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Abstract—Coflow has recently been introduced to capture
communication patterns that are widely observed in the cloud
and massively parallel computing. Coflow consists of a number
of flows that each represents data communication from one
machine to another. A coflow is completed when all of its flows
are completed. Due to its elegant abstraction of the complicated
communication processes found in various parallel computing
platforms, it has received significant attention.

In this paper, we consider coflow for the objective of maxi-
mizing partial throughput. This objective seeks to measure the
progress made for partially completed coflows before their dead-
line. Partially processed coflows still could be useful when their
flows send out useful data that can be used for the next round
computation. In our measure, a coflow is processed by a certain
fraction when all of its flows are processed by the same fraction
or more. We consider a natural class of greedy algorithms, which
we call myopic concurrent. The algorithms seek to maximize the
marginal increase of the partial throughput objective at each time.
We analyze the performance of our algorithm against the optimal
scheduler. In fact, our result is more general as a flow could
be extended to demand various heterogeneous resources. Our
experiment demonstrates our algorithm’s superior performance.

I. INTRODUCTION

Coflow [1] has recently emerged as an elegant model that
abstracts communication patterns that are frequently observed
in cloud computing and massively parallel computing such
as MapReduce [2] and Spark [3]. Each coflow consists of
a number of parallel flows (data communications) and each
flow has some data to transfer from one machine to another.
A coflow is completed when all its flows are completed; for
the formal model, see Section II-A. Due to its general model,
coflow has received significant attentions since its introduction.
Particularly, coflow has been studied for various objectives
such as average completion time and throughput maximization.

In throughput maximization, each coflow typically has a
deadline and gives a certain utility when completed before its
deadline. However, in certain applications, partially processed
coflows still could be useful when they contain useful data that
can be used for the next round of computation. For example,
suppose a coflow is intended to capture data migration to
prepare for certain computation related to data analytics. To
get the ideal analytics result, machines must receive the whole
data set, but partial data can be used as samples for the large
data set. As the machines receive more data over time, they
produce more accurate outcomes.

The authors are ordered in alphabetical order.

Partial execution is becoming an important paradigm to
support time-sensitive applications such as interactive ser-
vices [4] and real-time data analytics [5], [6]. For many of
these applications, a timely result with a slight loss in accuracy
is preferable to the completed but delayed result. For example,
given a web search query, the server could send out top ranked
results followed by lower ranked results so that clients first see
important results quickly and more results as time progresses.

Motivated by such scenarios, in this paper, we consider
the objective of maximizing partial throughput, which was
recently studied in [7], [8] in a cloud computing context. In
their setting, each request/job consists of multiple identical
tasks. Each task asks for multiple heterogeneous resources and
tasks are processed when given the resources they demand.
However, the tasks are homogeneous, and thus their setting is
very different from coflow where each job (coflow) consists of
communications (flows) between different machines. In coflow
scheduling, each coflow (job) j is associated with a utility
function fj . The function takes as input how much each flow
in j has been processed and outputs the associated coflow’s
utility. It is reasonable to assume that all flows of each coflow
are equally important for the next round computation, and
therefore, the usefulness of a partially processed coflow is
bottlenecked by the least processed flow.

Further, we generalize coflow to the more general setting to
capture heterogeneous resources. Coflow is certainly an elegant
communication model that captures communication between
machines that focus on each machine’s network capacity, i.e.,
a maximum number of packets each machine can send or
receive. However, there is a need to consider resources at
the level of finer granules in certain settings. For example,
one may want to consider computation and communication
simultaneously if partial computation outcome can be used
for the next round computation. In such cases, computing
resources such as CPUs should be considered simultaneously
together network bandwidth.

Indeed, multidimensional scheduling [9]–[13] has been
extensively studied to capture jobs requiring heterogeneous
resources — some jobs could be more CPU-intensive while
others could be more memory-intensive. In multidimensional
scheduling, there are multiple heterogeneous resources which
are often assumed to be divisible. Then, each job demands
certain resources for its execution and is processed at a
certain rate that is determined by the resources it is allocated.
The main motivation of this model was to study resource
allocations in cloud computing, and therefore does not capture
parallel communication between machines.



A. Our Scheduling Model

In this paper, we study a combination of the two afore-
mentioned scheduling models. In the combined model, which
we call multidimensional coflow, each job (or coflow) consists
of tasks (flows), and each task requires certain resources
simultaneously. Each task is processed at a rate depending
on the least resource it is allocated relative to its demand for
the resource. In other words, resources demanded by a task
cannot be replaced by other resources. It is worth mentioning
that our multidimensional coflow generalizes coflow, as well as
multidimensional scheduling. Coflow is a special case of our
setting where each task (flow) uses only two resources, namely
ingress and egress ports it uses; for more details see II-A.
Each job j has a utility function fj that takes as input the
fraction of job j processed and outputs the associated coflow’s
utility, which measures the importance of the partial result to
the application. In general, the progress of a job depends on
the progress of each task in the job. The relationship between
the two can be modeled by a real valued function with multi-
dimensional inputs and may be learned from history data.
In this work, we make a first order approximation to this
relationship and assume that job j has been processed by a
fraction of zj when all of its tasks have been processed by the
same fraction. The goal is to maximize

∑
j fj(zj) where zj

denotes the fraction of job j that has been processed before its
deadline. We assume that fj is monotone and concave for all
j. A concave function captures the diminishing return property
that is often observed in realty [4], [7]. For instance, a study
of 200K queries in a production trace of Bing search engine
shows that the relationship between the response quality and
the amount of resources (or time) used is close to a monotone
concave function [4]. Moreover, a concave utility can be used
to achieve fairness between coflows. We seek to design an
online scheduling algorithm that makes scheduling decisions
without knowing jobs arriving in the future.

B. Our Contributions

Our contribution is largely two-fold. First, as mentioned
above, our scheduling model naturally combines the two
general and widely studied scheduling models, coflow and
multidimensional scheduling. We believe multidimensional
coflow can capture various scheduling environments and the
model will find more applications in the future.

