
Robust Moving Target Defense against Unknown
Attacks: A Meta-Reinforcement Learning

Approach

Henger Li and Zizhan Zheng

Tulane University, New Orleans LA 70118, USA
{hli30,zzheng3}@tulane.edu

Abstract. Moving target defense (MTD) provides a systematic frame-
work to achieving proactive defense in the presence of advanced and
stealthy attacks. To obtain robust MTD in the face of unknown attack
strategies, a promising approach is to model the sequential attacker-
defender interactions as a two-player Markov game, and formulate the
defender’s problem as finding the Stackelberg equilibrium (or a variant of
it) with the defender and the leader and the attacker as the follower. To
solve the game, however, existing approaches typically assume that the
attacker type (including its physical, cognitive, and computational abil-
ities and constraints) is known or is sampled from a known distribution.
The former rarely holds in practice as the initial guess about the attacker
type is often inaccurate, while the latter leads to suboptimal solutions
even when there is no distribution shift between when the MTD policy
is trained and when it is applied. On the other hand, it is often infeasible
to collect enough samples covering various attack scenarios on the fly in
security-sensitive domains. To address this dilemma, we propose a two-
stage meta-reinforcement learning based MTD framework in this work.
At the training stage, a meta-MTD policy is learned using experiences
sampled from a set of possible attacks. At the test stage, the meta-policy
is quickly adapted against a real attack using a small number of samples.
We show that our two-stage MTD defense obtains superb performance
in the face of uncertain/unknown attacker type and attack behavior.

1 Introduction

The relatively static nature of the current IT and infrastructure systems provides
adaptive and stealthy cyber-attackers enough time to explore and then exploit
a well-designed attack in a “low-and-slow” way [6]. Even worse, the increas-
ingly more complex software technologies make the completely secure defense
nearly impossible against an advanced adversary [21]. To reduce or reverse the
attacker’s asymmetric information advantage, a promising approach is moving
target defense (MTD), where the defender proactively updates the system con-
figuration to increase the uncertainty and complexity for potential attackers.
MTD has been successfully applied to many technology domains, including web

2 Henger Li and Zizhan Zheng

applications [38], cloud computing [30], operating systems [40], and Internet of
things [32].

In order to capture the trade-off between security and efficiency in MTD, a
game-theoretic approach is often adopted. In particular, early works have mod-
eled the sequential attacker-defender interactions in MTD as a symmetric two-
player Markov game [11] or a repeated Bayesian Stackelberg game (BSG) [34].
To achieve robust MTD in the face of uncertain attack behavior, a promising
direction is to consider an asymmetric Markov game [22] where the defender
(as the leader) first commits to an MTD policy assuming that the attacker (as
the follower) will respond to it optimally. Several recent works have followed
this direction by formulating the defender’s problem as finding the Stackelberg
equilibrium (or some variant of it) of the Markov MTD game, using either model-
based [23] or model-free [33] reinforcement learning algorithms. The main ad-
vantage of this approach is that it provides a guaranteed level of protection by
considering the worst-case attack behavior. However, the solution thus obtained
can be conservative when the real attack is “weaker” than the worst-case scenario.

Although existing approaches have (partially) addressed the problem of un-
certain attack behavior by using a game-theoretic solution concept, they typically
assume that the attacker type (including its physical, cognitive, and computa-
tional abilities and constraints) is known or sampled from a known distribution.
The former rarely holds in practice as the initial guess about the attacker type is
often inaccurate, while the latter can lead to overly conservative solutions even
when there is no distribution shift (on the attacker type) between when the MTD
policy is trained and when it is applied. One possible solution is to consider a
fully online approach where the defender assumes zero prior knowledge of the
attacker and continuously adapts its policy using feedback obtained during its
interactions with the attacker. However, this approach requires collecting a large
number of samples covering various attack scenarios, which is typically infeasible
in security-sensitive domains.

In this work, we take a first step towards solving the above dilemma, by
proposing a two-stage meta-reinforcement learning (meta-RL) based MTD frame-
work. At the training stage, a meta-MTD policy is learned by solving multiple
Stackelberg Markov games using experiences sampled from a set of possible at-
tacks. When facing a real attacker with initially uncertain/unknown type and
behavior at the test stage, the meta-policy is quickly adapted using a small
number of samples collected on the fly. Note that our approach assumes that the
defender has a rough estimate of possible attacks, which is weaker than assuming
a pre-defined attacker type distribution as in [33]. Further, the meta-defense is
still effective even when the real attack at test time is not in the training set,
thanks to the generalization property of meta-learning [12]. We show that our
new MTD defense obtains superb performance in the practical setting where the
defender has very limited prior knowledge of the attacker’s type and behavior.

