Final Exam Review

CMPS/MATH 2170: Discrete Mathematics

Overview

- Final Exam
- Format: similar to midterm, closed book, one page cheat sheet allowed
- Time \& Place: Monday, Dec 10, 10 AM - 12 PM, Stanley Thomas 302
- Office hours on Sunday Dec 9: 12-2pm
- Course evaluations (end on Dec 9)
- Gibson \rightarrow "course evaluations"

Topics (before midterm, 30\%)

- Logic: 1.1-1.6
- Proofs: 1.7-1.8
- Sets and Functions : 2.1-2.3, 2.5
- Mathematical Induction: 5.1

Topics (after midterm, 70\%)

- Sequences: 2.4
- Strong Induction: 5.2
- Recursion: 5.3, o.1
- Number Theory: 4.1, 4.3, 4.4, 4.6
- Counting: 6.1-6.3, 6.5
- Discrete Probability: 7.1, 7.2, 7.4

Sequences (2.4)

- Know how to define a sequence
- List all the elements
- Define a sequence as a function
- Recursive definition
- Arithmetic and geometric progressions and their summations
- Fibonacci Sequence
- Using strong induction to prove properties of Fibonacci sequence

Strong Induction (5.2)

- Know how to prove $\forall n \in \mathbb{Z}^{+}: P(n)$ using strong induction

Proof by strong induction on n :

- Base case: verify that $P(1)$ is true, $P(2)$ is true, \ldots
- Inductive step: show that $[P(1) \wedge P(2) \wedge \ldots \wedge P(k)] \rightarrow P(k+1)$ for any $k \in \mathbb{Z}^{+}$
- The base case is not necessarily $n=1$, and there may have multiple base cases

Recursive Definitions (5.3)

- Know how to define a discrete structure (e.g., sequence, function, or set) recursively
- Initial conditions
- Recurrence relation
- Play with a recursive definition

$$
\text { - E.g., if } f(n)=f\left(\frac{n}{3}\right)+2 n \text { and } f(1)=1 . \text { Find } f(27)
$$

Division and Primes (4.1,4.3)

- Division
$-a \mid b \Leftrightarrow b=k a$ for some $k \in \mathbb{Z}$
- Primes
- the Fundamental theorem of Arithmetic
- A composite n has a prime divisor $\leq \sqrt{n}$
- there are infinite many primes
- Great common divisor and least common multiple

Division Algorithms (4.3)

- Division algorithm: $a=d q+r, 0 \leq r<d$

$$
\begin{aligned}
& -q=a \operatorname{div} d, r=a \bmod d \\
& -\operatorname{gcd}(a, d)=\operatorname{gcd}(d, r)
\end{aligned}
$$

- Euclidean algorithm
- find gcd by successively applying the division algorithm
- Bezout's Theorem: $\operatorname{gcd}(a, b)=s a+t b$
- If $a \mid b c$ and $\operatorname{gcd}(a, b)=1$, then $a \mid c$

Congruences $(4.1,4.4)$

- Congruences
$-a \equiv b(\bmod m) \Leftrightarrow m \mid(a-b) \Leftrightarrow(a \bmod m)=(b \bmod m)$
- \mathbb{Z}_{m} and Arithmetic Modulo m
- Multiplicative inverse: $a \cdot b \equiv 1(\bmod m)$
$-a$ has a multiplicative inverse modulo m if and only if $\operatorname{gcd}(a, m)=1$.
$-\operatorname{gcd}(a, m)=1 \Rightarrow s a+t m \equiv 1(\bmod m) \Rightarrow s a \equiv 1(\bmod m)$
- Solving Linear Congruences: $a x \equiv b(\bmod m)$
- Fermat's Little Theorem
- compute $a^{n} \bmod p$ where p is prime and $p \nmid a$
- Fast Modular Exponentiation

Counting (6.1-6.2)

- The product rule, the sum rule, the subtraction rule (6.1)
- Break the problem into stages \Rightarrow product rule
- Break the problem into disjoint subcases \Rightarrow sum rule
- If the subcases are non-disjoint \Rightarrow subtraction rule
- For more complicated problems, product and sum rules are often used together
- The Pigeonhole Principle (6.2)
- Generalized Pigeonhole Principle

Permutations and Combinations (6.3, 6.5)

	Permutations	Combinations
Without repetition (6.3)	$P(n, r)=\frac{n!}{(n-r)!}$	$C(n, r)=\binom{n}{r}=\frac{n!}{r!(n-r)!}$
With repetition (6.5)	n^{r}	$\binom{n+r-1}{r}$

How many bit strings of length 8 ?
How many bit strings of length 8 have exactly three 1's?

Discrete Probability (7.1-7.2)

- Discrete probability laws
- For a given experiment, identify the set of outcomes and their probabilities
- know how to compute the probability of an event $\mathrm{P}(A)=\sum_{s \in A} \mathrm{P}(\{s\})$
- Basic properties

$$
-\mathrm{P}(\bar{A})=1-\mathrm{P}(A), \mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B)
$$

Independence (7.2)

- Independence: $\mathrm{P}(A \cap B)=\mathrm{P}(A) \mathrm{P}(B)$
- Know how to determine if two given events are independent or not
- Independent Bernoulli Trials
- p - probability of heads
- The probability of having exactly k heads is $\binom{n}{k} p^{k}(1-p)^{n-k}$

Random Variables $(7.2,7.4)$

- Random variables: real-valued functions of the experiment outcome
- Know how to compute probabilities for events defined by random variables
- Expected values: $E(X)=\sum_{s \in \Omega} X(s) \mathrm{P}(\{s\})$
- Know how to find the expected value of a discrete random variable
- The expected number of heads in independent Bernoulli trials
- A coin is flipped 6 times where each flip comes up heads or tails. How many possible outcomes contain the same number of heads as tails?
- We randomly select a permutation of the set $\{A, B, C, D\}$. What is the probability that A immediately precedes D in this permutation?
- Considering rolling a fair six-sided die. Let $A=\{$ roll is at least 3$\}$ and $B=$ \{roll is an odd number\}.
-a . Find the probability $P(A)$
-b . Find the probability $P(B)$
-c . Are A and B independent?
- Consider a quiz game where a person is given two questions. Question 1 will be answered correctly with probability 0.8 , and the person will then receive a prize of $\$ 100$, while Question 2 will be answered correctly with probability 0.5 , and the person will then receive a prize of $\$ 200$. The person is allowed to answer Question 2 only if Question 1 is answered correctly. What is the expected value of the total prize money received?