Second, we study multidimensional coflow for maximizing
partial throughput online and find an effective scheduling
algorithm. Our algorithm is very natural as at each time, it
seeks to maximize the marginal increase of the objective. That
is, if Jt denotes the set of currently alive jobs at time t and
zj,≤t denotes how much j has been processed by time t, the
algorithm seeks to maximize

∑
j∈Jt(fj(zj,≤t)−fj(zj,≤t−1)).

This algorithm has three interesting properties:

1) The algorithm is online as its scheduling decision
does not depend on jobs that have not arrived yet.

2) The algorithm is myopic as it ignores how soon each
job’s deadline is but tries to maximize the marginal
increase of the objective at each moment. In other
words, the algorithm is oblivious to jobs’ deadlines.

3) The algorithm yields a concurrent schedule in the
sense that all tasks of the same job are processed by
an equal fraction at any point in time.

It is worth emphasizing our algorithm is oblivious to jobs
deadlines. Thus, even if the algorithm doesn’t have accurate in-
formation about jobs deadlines, it can be readily implemented.
Further, such algorithms are typically easier to implement as
they do not have to track job deadlines or prioritize jobs based
on their deadlines.

We study the performance of our myopic concurrent algo-
rithm using the competitive analysis framework. That is, our
algorithm’s objective is compared against the offline optimal
scheduler’s objective and is said to be c-competitive if the
former is at least c times the latter. Competitive analysis is
of fundamental interest as it makes no stochastic assumptions
on the input and gives a certain guarantee on the algorithm’s
performance even in the worst case [14].

Note that all tasks of the same job do not have to be
processed simultaneously. As we mentioned, our algorithm,
however, yields a concurrent schedule. Informally speaking, we
show, if any schedule can be outperformed, in terms of partial
throughput, by a concurrent schedule using ρ factor more
resources, then our myopic concurrent algorithm is 1/(1 +ρ)-
competitive against the optimal schedule that is not necessarily
concurrent (Theorem 1). Since a concurrent schedule’s objec-
tive could be only 1/ρ times the optimal schedule’s objective,
this implies our concurrent online algorithm’s performance is
pretty close to that of the best concurrent schedule that could
be offline.

Then, we study an upper bound on the parameter ρ, which
we define and call price of concurrence (Definition 2). We
show the price of concurrence (PoC) is at most an easy-to-
compute parameter (Theorem 2) that we call the maximum-to-
average resource demand (MA, for short) parameter. Roughly
speaking, the MA parameter is the worst maximum-to-average
resource demand by any job.

From the analysis point of view, we give an intuitive
analysis by making a connection between our problem and a
submodular maximization problem. While such a connection
was used in the previous work [15], our extension is more
general since our problem itself, or even coflow, does not admit
such a connection as it is. However, when the schedules are
restricted to concurrent, an interpretation as submodular opti-
mization becomes possible. Our clean analysis has a potential
to find more applications and thus is of independent interest.

Finally, we show that for the partial throughput objective,
our myopic concurrent algorithm considerably outperforms
other existing algorithms developed for other objectives.

C. Organization
In Section II, we define our multidimensional coflow along

with notations that will be used throughout the paper and dis-
cuss some of its applications. Further, some related work will
be discussed. In Section IV, we present our myopic concurrent
algorithm and state our results formally. Section V is devoted
to proving our theoretical results. Then, we complement our
theoretical results by a simulated experiment in Section VI and
close with concluding remarks in Section VII.

II. FORMAL PROBLEM DEFINITION

We first give the formal definition of the multi-dimensional
coflow problem (MD-Coflow), which we introduce and study



in this paper. In MD-Coflow, there is a set R of divisible
resources that can be used to serve the clients. The set of
resources remains the same throughout the whole time. By
scaling, each resource is w.l.o.g. assumed to exist in one unit,
meaning that one can use at most one unit of each resource at
any point in time. Each resource has a specific type, and the
set of resources of type k is denoted as Rk. Let |Rk| be the
number of resources of type k. Note that |R| =

∑
k |Rk|.

A set J of jobs arrive over time to be served. Each job j
consists of a set of tasks, Qj . All tasks of job j have the same
arrival/release time aj and desire to be completed by time bj ,
which is referred to as the task’s deadline, or equivalently,
job j’s deadline. We say that [aj , bj ] is j’s lifespan. Each task
q ∈ Qj has a demand dqr for each resource r ∈ R. Let Dqk :=∑
r∈Rk

dqr be the total demand of task q for all resources of
type k. Similarly, let Djk :=

∑
q∈Qj

Dqk denote the total
demand of job j for all resources of type k.

To discuss how a task or job is processed, we need to fix
the time model. In this paper, we assume a continuous time
model where a scheduling decision is made at each instant of
time. However, to make the presentation of our algorithm and
analysis more transparent, we will often talk about time slots,
which are assumed to be infinitesimally small.

A task q needs resources simultaneously in proportion
to its demands to be processed. Formally, if xqrt is the
amount of resource r that task q receives at time t, task q
is processed by a fraction of minr:dqr 6=0 xqrt/dqr. Hence, we
can assume w.l.o.g. that for every pair of task q and time t,
xqrt/dqr is equal for all r such that dqr 6= 0. Let yqt be the
fraction of task q that is processed at time t. We measure
job j’s processing by its least processed task. Formally, j
is processed by zj = minq∈Qj

∑
t∈[aj ,bj ] yqt. Each job j

is associated with a utility function fj , which is concave,
monotone, and differentiable. Job j has a utility fj(zj). The
goal is to maximize total partial throughput, i.e.,

∑
j fj(zj).

The objective is called partial objective as it measures the total
utility of partially executed jobs before their deadline. A job
can be processed by at most a fraction of 1. We can either
explicitly add this constraint or prevent each function fj from
growing when zj becomes greater than 1.