The main contributions of the paper are summarized below.

Title Suppressed Due to Excessive Length 3

– We propose a two-stage meta-RL based defense framework for achieving
robust moving target defense in the face of uncertain/unknown attack type
and behavior.

– We show that the meta-RL defense framework can be efficiently implemented
by proving that in our two-player MTD game, the problem of finding the
strong Stackelberg equilibrium (SSE) can be reduced to solving a single-agent
Markov decision process for the defender.

– Using data collected from the National Vulnerability Database (NVD), we
show that our two-stage defense obtains superb performance by quickly
adapting the pre-trained meta-defense policy to real attacks. Code is avail-
able at https://github.com/HengerLi/meta-RL.

2 The MTD Game Model

In this section, we first describe our system and attack models in detail. We then
formulate the attack-defender interactions as a two-player Markov game. Finally,
we provide an overview of the proposed two-stage MTD defense framework.

2.1 System model

We consider a time-slotted system where in each time step, the system can be
in any one of the n possible configurations. Let st denote the configuration of
the system in time t. Each configuration consists of multiple adjustable param-
eters across different layers of the system called adaptation aspects [8]. Typical
examples of adaptation aspects include port numbers [25], IP addresses [1, 20,
35], virtual machines [46], operating systems [40], and software programs [19].
We define the system configuration space as S = [n], where n is the number of
possible configurations.

At the beginning of each time t, the defender chooses the next system config-
uration st according to a migration policy πt

D (to be defined). The system stays
in the current configuration if st = st−1. To increase the attacker’s uncertainty,
the defense policy should be randomized. Further, the optimal defense policy is
in general time-varying and can depend on the system state and the defender’s
knowledge of the attacker. We assume that a migration happens instantaneously
subject to a cost mij ≥ 0 when the system moves from configuration i to config-
uration j. Although not required in our model, we typically have mii = 0. Let
M = {mij}n×n denote the migration cost matrix.

In addition to the migration cost, the defender incurs a loss lst ≥ 0 at the
end of time slot t if the system is compromised at t. The value of lst varies over
the system configuration and the attack type as we discuss below. In this work,
we assume that the defender discovers whether the system is compromised or
not at the end of each time step t and recovers the system if it is compromised.
Therefore, lst includes the cost to recover the system from potential damages.
This also implies that the system is always protected at the beginning of any

4 Henger Li and Zizhan Zheng

time step. Although we consider the simplified setting where the defender re-
ceives immediate feedback on potential attacks in this work, our approach can
be generalized to the setting when the feedback is delayed or imperfect.

With the above assumptions, it is natural to consider a randomized stationary
policy πD : S → △(S) where △(S) denotes the space of probability distributions
over S. Equivalently, πD = {pi}i∈[n] where pij gives the probability of moving to
configuration j when the system is in configuration i in the previous time step.
That is, the defense policy in time t is determined by the system configuration
st−1 only. The defender’s goal is to minimize its expected total loss including
the loss from attacks and the migration cost.

2.2 Threat model

We consider a persistent adversary that continuously attacks the system accord-
ing to a chosen policy. At the beginning of each time step t, the attacker chooses
a system configuration s̃t to attack. The attack fails if the attacker chooses the
wrong target, that is, s̃t ̸= st. Otherwise, the attack succeeds with a probability
µst and fails with a probability 1 − µst . If the attack succeeds, it leads to a
loss of lst to the defender (including the recovery cost as discussed above). That
is, we model the attacker’s type using a tuple (µ, l), where µ = {µj}n are the
attack success rates over the set of configurations and l = {lj}n are the unit
time system losses for all configurations. The attacker type captures its capa-
bility and effectiveness to compromise a set of configurations. Different types of
attacks may target the same vulnerability of a configuration but may result in
different loss to the system. In practice, these values can be derived from real
measurements or publicly available databases such as the National Vulnerability
Database (NVD) [5] (see the experiment section for the details).

We assume that the attacker always learns the system configuration st at the
end of time step t whether the system is compromised at t or not (a worst-case
scenario from the defender’s perspective). Then it is without loss of generality
to consider a randomized stationary policy for the attacker πA : S → △(S),
which can equivalently be defined by {qi}i∈[n] where qij denotes the probability
of attacking configuration j if the system is in configuration i in the previous
time step.

We define an attack as ξ = (µ, l, πA) to include its type and policy. In general,
the true attack encountered at any time is initially unknown to the defender.
However, the defender may have a rough estimate of the possible attacks.

