.1)

Strong Induction

- Want to prove: $\forall n \in \mathbb{Z}^{+}: P(n)$

Proof by (weak) induction on n :

- Base case: verify that $P(1)$ is true
- Inductive step: show that $P(k) \rightarrow P(k+1)$ for any $k \in \mathbb{Z}^{+}$

Proof by strong induction on n :

- Base case: verify that $P(1)$ is true
- Inductive step: show that $[P(1) \wedge P(2) \wedge \ldots \wedge P(k)] \rightarrow P(k+1)$ for any $k \in \mathbb{Z}^{+}$

Strong Induction

- A more general form of strong induction
- Want to prove: $P(n)$ for $n=b, b+1, b+2, \ldots$, where $b \in \mathbb{Z}$
- Base step: verify that $P(b), P(b+1), \ldots P(b+j)$ are true
- Inductive step: Assume $[P(b) \wedge P(b+1) \wedge \ldots \wedge P(k)]$ is true, prove $P(k+1)$ is true for every integer $k \geq b+j$

Examples of Strong Induction

Fibonacci Sequence: $0,1,1,2,3,5,8,13,21, \ldots$

$$
\begin{aligned}
& f_{0}=0, f_{1}=1 \\
& f_{n}=f_{n-1}+f_{n-2}, n \geq 2
\end{aligned}
$$

This is called a recursive definition

Fibonacci Tiling

Ex.1: $f_{n} \leq 2^{n}$ for all $n \geq 0$
Ex. 2: $f_{n}>\alpha^{n-2}$ for any $n \geq 3$ where $\alpha=(1+\sqrt{5}) / 2$

Outline

- Mathematical induction (5.1)
- Sequences and Summations (2.4)
- Strong induction (5.2)
- Recursive definitions (5.3)
- Recurrence Relations (8.1)

Recursively Defined Sequences

- Fibonacci Sequence: $0,1,1,2,3,5,8,13,21, \ldots$

$$
\begin{array}{ll}
f_{0}=0, f_{1}=1, & \text { Initial conditions } \\
f_{n}=f_{n-1}+f_{n-2}, n \geq 2 & \text { Recurrence relation }
\end{array}
$$

- A sequence of powers of $2: 1,2,4,8,16,32 \ldots$

An explicit formula: $a_{n}=2^{n}, n \geq 0$
A recursive definition:

$$
\begin{array}{ll}
a_{0}=2^{0}, & \text { Initial condition } \\
a_{n}=2 a_{n-1}, n \geq 1 & \text { Recurrence relation }
\end{array}
$$

Recursively Defined Functions

- A recursive definition of $f: \mathbb{N} \rightarrow \mathbb{R}, \mathbb{N}=\{0,1,2,3 \ldots\}$
- Base step: specify $f(0)$
- Recursive step: specify $f(n)$ in terms of $f(0), f(1), \ldots, f(n-1)$, for any $n \geq 1$
- Ex.1: Give a recursive definition of $f(n)=n$!
- Ex.2: Give a recursive definition of $f(n)=\sum_{i=0}^{n} a_{i}$, where $\left\{a_{i}\right\}_{i \in \mathbb{N}}$ is a given sequence

Recursively Defined Sets

- Consider a set $S \subseteq \mathbb{Z}^{+}$recursively defined by
- Base step: $3 \in S$
- Recursive step: if $x \in S$ and $y \in S$, then $x+y \in S$
- S is the set of all positive integers divided by 3

Outline

- Mathematical induction (5.1)
- Sequences and Summations (2.4)
- Strong induction (5.2)
- Recursive definitions (5.3)
- Recurrence Relations (8.1)

The Tower of Hanoi

Task: Move the stack of disks from peg 1 to peg 3 subject to the following rules:

- Move one disk at a time
- Only the uppermost disk on a stack can be moved
- No disk can be placed on top of a smaller disk

Question: how many steps are needed?

The Tower of Hanoi

By André Karwath aka Aka - Own work, CC BY-SA 2.5, https://commons.wikimedia.org/w/index.php?curid=85401

The Tower of Hanoi

- H_{n} - number of moves needed to solve the Tower of Hanoi with n disks
- Divide \& Conquer

$$
\begin{array}{ll}
H_{1}=1 & \text { Initial condition } \\
H_{n}=2 H_{n-1}+1, n \geq 2 & \text { Recurrence relation }
\end{array}
$$

- How to find an explicit formula for H_{n} ?
- Expand the recurrence iteratively and then make
 a conjecture: $H_{n}=2^{n}-1$
- $2^{64}-1$ seconds ≈ 585 billion years
- Proof by mathematical induction