The following, CPMD-Coflow, is a convex programming
formulation of MD-Coflow.

max
x,y,z

∑
j

fj(zj) CPMD-Coflow

s.t.
∑
j,q∈Qj

xqrt ≤ 1 ∀r ∈ R, t (1)

xqrt ≥ dqryqt ∀r ∈ R, j ∈ J, q ∈ Qj , t (2)

zj ≤
∑
t

yqt ∀j ∈ J, q ∈ Qj (3)

xqrt = 0 ∀r ∈ R, j ∈ J, q ∈ Qj ,
∀t 6∈ [aj , bj ] (4)

xqrt ≥ 0 ∀r ∈ R, j ∈ J, q ∈ Qj , t
yqt ≥ 0 ∀j ∈ J, q ∈ Qj , t

0 ≤ zj ≤ 1 ∀j ∈ J

There are three variables in CPMD-Coflow: variable xqrt denotes
the amount of resource r that task q receives at time t; yqt is

the fraction of task q that is processed at time t; and zj is the
fraction of job j completed before j’s deadline. Constraint (1)
says that each resource r can be used by at most one unit at
all times. Constraint (2) enforces the concurrent requirement
at the level of tasks — task q’s processing is constrained by
the resource that q is given the least relative to its demand.
In other words, task q is processed by minr:dqr 6=0 xqrt/dqr
at time t. Constraint (3) sets zj to minq∈Qj

∑
t yqt, meaning

that j’s processing is measured by the least processed task q
among all of j’s tasks. Constraint (4) ensures that jobs/tasks’
deadlines are respected. Finally, a job is processed by at most a
unit fraction. Note that we can assume w.l.o.g. that

∑
t yqt ≤ 1

for all tasks q.

In this paper, we seek to study online algorithms for
MD-Coflow. An online algorithm becomes aware of a job j
only when the job arrives at time aj . The algorithm learns job
j’s all features upon the job’s arrival. Competitive analysis is
used to measure the performance of online algorithms in the
worst case scenarios. If the objective is to be maximized, we
say that an online algorithm is c-competitive if the algorithm’s
objective is at least c times the offline optimal scheduler’s
objective for all inputs. Equivalently, the algorithm is said to
have a c-competitive ratio. Thus, competitive analysis does
not make assumptions on the input and gives a performance
guaranteed even in the worst case. The worst case analysis
is of fundamental interest as the performance guarantee is
independent of the input. However, when it is impossible to
have a good upper bound on the competitive ratio, one could
add certain parameters that constrain the inputs and seek to
derive a competitive ratio depending on the parameters.

A. Applications
The multidimensional coflow (MD-Coflow) problem cap-

tures and unifies the following two well-studied problems.
1) Coflow: Consider a network fabric with m ≤ n

ingress/egress ports. Each port has a certain capacity. There is
a set of coflows to be served. Coflow j has arrival time aj and
may have to be satisfied by deadline bj . Coflow j has demand
vector {duvj}u∈[m],v∈[n] where duvj is the amount of data that
coflow j must transfer from ingress port u to egress port v.
A feasible schedule at each time is a collection of flows from
ingress ports to egress ports subject to the capacity constraint
of each port. Formally, if coflow j sends fuvjt units of packets
from ingress port u to egress port v at time t, it must satisfy∑
v,j fuvjt ≤ c(u) ∀u, t and

∑
u,j fuvjt ≤ c(v) ∀v, t where

c(u) and c(v) denote the capacity of u and v, respectively.

Coflow is an elegant abstraction to model the commu-
nication stage of various types of data-parallel applications
in modern massively parallel computing platforms such as
MapReduce [2] and Spark [3]. As a result of its faithfulness
to real-world scheduling and clean abstraction, coflow has
received significant attentions [1], [16]–[20] since its introduc-
tion [1]. Coflow has been studied for various objectives such
as minimizing total completion time and throughput.

To see MD-Coflow indeed generalize the coflow, think of
each port as a resource. There are two types of resources,
ingress ports and egress ports. Map each coflow j to a job j,
and for each pair (u, v) of ingress and egress ports, create a
task q that demands resources u and v by an equal amount of
duvj . Note that each task uses exactly two resources.



2) Multidimensional Scheduling: In this problem, there is a
set R of resources and no two resources are of the same type.
Each job j has exactly one task, and therefore, there is no
need to distinguish between jobs and tasks. Job j has demand
djr for each resource r. To process j, we need to assign all
resources demanded by the job. If a job j is given hjr units of
every resource r simultaneously at a time, it is processed by a
fraction of minr:djr 6=0 hjr/djr

1. In other words, each job j’s
processing rate is constrained by the resource the job is given
least relative to its demand of the resource.

Multidimensional scheduling has recently received sig-
nificant attentions as it allows a more effective scheduling
when jobs require heterogeneous resources. Indeed, in the
aforementioned massively parallel platforms, a task could be
IO-intensive or CPU-intensive, or could be a certain mixture
of both. Multidimensional scheduling has been studied in both
offline and online settings for various objectives such as total
completion time and fairness to the clients [9]–[13], [21], [22].
Particularly, Zheng and Shroff [8] recently consider partial
throughput for this problem.

At a high-level, coflow intends to capture parallel exe-
cution/communication while the multidimensional scheduling
allows a better utilization of heterogeneous resources that
cannot be substituted. Considering both views simultaneously
has some advantages. For example, it could be beneficial
to consider computation and communication simultaneously
when some jobs, while being processed, produce partial out-
comes that can be useful for the next round computation. Thus,
the combination of the two popular models provides a rich
semantics.

III. OTHER RELATED WORK

Coflow and multidimensional scheduling have been exten-
sively studied, and hence, our discussion of previous work is
inherently incomplete. Here, we only discuss some of the most
related work that is not covered in the previous section. Partial
throughput has been considered for homogeneous resources
prior to the work [8] by Zheng and Shroff on heteroge-
neous resources. For the homogeneous (single) resource case,
concave utility functions [4], [7] , as well as linear utility
functions, were considered [23]–[25]. The standard throughput
maximization where only fully executed jobs are counted has
been extensively studied, e.g. [26]–[28]. However, only special
cases admit constant competitive algorithms. To get around the
barrier, in [28], it was assumed that job sizes are considerably
smaller than their lifespan length.