2.3 The Markov game model for MTD

With the definitions and assumptions given above, we can model the sequential
interactions between the defender and the attacker of a given type as a two-player
general-sum Markov game (MG), denoted by G = (S,A,P, r, γ), where

– S is the state space. In this work, we model the system state st at any time t
as its configuration. Note that both the defender and the attacker know the

Title Suppressed Due to Excessive Length 5

true system configuration st−1 at the beginning of time t. Thus, they share
the same state space.

– A = AD×AA is the joint action space, where AD and AA are the defender’s
action space and the attacker’s action space, respectively. In this work, we
have AD = AA = S. At the beginning of each time step, the defender
pick the next configuration st to switch to while the attacker picks a target
configuration s̃t to attack simultaneously according to their policies to fight
for control of the system. Let at = (st, s̃t) denote the joint action.

– P : S × A → △(S) is the state transition function that represents the
probability of reaching a state s′ ∈ S given the current state s ∈ S and the
joint action a ∈ A. In our setting, the system transition is deterministic as
the next state is completely determined by the defender’s action.

– r = {rD, rA} where rD : S×A → R≤0 and rA : S×A → R≥0 are the reward
functions for the defender and the attacker, respectively. Precisely, given
the previous system configuration st−1, the defender’s action st, and the at-
tacker’s action s̃t, the defender obtains a reward rtD = rD(s

t−1, (st, s̃t)) =
−1st=s̃tµst lst−mst−1st and the attack obtains a reward rtA = rA(s

t−1, (st, s̃t)) =
1st=s̃tµst lst where 1(.) is the indicator function.

– γ ∈ (0, 1] is the discount factor.

Given the initial state s0 and a pair of policies πD and πA for the defender and
the attacker, respectively, let V πD,πA

i (s0) = EπD,πA [
∑∞

t=0 γ
tri(s

t−1, (st, s̃t)|s0)]
denote the total expected return for the player i, where i ∈ {D,A}. The goal
of each player is to maximize its total expected return. Similar to normal-form
games, various solution concepts have been considered for Markov games, includ-
ing Nash equilibrium [17], correlated equilibrium [45], and Stackelberg equilib-
rium [22]. In this work, we consider the Stackelberg equilibrium as the solution
concept. Given the asymmetric information structure commonly seen in cyber-
security and to derive a robust defense, it is typical to consider the Stackelberg
equilibrium (or a variant of it) with the defender as the leader and the attacker
as the follower. In particular, the defender first commits to a policy πD, and the
attacker as the follower observes πD (e.g., by stealthily collecting enough samples
of defense actions before attacking) and then picks πA optimally. This approach
has been extensively studied for one-shot security games including models such
as Stackelberg security games (SSG) and Bayesian Stackelberg games (BSG) [28,
36]. Recently, it has been applied for defending against persistent attacks using
techniques such as MTD [23, 34, 33]. Note that when πD is random as is typical
in security domains, knowing πD does not let the attacker learn the defender’s
true action in each time step.

When the attacker has multiple best responses to the defender’s policy, a
common assumption in security games is that the attacker always chooses the
one in favor of the defender. This gives the concept of the Strong Stackelberg
equilibrium (SSE) formally defined below, which is the solution concept we use
in this work.

6 Henger Li and Zizhan Zheng

Definition 1. (SSE) For each defense policy πD, let B(πD) denote the set of
attack policies that maximize V πD,·

D (s0) for any s0, i.e.,

B(πD) := {πA : V πD,πA
A (s0) = max

π′
A

V
πD,π′

A
A (s0),∀s0 ∈ S} (1)

A pair of stationary policies (π∗
D, π

∗
A) forms a strong Stackelberg equilibrium if

for any s0 ∈ S, we have

V
π∗
D,π∗

A
D (s0) = max

πD,πA∈B(πD)
V πD,πA
D (s0) (2)

Since the Markov game defined above has finite state and action spaces and
the transition is deterministic, an SSE (when the leader is restricted to random-
ized stationary policies) is guaranteed to exist and provides a unique game value
to the defender [37, 3, 41]. Further, an SSE can be found using either an exact
solution [41] or an approximation solution such as Stackelberg Q-learning [22,
33] and Stackelberg policy gradient [42, 18] for large games. The following simple
observation justifies the use of SSE as the solution concept in our MTD frame-
work. In particular, it shows that by following the defense policy given by an
SSE, the defender’s loss in the face of an arbitrary attacker is upper bounded by
the loss specified by the SSE.