IV. OUR ALGORITHM AND THEORETICAL RESULTS

A. Myopic Concurrent Algorithms
In this paper, we focus on a natural class of schedules,

which we call concurrent, that process tasks of the same job
at an equal rate. Formally,

Definition 1 (Concurrent Schedules). We say that a schedule
is concurrent if, at any point in time, all tasks of each job are
processed at an equal rate, i.e., for all j ∈ J , t ∈ [aj , bj ],
q 6= q′ ∈ Qj , yqt = yq′t.

1In general, a job j can have a specific utility function that takes an input
resource vector and outputs the job’s processing rate. This utility function
is called Leontief and is one of the most popular utilities considered in the
literature.

We will study a special class of algorithms that produce
concurrent schedules in a myopic way. Thus, we will call
such algorithms myopic concurrent. Specifically, a myopic
concurrent algorithm seeks to maximize the marginal partial
throughput at each time t ignoring jobs deadlines. Let Jt
demote the set of jobs that are alive at time t, i.e., aj ≤ t ≤ bj .
At each time slot t, given the progress of each job in previous
time slots {zjt′}t′<t, the algorithm maximizes the marginal
improvement by solving the following convex program.

max
∑
j∈Jt

fj(

t∑
τ=1

zjτ ) CPCON-MYOPIC (5)

s.t.
∑

j∈Jt,q∈Qj

xqrt ≤ 1 ∀r ∈ R

xqrt ≥ dqrzjt ∀r ∈ R, j ∈ Jt, q ∈ Qj
xqrt ≥ 0 ∀r ∈ R, j ∈ Jt, q ∈ Qj
zjt ≥ 0 ∀j ∈ Jt, q ∈ Qj

Note that, CPCON-MYOPIC is a continuous convex optimiza-
tion problem, and therefore, can be solved efficiently. At each
time t, the algorithm finds {zjt}js by solving CPCON-MYOPIC.
Then, for each task q ∈ Qj , the algorithm assigns zjtdqr units
of each resource r to task q, meaning that at any point in
time, the algorithm serves all tasks of the same job by an
equal fraction of zjt. Thus, the algorithm yields a concurrent
schedule. It is easy to see that setting yqt = zjt for all
t, j ∈ Jt, q ∈ Qt, we get a feasible solution to CPMD-Coflow.

Clearly, our myopic concurrent algorithm is online as its
scheduling decision at each time does not depend on jobs
arriving in the future. We will often call our algorithm A.

B. Theoretical Results
We first analyze our algorithm in terms of a certain key

parameter, which we introduce and call the price of concur-
rence (PoC). In the definition of PoC, we use the notion of
speed augmentation [29]. We say that a schedule is s-speed
if every resource is used by at most s units at any point time
— more precisely, Constraint (1) becomes

∑
j,q∈Qj

xqrt ≤ s,
increasing the capacity to s from 1. Intuitively, the PoC mea-
sures the minimum speed required for a concurrent schedule
to process every job j as much as an optimal schedule, which
is not necessarily concurrent, does.

Definition 2 (Price of Concurrence). We say that a given
multidimensional coflow instance has a price of concurrence
(PoC), ρ if, for any feasible schedule, {x∗, y∗, z∗} (feasible
solution to CPMD-Coflow), there is a concurrent ρ-speed schedule
{x, y, z} such that zj ≥ z∗j for all jobs j.

Our main theorem shows our myopic concurrent algorithm
A’s performance is pretty close to the best performance one
can hope for from any concurrent schedules. In other words,
by restricting our schedules to concurrent schedules, we are at
most ρ factor off from the optimal offline schedule and lose
at most one additional factor by making scheduling decisions
online. Thus, our online algorithm A’s partial throughput is
at least 1/(1 + ρ) times the partial throughput of the optimal
offline schedule. for all instances of PoC ρ.

Theorem 1 (Competitive Analysis of the Myopic Concurrent
Algorithm). For all instances of PoC ρ, the myopic concurrent



algorithm A is 1/(ρ + 1)-competitive for maximizing partial
throughput.

We note that our result extends the previous work [8]
that gives a 1/2-competitive algorithm that focuses on the
multidimensional setting for the partial throughput objective
— in other words, each job has only one task2. Thus, their
setting implies ρ = 1, and therefore, our result immediately
gives their result. It is known that no online algorithm can have
a better than 1/1.25-competitive even for the single resource
case [24].

We now turn our attentions to understanding the PoC. In
the following, we give an upper bound on the parameter. In the
definition of θ, the numerator is the maximum usage of any
resource needed to complete job j, and the denominator is the
average usage of resources of the same type needed to do so.
Thus, we term θ the maximum-to-average resource demand,
for short, the MA parameter.

Theorem 2 (Upper Bound on the Price of Concurrence). The
price of concurrence ρ is at most the MA parameter, θ :=

maxj,k,r

∑
q∈Qj

dqr

Djk/|Rk| .

We note that θ = maxj,u,v
mn·duvj∑

u,v duvj
in coflow3 and θ =

maxj,r′,r:djr 6=0
djr′

djr
in multidimensional scheduling4.

V. ANALYSIS

A. Competitive Analysis
This section is devoted to proving Theorem 1. We analyze

the performance of our myopic concurrent algorithm A by in-
terpreting the underlying scheduling problem as a submodular
maximization subject to a partition matroid. Hence, we first
take a detour to give a brief overview of submodular functions
and matroids. Then, we discuss our interpretation in detail and
complete our analysis.

1) Submodular Functions and Matroids: In this section, we
give a quick overview of submodular functions and matroids.
The reader who is interested in the rich theory of submodu-
larity and matroids are referred to [30].

Definition 3. A set function g : 2U → R is submodular if
g(A ∪B) + g(A ∩B) ≤ g(A) + g(B) for all A,B ⊆ U .

It is an easy exercise to show the following are alternative
definitions of submodular functions.

Proposition 3. A set function g : 2U → R is submodular if
and only if g(A ∪ B) − g(A) ≤ g(A′ ∪ B) − g(A′) for all
B ⊆ U and A′ ⊆ A ⊆ U .

Proposition 4. A set function g : 2U → R is submodular
if and only if g(B ∪ {e}) − g(B) ≤ g(A ∪ {e}) − g(A) for
A ⊆ B ⊆ U and e ∈ U .

Intuitively, submodularity captures diminishing marginal
gains — the increase of one’s happiness when acquiring a

2Their setting is slightly different from ours as in their work a job consists
of multiple identical tasks, but the tasks of the same job in their work can be
viewed as one task in our work

3This parameter is derived after we make c(u) = c(v) = 1 for all ports
u, v by scaling.

4One can alternatively assume that all resources are of the same type. Then,
θ = maxj,r′,r(|R|djr′ )/(

∑
r djr)

new item could be only smaller if she had more items. Define
gA(B) := g(A∪B)−g(A). For notational convenience, for an
element in U , let gA(e) := gA({e}). Likewise, we may drop
{} from {e} to simplify the notation.

Definition 4. A set function g : 2U → R is monotone if
g(A) ≤ g(B) for all A ⊆ B ⊆ U .

In this paper, we will be concerned with monotone sub-
modular functions with non-negative values.

A matroid M = (U, I) is defined by a collection I of
independent sets over a universe U of elements that satisfies
the following properties: ∅ ∈ I; if A ⊆ B and B ∈ I, then
A ⊆ I; and if A,B ∈ I and |A| < |B|, then ∃e ∈ B \A such
that {e} ∪A ∈ I.

Matroids have many interesting properties and are found
in many combinatorial problems. In this paper, we will partic-
ularly be interested in partition matroids, which are defined as
follows.

Definition 5. Let {Ui}i be a partition5 of U and µi ≥ 0 be
a capacity for Ui. If a set of elements, S, is independent, i.e.,
S ∈ I if and only if |S ∩ Ui| ≤ µi, then the collection I of
independent sets forms a partition matroid.

The following theorem was shown in [31], but for com-
pleteness, here, we give a self-contained simple proof.

Theorem 5. [31] Let g be a monotone submodular function,
and let M be a partition matroid. Then, the following greedy
algorithm is a 1/2-approximation for maximizing g subject to
M: Start with S = ∅ and repeatedly add to the current set
S an element e /∈ S from an arbitrary Ui that maximizes
g(S ∪ e) − g(S), ensuring that S stays independent under
M = (U, I), i.e., S ∈ I.

Proof: We show the theorem assuming that µi = 1 for all
i. This is because for our purposes, showing this special case
will be sufficient and extending the analysis to arbitrary µi is
straightforward. By reindexing, assume w.l.o.g. that the greedy
algorithm adds elements in this order e1, e2, ..., eT . Since g is
monotone and µi = 1 for all i, we can assume w.l.o.g. that we
choose exactly one element from each Ui; we assume w.l.o.g.
that Ui 6= ∅. Let A and O denote the greedy algorithm and
the optimal solution, respectively. Let ei and e∗i denote the
elements A and O choose from Ui. Let Et := {e1, e2, ..., et}
and E∗t = {e∗1, e∗2, ..., e∗t }. Then, we have,

g(ET )− g(∅) =

T∑
t=1

g(Et)− g(Et−1)

≥
T∑
t=1

g(Et−1 ∪ e∗t )− g(Et−1) (6)

≥
T∑
t=1

g(ET ∪ E∗t−1 ∪ e∗t )− g(ET ∪ E∗t−1) (7)

=

T∑
t=1

g(ET ∪ E∗t )− g(ET ∪ E∗t−1) = g(ET ∪ E∗T )− g(ET )

5That is, for any i 6= i′, Ui ∩ Ui′ = ∅ and ∪iUi = U .



Eq. (6) holds true as the greedy algorithm chose element
et ∈ Ut since gEt−1(et) ≥ gEt−1(e) for all e ∈ Ut. Eq. (7) fol-
lows from the fact that g is submodular and Proposition 3. By
rearranging terms, we have g(ET ) ≥ 1

2g(ET ∪E∗T ) ≥ 1
2g(E∗T )

where the last inequality follows from the monotonicity of g.

2) Interpreting (Partial) Throughput Maximization as Sub-
modular Maximization: We now show that a large class of
(partial) throughput maximization problems can be interpreted
as a submodular maximization subject to a partition matroid,
which admits a simple 1/2-approximation as we saw in The-
orem 5. Let zj,t denote how much job j gets processed
at time t; so zjt = 0 for all t < aj . Each job j is
associated with a utility function fj : [0,∞) → [0,∞). Let
zj,≤t = zj,aj + zj,aj+1 + · · ·+ zj,t; we keep commas between
subscripts when they improve the readability. Consider the
following optimization problem.

max
∑
j

fj(zj,≤T ) s.t. {zj,t}j ∈ a convex body Pt∀t, (8)

where a feasible schedule at each time t is within a convex
body Pt over {zjt}j . Note that job sizes can be implicitly
captured by fj by setting fj(p) = 0 for all p ≥ pj where pj
denotes j’s size.

Now let’s interpret this problem as a submodular max-
imization problem subject to a partition matroid. Towards
this end, we first create the universe of the elements in the
matroid. Let St denote the set of all6 possible schedules
at time t. For a schedule s ∈ St, let zjt(s) denote how
much the job gets processed at time t under the scheduler
s. Define U := {(t, s) | t ∈ [0, T ] ∩ Z and s ∈ St}. Define
Ut := {(t, s) | s ∈ St}. Note that {Ut}t is a partition of
U . We say that a subset S ⊆ U is independent if and only
if |S ∩ Ut| ≤ 1 for all t. Note that this forms a partition
matroid, which we denote as M. Then, a feasible schedule
over time period [0, T ] corresponds to a maximal independent
set of matroid M.

Now we create a submodular function F : 2U → [0,∞) to
capture the above optimization problem. Intuitively, a subset of
elements from U defines a schedule that dictates the objective;
here the schedule is not necessarily feasible. Formally, F (S) is
defined as follows. Let zSjt =

∑
(s,t)∈Ut∩S zjt(s) and F (S) =∑

j fj(z
S
j,≤T ) where zSj,≤t = zSj,aj + ...+ zSj,t.