Lemma 1. Let (π∗
D, π

∗
A) be a strong Stackelberg equilibrium. For an arbitrary

attack policy πA, we have V
π∗
D,πA

D (s0) ≥ V
π∗
D,π∗

A
D (s0) for any s0.

Proof. For any pair of policies (πD, πA) and initial state s0, we can write V πD,πA
D (s0) =

−L(πD, πA) −M(πD), where the first term captures the total expected attack
loss, and the second term specifies the total expected migration cost. The re-
sult then follows by observing that V

π∗
D,πA

D (s0) = −L(π∗
D, πA) − M(π∗

D) ≥
−L(π∗

D, π
∗
A) − M(π∗

D) = V
π∗
D,π∗

A
D (s0), where the inequality is due to the fact

that π∗
A is the attacker’s best response to π∗

D and the migration cost is indepen-
dent of the attack policy.

Note that Lemma 1 does not hold for general non-zero-sum Markov games. It
holds in our setting because the defender’s total attack loss L(πD, πA) is exactly
the attacker’s total gain and the migration cost M(πD) is independent of the
attacker’s policy.

2.4 Two-stage defense overview

The asymmetric Markov game presented above provides a reasonable solution
to robust MTD by considering the worst-case attack behavior. However, the so-
lution thus obtained can be overly conservative in the face of a “weaker” attacker
(e.g., a dumb attacker that does not respond to the defense strategically). More-
over, to solve the game, the defender needs to know the exact attacker type,
which can lead to a poor solution when the true attacker type deviates from

Title Suppressed Due to Excessive Length 7

Fig. 1: Two-stage defense overview.

the guessed one as shown in our experiments. One possible solution is to con-
sider a distribution of possible attacker types and optimize the defense policy
for either the worst case using distributionally robust optimization [9] or the
average case using a Bayesian approach [16, 33]. However, these approaches miss
the opportunity of online adaption and can lead to suboptimal defense.

To effectively thwart a potentially unknown attacker, we propose a meta-
learning based two-stage defense framework (see Figure 1) to pre-train a meta-
policy on a variety of attacks in an simulated environment, such that it can be
quickly adapted to a new attack using only a small number of real samples.

The training stage is implemented in a simulated environment, which allows
sufficient training using trajectories generated from a pool of potential attacks.
The possible set of attack types can be generated using existing databases, such
as the National Vulnerability Database (NVD) [5] or penetration testing tools
like Kali Linux [2]. On the other hand, to generate diverse attack behavior, we
consider both the worst-case scenario specified by the SSE, where the attacker
responds to the defense policy optimally, as well as “weaker” attacks, e.g., a
random attack that is agnostic of the defense policy. At the test stage, the
learned meta-policy π0

D is applied and updated using feedback (i.e., rewards)
received in the face of real attacks that are not necessarily in the training set (in
terms of both attack type and attack behavior).

3 Meta-RL based MTD Solution Framework

In this section, we discuss the details of our meta-reinforcement learning based
MTD solution. We first present an important observation that from the de-
fender’s perspective, the problem of finding its optimal MTD policy can be re-
formulated as a single-agent Markov decision process (MDP). This result holds

8 Henger Li and Zizhan Zheng

both when the attacker follows a fixed stationary policy that is known to the
defender as well as when it first observes the defense policy and then responds
to it optimally (as in the case of solving the SSE of the Markov game presented
above). This observation allows us to reduce the bilevel optimization problem to
a single level optimization problem. Based on this observation, we then present
our two-stage defense that adapts model-agnostic meta-learning (MAML) [14,
27] to MTD.

3.1 Reducing the MG to an MDP

Before starting the main results in this section, we first generalize the definition
of SSE by allowing the attacker to respond to the defense policy in a suboptimal
way, which allows us to incorporate diverse attack behavior into meta-learning.
In particular, we will assume that after the defender commits to a stationary
policy πD, the attacker chooses a policy qs ∈ R(s, πD) for any s, where R(·, πD)
denotes a set of response policies [22]. Note that this includes the cases when the
attacker responds in an optimal way (as in the case of SSE), when it responds in
a suboptimal way, as well as the case when the attack policy is fixed and inde-
pendent of the defense. We define a pair of policies (πD, πA) to be a generalized
SSE if πD minimizes the defender’s loss assuming the attack responds according
to its response set R and in favor of the defender when there is a tie.

We first show that the defender’s problem can be viewed as a single agent
MDP whenever the following assumptions hold.

Assumption 1. For any state s ∈ S, the attacker’s response set is either a
singleton or all the responses are equally good to the defender.