Lemma 6. The function F is submodular.

Proof: We prove F ’s submodularity by showing that
F satisfies the condition stated in Proposition 4. Consider
arbitrary two sets A ⊆ B ⊆ U and an element e = (t0, s) ∈ U .
Assume that e /∈ B since the claim otherwise holds immedi-
ately. Let ∆j := zj,t0(s); ∆j is the amount of j processed by

6As a technical note, we note that under some reasonable assumptions, a
convex body can be approximated by a polytope to an arbitrary precision, e.g.,
[32]. Thus, the set of vertices of the polytope provides all scheduling choices
to an arbitrary precision, which allows us to assume that St is finite. This
is only for the sake of analysis and our algorithm does not require St to be
finite.

the schedule/element e at time t0. Then, we have,

F (B ∪ {e})− F (B) =
∑
j

(
fj(z

B
j,≤T + ∆j)− fj(zBj,≤T )

)
≤
∑
j

(
fj(z

A
j,≤T + ∆j)− fj(zAj,≤T )

)
= F (A ∪ {e})− F (B),

where the inequality follows since A ⊆ B, and thus, zBj,≤T ≥
zAj,≤T , and fj is concave.

Then the greedy algorithm stated in Theorem 5 immedi-
ately translates into an algorithm that optimizes the following
at each time t. Note that

∑
j fj(zj,≤t−1) is fixed, and therefore,

we can drop the quantity from the objective.

max
∑
j

fj(zj,≤t)−
∑
j

fj(zj,≤t−1) s.t.{zj,t}j ∈ Pt ∀t (9)

Further, this is an online algorithm since the greedy algo-
rithm can consider times in increasing order and only needs to
know which jobs are alive at each time and the convex body
to which {zj,t}j are subject. Thus, this is an online algorithm
and is 1/2-competitive by Theorem 5.

3) Interpreting Concurrent Partial Throughput Maximiza-
tion as Submodular Maximization: The problem of maxi-
mizing partial throughput for the multidimensional coflow
doesn’t fit into the framework that is described in the convex
program (8). However, we observe that the multidimensional
coflow actually does when the schedule is required to be
concurrent. Then, the concurrent multidimensional coflow can
be expressed as the following convex program.

max
∑
j

fj(
∑
t

zj,t)∑
j,q∈Qj

xqrt ≤ 1 ∀r ∈ R, t

xqrt ≥ dqrzjt ∀r ∈ R, j ∈ J, q ∈ Qj , t
xqrt ≥ 0 ∀r ∈ R, j ∈ J, q ∈ Qj , t
zjt = 0 ∀j ∈ J, t 6∈ [aj , bj ]

zjt ≥ 0 ∀j ∈ J, t

Since the schedule is required to be concurrent, to process
job j by a fraction of δ, task q ∈ Qj needs to receive
dqrδ units of resource r. Job j is processed by a fraction of∑
t zjt throughout the schedule. Note that we can remove the

constraint zj ≤ 1 by capping fj at fj(1), i.e., fj(z) = fj(1)
when z ≥ 1; function fj remains monotone and concave and
by smoothing we can assume that fj is differentiable. Then, we
note that the set of feasible schedules at time t are subject to a
convex body that is defined by the above constraints. Observe
that the myopic concurrent algorithm A is exactly solving the
convex program (9) at each time t.

Corollary 7. The concurrent myopic greedy algorithm yields a
schedule that gives at least half the maximum partial through-
put any concurrent schedule does.

So, the corollary, by the definition of PoC, implies that the
concurrent myopic greedy algorithm A is 1/(2ρ)-competitive.
In fact, we can further refine the performance of our algorithm
as follows. We similarly define U∗ for the concurrent optimal



schedule as we defined U for our schedule. Formally, S∗t
denote the possible set of scheduling decisions the concurrent
optimal scheduler can make at time t. There is one-to-one
correspondence schedules in S and those in S∗ and a schedule
in S∗ processes jobs ρ times as much as its corresponding
schedule in S does. All sets {U∗t } are defined analogously. We
extend the domain of F to U ∪U∗. The proof of Lemma 6 is
literally the same, except that elements are now from U ∪U∗;
thus, F is submodular over the extended domain U ∪ U∗.

We now revisit the proof of Theorem 5. As before, let et de-
note the element corresponding to the schedule our algorithm
makes at time t, and Et := {e1, e2, · · · , et}; note that A ⊆ U .
Likewise, e∗t is the element in U∗t ⊆ U∗ corresponding to
the schedule the concurrent optimal scheduler makes at time
t, and E∗t := {e1, e2, · · · , et}. In the proof of Theorem 5,
we only need to slighly modify Eqn. (7): we now have
F (Et) − F (Et−1) ≥ 1

ρ

(∑T
t=1 F (Et−1 ∪ e∗t )− F (Et−1)

)
.

This holds since our algorithm A could have chosen a schedule
e′t in Ut corresponding to e∗t ∈ U∗t . Thus, F (Et)−F (Et−1) ≥
F (Et−1∪e′t)−F (Et−1) = 1

ρ (F (Et−1∪e∗t )−F (Et−1)), where
the last equality holds because a time slot is infinitesimally
small, all functions fj are differentiable, and e∗ processes
every job exactly ρ times as much as e′t does. Then, the rest
of the proof remains the same, and after rearranging terms,
we derive F (ET ) ≥ 1

ρ+1F (E∗T ). This completes the proof of
Theorem 1.

B. Analysis of Price of Concurrence
This section is devoted to proving Theorem 2. To this end,

we will prove that if there is a schedule σ1 where each job j
is processed by zj fraction, then there is a θ-speed concurrent
schedule σ2 where each job j is processed by as much. Assume
w.l.o.g. that in the given schedule σ1, each job j consumes
resource r by exactly zj

∑
q∈Qj

dqr units during [aj , bj ] since
a task q ∈ Qj using resource r by more than zjdqr units
would waste resource r. Thus, job j consumes zjDjk amount
of resources of type k during its lifespan, [aj , bj ].