Assumption 2. For any state s ∈ S, the attacker’s policy qs in state s only
depends on s and ps, i.e., the defender’s policy at state s, and is independent
of the defender’s policy in other states. That is, given πD, we can write qs ≜
R(s,ps) for any s ∈ S.

In particular, Assumption 1 allows the defender to infer the attack policy
under each state, while Assumption 2 ensures that the defender’s reward at any
time depends on the current state and defense action only but not the future
states (see the proof of Lemma 2).

Lemma 2. When Assumptions 1 and 2 hold, the optimal defense policy in the
sense of a generalized SSE can be found by solving a single-agent Markov decision
process with continuous actions for the defender.

Proof. Consider the following MDP for the defender M = (S,A′, T ′, r′, γ), which
is derived from the Markov game in Section 2.3, where

– S is the state space, which is defined as the set of configurations.
– A′ = △(S) is the action space of the defender, where we redefine the de-

fender’s action in configuration s as the probability vector ps, which is critical
for converting the Markov game into an MDP.

Title Suppressed Due to Excessive Length 9

– P ′ : S ×A′ → △(S) is the state transition function. Given the previous sys-
tem configuration s and the defender’s action ps, the probability of reaching
a configuration s′ in the current time step is P ′(s′|s,ps) = pss′ . Note that
the state transition is stochastic rather than deterministic as in the Markov
game.

– r′ : S × A′ → R≤0 is the reward function for the defender. Given the previ-
ous configuration st−1, the defender’s action pst−1 , the attacker’s policy can
be represented as qst−1 = R(st−1,pst−1) according to Assumptions 1 and 2
(with ties broken arbitrarily when R(st−1,pst−1) is not a singleton). The de-
fender’s reward is defined as r′(st−1,pst−1) =

∑
st,s̃t pst−1stqst−1s̃trD(st−1, (st, s̃t)).

– γ ∈ (0, 1) is the discount factor, which is the same as the discount factor in
the Markov game.

It is crucial to note that while the defender’s reward function rD in the
Markov game depends on the joint action of both the attacker and the defender,
r′ only depends on the defender’s action and is therefore well defined. This is
achieved by redefining the defection’s action in any configuration as the corre-
sponding migration probability vector and using the two assumptions. Given the
MDP above, it is easy to check that the problem of finding the best defense pol-
icy can be reduced to finding a deterministic policy π : S → A′ that maximizes
the total expected return Eπ[

∑∞
t=0 γ

tr′(st−1,pst−1 |s0)] in the MDP.

Note that both assumptions automatically hold when the attacker is agnostic
to the defense policy, and Assumption 1 holds for an SSE. Below we show that
for any stationary defense policy, there is a best-response attack that satisfies
Assumption 2.

Lemma 3. For any stationary defense policy p, any deterministic policy q of
the following form is in the attacker’s best response set: for any i ∈ S, there is
j ∈ S such that qij = 1, qik = 0 for k ̸= j, and j ∈ argmaxj pijµj lj.

Proof. Given a stationary defense policy p and initial state s0, the attacker’s
goal is to maximize its expected total reward, that is

max
q

V p,q
A (s0) = max

q
Ep,q

(∞∑
t=0

γtrA(s
t−1, (st, s̃t))

)
a
= max

q(s0)

∑
s1,s̃1

ps0s1qs0s̃1rA(s
0, (s1, s̃1)) + γmax

q
V p,q
A (s1)

= max
s1

ps0s1rA(s
0, (s1, s1)) + γmax

q
V p,q
A (s1)

b
= max

s1
ps0s1µs1 ls1 + γmax

q
V p,q
A (s1)

where (a) is due to the fact that the transition probabilities only depend on the
current state and the defender’s action, and (b) follows from the definition of
rA. The result then follows by induction.

10 Henger Li and Zizhan Zheng

The following result follows directly from Lemma 2 and Lemma 3.

Proposition 1. An SSE defense policy can be found by solving a single-agent
Markov decision process with continuous actions for the defender.

From the above proposition, the defender can identify a near-optimal defense
by solving the MDP above whenever the attack type is known and the attack
behavior follows a known response set. This can be done using either dynamic
programming or a model-free reinforcement learning algorithm with samples
generated from a simulator of the MDP, the latter is more suitable for MTDs
with a large configuration space. In both cases, the defense policy can be derived
in a simulated environment without interacting with the true attacks.

3.2 Robust defense via meta-RL

In order to cope with real attacks with uncertain or unknown types and behav-
iors, we propose a meta reinforcement learning based two-stage defense frame-
work. The core idea is to pre-train a meta-policy over a distribution of defender’s
MDPs, where each MDP corresponds to interactions with a particular attack.
At test time, the pre-trained meta defense policy is quickly adapted to the true
attack encountered using a small number of samples.