Fix an arbitrary type k∗. We can abstract and represent σ1
as follows. Let Xjt denote the total amount of resources of
type k∗ that job j uses at time t. Then, we have,∑

t∈[aj ,bj ]

Xjt = zjDjk∗ ∀j (10)

∑
j

Xjt ≤ |Rk∗ | ∀t (11)

where Xjt ≥ 0. Eq. (10) is a restatement of the above
discussion. Each job uses resources of type k∗ by Xjt units,
thus total usage of resources of the type is upper bounded by
|Rk∗ |, which is the total units of resources of type k∗ at each
time. Thus, we have Eq. (11).

By letting X ′jt = Xjt/|Rk∗ |, we have,∑
t∈[aj ,bj ]

X ′jt =
zjDjk∗

|Rk∗ |
∀j (12)

∑
j

X ′jt ≤ 1 ∀t (13)

where X ′jt ≥ 0. Since a time slot is infinitesimally small, one
can assume that X ′jt ∈ {0, 1} by setting X ′jt′ = 1 for X ′jtdt

time units during an infinitesimally small interval [t, t + dt).
We can view {X ′jt}j,t as a schedule in the standard single
server setting where job j is processed at time t if an only if
X ′jt = 1. Note that at each time exactly one job or no job is
processed. Thus, as a result of Eq. (12), each job j is processed
by zjDjk∗/|Rk∗ | units during its lifespan [aj , bj ].

We are now ready to construct the desired schedule, σ2.
Fix an infinitesimally small interval [t, t+ dt). When job j is
processed during [t, t + dt) in σ′, i.e., X ′jt = 1, we give to
each task q ∈ Qj ,

dqr
Djk∗/|Rk∗ |

dt units of each resource r in

schedule σ2 Then, resource r is used by
∑

q∈Qj
dqr

Djk∗/|Rk∗ |
dt units

during [t, t + dt) as job j is the only job that is processed
at time t since X ′j′t = 0 for all j 6= j′ due to Eq. (13).
This quantity is upper bounded by θ · dt by definition of θ.
Thus, σ2 is a feasible schedule with a θ-speed. Since all tasks
q ∈ Qj receives resources r in proportion to their demand dqr,
σ2 is concurrent. Further, task q receives exactly dqr

Djk∗/|Rk∗ |
·

zjDjk∗

|Rk∗ |
= dqrzj units of resource r during its lifespan. Thus,

job j is processed exactly by zj fraction in σ2. Hence, σ2 is a
feasible schedule that completes each job j by zj fraction when
given a θ-speed. This implies the PoC of the given instance is
upper bounded by θ, as desired.

VI. EXPERIMENTS

In this section, we evaluate the performance of our on-
line coflow scheduling algorithm with numerical studies. We
show that our algorithm achieves clearly higher utility gains
compared with several heuristics adapted from existing coflow
scheduling algorithms developed for different objectives.

Workload: We consider a similar simulation setting as in [18],
[33], [34]. A 50 × 50 network switch is considered. Each
ingress/egress port has a capacity of 1 Gbps. We set a time
slot to be 1/128 second so that each port can transmit 1 MB
data per time slot. 100 coflows are generated. Coflows arrive
at the beginning of a second. The number of new arrivals
in each second follows a Poisson distribution with mean λ,
independent of other seconds. For each coflow, the number of
mapper tasks and the number of reducer tasks, each follows a
uniform distribution in [minWidth,maxWidth], where no two
mappers (reducers) share an ingress (egress) port. For every
pair of mapper and reducer specified in a coflow, there is a flow
in between. The traffic of each flow in a coflow is generated
as follows. As in [18], we assume that the shuffle data of
each reducer in a coflow is evenly generated from all mappers
of that coflow. For each reducer in a coflow, the amount
of shuffle data from each mapper of the coflow is sampled
from a uniform distribution in [minLength,maxLength] (MB).
Note that the parameters minWidth, maxWidth, minLength,
maxLength together determine the distribution of traffic across
ports. Moreover, deadlines for coflows are generated in a
similar way as in [18]. For each coflow, we first determine
its minimum coflow completion time (CCT) in an empty
switch. The allowed duration of the coflow is then defined as
its CCT multiplied by 1 + U(0, x)), where U(0, x) denotes
a uniform distribution between 0 and a parameter x. The
utility gain of a coflow that has been processed by zj fraction
by its deadline is modeled by fj(zj) = log(1 + zj). We
also considered other concave functions and observed similar



results. We generate 100 instances for each set of parameters
and report the algorithms’ average performance.

Algorithms: We compare our algorithm with several heuristics
in simulations. One challenge to implement our algorithm in
a real setting is that solving a convex optimization problem
in each small time slot can be time consuming. We consider
the following approximation to the algorithm to reduce the
overhead. A new scheduling decision is made only when one
of the following events happens, (a) the current time slot is
the first time slot in a second, (b) there are new arrivals in
this time slot, and (c) there are departures in the previous time
slot. When making a decision, a convex optimization problem
is formulated by pooling together all the time slots before the
next departure of any active coflow or the next second. The
solution to the convex program gives the rate for serving each
active coflow, which is updated until the next event happens.

In addition to our algorithm, we consider the following
algorithms in simulations. They are adapted from the coflow
scheduling algorithms proposed in [18] by taking deadlines
and partial values into consideration.

ADMIT (admission control): This is the algorithm proposed
in [18] for deadline constrained coflows without partial values.
In this algorithm, a newly arrived coflow is admitted only if it
can meet its deadline without hurting existing coflows in the
switch. Each flow in a coflow is given the minimum capacity
needed to finish the flow by its deadline. The remaining
bandwidth is distributed to active coflows using a backfilling
procedure. Thus, once admitted, a coflow is never preempted
and is guaranteed to finish by its deadline. Hence each coflow
is either fully served or rejected.

FAIR: In this algorithm, flows from all active coflows are
served with an equal rate. This algorithm provides fairness
at the flow level (but not the coflow level).

In the following two algorithms, all the coflows are admit-
ted to the system. In both algorithms, scheduling decisions are
made when there are arrivals or departures, and the decisions
are made for each active coflow one by one according to some
priority ordering of coflows. For each coflow, all the flows
in the coflow are served in the same rate so that the coflow
can finish as soon as possible using the remaining bandwidth
available.

FIFO (First-In-First-Out): This algorithm sorts active coflows
by their arrival times.

SEBF (Smallest-Effective-Bottleneck-First): In this algorithm,
coflows with smaller effective bottleneck are given higher
priority, where the effective bottleneck of a coflow is defined as
its minimum CCT in an empty network. This is the algorithm
used by Varys [18] for minimizing CCT.

To adapt these algorithms to our problem, an unfinished
coflow is removed from the system on its deadline with its
partial value retained.

Results: In Figure 1(a), we plot the algorithms’ utility gains
under different deadline constraints. We vary the value of x
from 0 to 4 and fix other parameters. We observe that all
the algorithms obtain higher utility gains when the workload
becomes more time elastic. Our algorithm achieves about 30%
higher utility compared to all the heuristics. SEBF, FIFO, and

FAIR have similar performance while ADMIT has the worst
performance due to the ignorance of partial values.

In Figure 1(b), we vary the mean arrival rate λ and fix other
parameters. The utility gains of all the algorithms decrease
with large arrival rates as expected. Compared with SEBF,
FIFO and FAIR, our algorithm obtains more advantage for
large arrival rates. Intuitively, our algorithm tends to distribute
the capacity more evenly among coflows, which gives higher
total utility gain when there are more active coflows competing
for the capacity. We also observe that the gap between ADMIT
and other policies become smaller for large arrive rates.

In both cases discussed above, we have fixed [minWidth,
maxWidth] = [10, 20]. In Figure 1(c), we compare the algo-
rithms’ performance with [minWidth, maxWidth] = [10, 20]
and [minWidth, maxWidth] = [1, 20], respectively. In the latter
case, each coflow has less number of mappers and reducers on
overage, that is, the workload is sparser. Also, the distribution
of coflow size is more diverse in the latter case. Note that
with other parameters fixed, the sparser the workload is, the
larger the maximum-to-average demand θ is. Thus, we expect
the greedy algorithm to have a larger optimality gap for
the sparser workload. This is confirmed in Figure 1(c). In
particular, the improvement of our algorithm over the three
heuristics is smaller for the sparser workload. Furthermore,
SEBF outperforms FIFO and FAIR in the second scenario.
This is because when the coflow size distribution becomes
more diverse, large coflows can block multiple smaller ones
under the FIFO policy, which hurts the total utility (since all
the coflows have the same utility function in our simulation),
while SEBF gives higher priority to smaller coflows. Under
the FAIR policy, large coflows are given more bandwidth than
small ones, which hurts the total utility gain when the coflow
size distribution becomes more diverse.

VII. CONCLUSIONS

In this paper, we considered a general model that naturally
combines coflow and multidimensional scheduling and studied
the problem for maximizing partial throughput to measure
the values of partially completed jobs/coflows. We showed
an online greedy algorithm that schedules jobs (or tasks) at
each time such that the marginal increase of the objective
is maximized has a theoretical performance guarantee that
is close to that of the best concurrent optimal schedule that
processes all tasks of the same job at an equal rate. Also,
we showed the gap (price of concurrence) between concurrent
schedules and the optimal schedule is upper bounded by the
MA parameter that is easy-to-compute.

We close with some interesting future research directions.
In this paper, we gave an upper bound on the price of
concurrence but we are not aware of any interesting lower
bounds on the PoC. Also, it would be interesting to study
multidimensional coflow for various objectives other than
partial throughput.
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Fig. 1. Simulation Results. In (a), λ = 3, the job allowance of a coflow j, that is bj − aj , equals to its minimum CCT multiplied by
1+U(0, x). In (b), x = 1. In both (a) and (b), [minWidth, maxWidth] = [10,20], [minLength, maxLength] = [10,20]. In (c), λ = 3, x = 1,
[minLength,maxLength] = [10,20]. In the left part of (c), [minWidth, maxWidth] = [10,20]. In the right part of (c), [minWidth, maxWidth] =
[1,20].
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N. Vakhania, “Preemptive scheduling in overloaded systems,” Automata,
Languages and Programming, pp. 777–777, 2002.

[26] N. Jain, I. Menache, J. S. Naor, and J. Yaniv, “Near-optimal scheduling
mechanisms for deadline-sensitive jobs in large computing clusters,”
ACM Transactions on Parallel Computing, vol. 2, no. 1, p. 3, 2015.

[27] G. Koren and D. Shasha, “D/sup over/; an optimal on-line scheduling
algorithm for overloaded real-time systems,” in Real-Time Systems
Symposium, 1992. IEEE, 1992, pp. 290–299.

[28] B. Lucier, I. Menache, J. S. Naor, and J. Yaniv, “Efficient online
scheduling for deadline-sensitive jobs,” in ACM SPAA, 2013, pp. 305–
314.

[29] B. Kalyanasundaram and K. Pruhs, “Speed is as powerful as clairvoy-
ance,” Journal of the ACM (JACM), vol. 47, no. 4, pp. 617–643, 2000.

[30] A. Schrijver, Combinatorial optimization: polyhedra and efficiency.
Springer-Verlag, Berlin, 2003.

[31] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of
approximations for maximizing submodular set functions?i,” Mathemat-
ical Programming, vol. 14, no. 1, pp. 265–294, 1978.

[32] E. M. Bronstein, “Approximation of convex sets by polytopes,” Journal
of Mathematical Sciences, vol. 153, no. 6, pp. 727–762, 2008.

[33] Z. Qiu, C. Stein, and Y. Zhong, “Minimizing the total weighted
completion time of coflows in datacenter networks,” in SPAA. ACM,
2015, pp. 294–303.

[34] M. Shafiee and J. Ghaderi, “An improved bound for minimizing the total
weighted completion time of coflows in datacenters,” arXiv preprint
arXiv:1704.08357, 2017.