Meta-learning (or learning-to-learn) is a principled approach for developing
algorithms that can adapt experiences collected from training tasks to solving
unseen tasks quickly and efficiently, which has been successfully applied to var-
ious learning domains including reinforcement learning. In this work, we adopt
a first-order model-agnostic meta-learning algorithm, Reptile [27] to MTD by
viewing the defender’s problem of solving its MDP against a particular attack
ξk = (µk, lk, Rk) as a task (see Algorithm 1). Here Rk is the response function
defined in Section 3.1 that completely captures the attack behavior. The input
to the algorithm includes a distribution of attacks P(ξ), which can be estimated
from public datasets or through experiments, and two step sizes.

We consider the defender’s policy to be represented by a parametrized func-
tion (e.g., a neural network) πD(θ) with parameters θ. The algorithm starts with
an initial model θ0, and updates it over T iterations. In each iteration, the algo-
rithm first samples a batch of K attacks from P(ξ). For each attack, a trajectory
of length H is generated, which is used to compute the meta-policy θtk for the
k-th attack by performing gradient descent for m steps with step size α. Given
an initial state s0, we define the loss function for a particular attack over H time
steps as

Lξk(πD(θ)) = −EπD(θ)[

H∑
t=1

r′(st−1,pst−1)] (3)

We consider a fixed horizon setting (with γ = 1) such that the defender is
allowed to query a limited number of samples for updating its policy. Let H
denote the length of an episode. The policy gradient method is performed on
the loss Lξk starting with initial parameters θtk = θt−1 and returns the final

Title Suppressed Due to Excessive Length 11

Algorithm 1 Reptile Meta-Reinforcement Learning for Robust MTD
Input: a distribution over attacks P(ξ), step size parameters α, β
Output: θT

randomly initialize θ0

for iteration = 1 to T do
Sample K attacks ξk from P(ξ)
for all ξk do

Sample a trajectory H of length H using πD(θt−1) and attack ξk

θtk ← θt−1

for l = 1 to m do
Evaluate ∇θLξk (πD(θtk)) using H and Lξk in Equation (3)
θtk ← θtk − α∇θLξk (πD(θtk))

end for
end for
Update θt ← θt−1 − β

∑K
k=1(θ

t−1 − θtk)
end for

parameters. With model parameters collected from all the tasks in the batch, θt
is then updated towards these new parameters. Note that the single-task gradient
is defined as (θ − θk)/α, where α is the step size used by the gradient decent
operation. According to [27], we assume that policy πD(θk) achieves the best
performance for task ξk when θk lays on the surface of the manifold of optimal
network configuration. We want to find the closest point on the optimal task
manifold. This cannot be computed exactly, but Reptile approximates it using
Lξk . The trained meta-defense policy is then adapted at test time with a few
more samples from interactions with the real attacks.

Remark 1. In more complicated scenarios where the defender’s SSE policy can-
not be formulated as an MDP, we may still adopt the above meta-learning
framework by solving the Markov game defined in Section 2.3 to identify the
SSE defense at both the meta-training stage and the testing stage. Extension of
the meta-RL algorithm to this more general setting (e.g., delayed/noisy feedback
from both attacker’s and defender’s perspectives) is left to future work.

4 Experiment Results

In this section, we validate our MTD framework using the data from the National
Vulnerability Database (NVD) [5]. We aim to understand if the SSE defense can
provide a robust solution in the face of uncertain/unknown attacks and how
meta-learning can help further improve the security of the system.

4.1 Experiment setup and baselines

System configurations. We consider a web system with four configuration S =
{(Python, SQL), (Python, secureSQL), (PHP, SQL), (PHP, secureSQL)} across

12 Henger Li and Zizhan Zheng

Fig. 2: Defender’s and attacker’s parameters. The upper table gives the migration
cost for the MTD system. Each row represents a source configuration and each
column represents a destination configuration. The lower table shows the attack
parameters including the attack success rate and the unit time system loss (see
Section 2.2 for details), for the Mainstream Hacker (MH) and the Database
Hacker (DH), respectively.

two layers, similar to [34, 23]. The first layer specifies the programming language
used for web applications including Python and PHP. The second layer spec-
ifies the database technology used, where SQL stands for the case when the
database layer naively uses the structured query language without protection,
while secureSQL indicates the case when the database layer is protected using
methods including but not limited to isolating the database server, regulating
SQL traffic, and restricting the ability users to perform unauthorized tasks [39,
29]. By doing so, we create some ‘safe’ configurations for certain types of at-
tacks (e.g., configurations using secureSQL is immune to the Database Hacker
defined below). The migration cost matrix is given in Figure 2, which is designed
with the following considerations in mind: (1) switching between configurations
across different layers incurs a higher cost than switching within the same layer;
(2) the migration cost between two configurations could be asymmetric; (3) the
migration cost should be significantly lower than the loss caused by a successful
attack.

Attack types. Inspired by [34, 23], we derive the key attack parameters (i.e.,
the attack success rate and the unit time system loss) from the Common Vul-
nerabilities Exposure (CVE) scores given by the Common Vulnerability Scoring
System (CVSS) [26] in NVD. In particular, for a given vulnerability, an attack
with an Impact Score (IS) ∈ [0, 10] and an Exploitability Scores (ES) ∈ [0, 10]
will generate 10×IS unit time loss, and will have a 0.1×ES attack success rate.

Title Suppressed Due to Excessive Length 13

We consider two attack types, the Mainstream Hacker (MH) and the Database
Hacker (DH) as in [34]. An MH attack can exploit a large set of vulnerabilities,
but causes less loss when the attack succeeds. In contrast, the DH targets only
a few database specific vulnerabilities, but causes critical loss when it succeeds.
We collect CVEs in NVD ranging from 2019 to 2021 according to CVSS v3.0,
targeting keywords Python, PHP, and SQL, then calculate their rounded average
scores. The attack parameters obtained for MH and DH are shown in Figure 2.
We use them to simulate attack types at test time while considering a broader
class of attack types at training time (see Section 4.3).

Baseline defense and attack strategies. We consider the following defense
strategies in the experiments.

– Uniform Random Strategy (URS) [36]: In a URS defense, the defender uni-
formly samples a configuration from S to switch to in each time step.

– Reinforcement Learning Strategy (RL): In an RL defense, the defender iden-
tifies its optimal defense by solving a single-agent MDP using reinforcement
learning. This requires the defender (as the leader) to guess the attacker’s re-
sponse as discussed in Section 3.1. This includes the SSE defense as a special
case when the attacker is assumed to respond optimally.

We consider the following attack strategies in the experiments.

– Uniform Random Strategy (URS) [36]: In a URS attack, the attacker uni-
formly samples a configuration from S to attack in each time step.

– Reinforcement Learning Strategy (RL): When the defender adopts a sta-
tionary policy, the attacker (as the follower) can learn the defense policy
and then identify its optimal attack policy by solving a single-agent MDP
using reinforcement learning. We call such an attack RL attack.

– Best Response Strategy (BS): Instead of using the RL attack, the attacker
can also identify its best response by solving a simple optimizing problem in
each time step as proved in Lemma 3. We call this attack BS attack.

– Worst Response Strategy (WS): We further consider the opposite of the best-
response attack where the attacker takes the worst-response (WS) action in
each time step, that is, qij = 1 for some j ∈ argminj pijµj lj and qik = 0 for
k ̸= j (see Lemma 3).

Meta-RL settings. We implement our MTD environment using Pytorch and
OpenAI gym [7]. We use Twin Delayed DDPG (TD3) [15] implemented by Ope-
nAI Stable Baseline3 [31] as the policy updating algorithm in both the pre-
training and adaptation stages. The initial state is uniformly sampled from
the configuration space. At the training stage, we set the number of iterations
T = 100. In each iteration, we uniformly sample K = 20 attacks from the attack
domain (see Section 4.3 for details). For each attack, we generate a trajectory
of length H = 100 and update the corresponding meta-policy for 10 steps using
TD3 (i.e., m = 10). At the test stage, the meta-policy is adapted for 100 steps
using TD3 with T = 10, H = 10, and m = 1. Other parameters are described
as follows: single task step size α = 0.001, meta-optimization step size β = 1,

14 Henger Li and Zizhan Zheng

Fig. 3: Left: a comparison of defender’s total loss for 100 time steps under the
URS defense against different attacks (i.e., URS, RL, BS, and WS). Right: a
comparison of defender’s total loss for 100 time steps under URS defense and
RL defense against URS attack and BS attack, respectively. Here the RL defense
is trained against URS attack. All parameters are described in Section 4.1.

adaptation step size = 0.01, the policy model is MlpPolicy, batch size = 100
and γ = 1 for updating the target networks. All the experiments are conducted
on the same 2.30GHz Linux machine with 16GB NVIDIA Tesla P100 GPU. We
run all the tests for 1,000 times and report the mean value. Since the standard
deviations are below 0.04, we omit the error bar for better visualization.

4.2 Results for a single attack type

Before presenting the results for our meta-RL based MTD framework, we first
verify our observations made in previous sections regarding the best-response at-
tack and SSE by considering a single attack type (the Mainstream Hacker (MH))
where the defender knows the attack parameters (µ and l) but not necessarily
the attack policy.

Optimal attack vs. random attack. Figure 3(left) compares the performance
of URS defense under different attacks. Among them, RL attack and BS attack
incur the highest total loss (∼356) in 100 steps, indicating that reinforcement
learning can also be used to identify the best response attack although it is
more time-consuming to train. Both URS and BS attacks perform better than
WS as expected. Figure 3(right) shows the performance of URS defense and
RL defense (trained against the URS attack) in the face of URS attack and
BS attack, respectively. RL against URS (RL-URS) achieves the lowest cost,
indicating that the RL defense is effective when the defender knows both the
attack type and attack policy. In contrast, RL-BS incurs a higher cost indicating
the impact when the defender’s guess on the attack policy is wrong. However,
RL defense outperforms URS defense in both cases.

The robustness of SSE defense. We show in Lemma 3 that when the de-
fender adopts the SSE defense, it can obtain a guaranteed (albeit conservative)
level of protection even when the attacker deviates from the best response be-
havior. We verify this observation in Figure 4 where under the SSE defense,

Title Suppressed Due to Excessive Length 15

Fig. 4: A comparison of defender’s total loss over 100 time steps under the SSE
defense (with different training length) against URS and BS attacks.

the total loss incurred by the BS attack is always higher than the URS attack
over all the training lengths. We further observe that longer training improves
the defense performance against the BS attack (the attack used in training the
defense policy), but is not always helpful to defend against other attacks (due
to overfitting).

4.3 The effectiveness and efficiency of meta-RL defense

To demonstrate the advantage of our meta-RL defense, we consider two attacks
at the test stage, the Mainstream Hacker (MH) and the Database Hacker (DH),
both using the BS strategy as the attack policy. We further consider two meta-
training settings. In the white-box setting, all attacks for training are sampled
from the four combinations of the two attack types (e.g., MH and DH) and
the two attack policies (e.g., URS and BS). In the black-box setting, the attack
domain includes infinite number of attack types, where each has an uniformly
random IS ∈ [0, 10] and an uniformly random ES ∈ [0, 10] for every configuration,
with the attack policies uniformly sampled from URS and BS. Thus, the white-
box setting captures the scenario when the test-stage attack is uncertain to the
defender while the black-box setting captures the scenario when the test-stage
attack type is essentially unseen to the defender. In both cases, we use the SSE
defense trained against the MH attack as the baseline.

Figure 5 shows the defender’s test-stage loss over 1,000 time steps, where
the meta-policy is adapted for 100 steps at the beginning of the test stage.
Note that the RL policy trained against the MH attack is optimal in the face
of the same MH attack at test time, which is expected. We observe that both
the white-box and the black-box meta-RL defenses perform close to the optimal
defense policy. For the DH attack, the RL defense performs poorly due to the
mismatch between the training stage and testing stage attack types, while both
meta-RL defenses significantly reduce the defender’s cost, indicating the benefit
of meta-learning. Specifically, the white-box meta-RL defense quickly adapts to

16 Henger Li and Zizhan Zheng

Fig. 5: A comparison of defender’s total loss over 1,000 testing time steps for
white-box and black-box meta-RL defenses and RL defense (trained against MH
attack), against MH attack and DH attack, respectively. The meta-RL polices
are adapted for 100 steps at the beginning of the test stage. All attacks adopt
the BS strategy at the test stage.

Fig. 6: The defender’s total loss over 1,000 testing time steps under different
adaptation length for black-box and white-box meta-RL defenses against MH
and DH attacks, respectively. We only show the results for policies obtained at
step 0, 100, 200, 300 and 400, respectively. All attacks adopt the BS strategy at
the test stage.

the optimal policy, i.e., staying at configuration (Python, secureSQL) or con-
figuration (PHP, secureSQL) since DH has zero impact on these states.

Figure 6 shows how the defender’s test-stage loss over 1,000 time steps varies
across different adaptation duration, where we only plot the results for policies
obtained at time step 0, 100, 200, 300, and 400, respectively. As expected, the
white-box meta-RL adapts faster since the both attacks considered at testing
time are included in the training stage attack domain. Note that the adaptation

Title Suppressed Due to Excessive Length 17

for the MH attack is less significant since the meta-policy without adaptation
is already close to optimal with respect to the MH attack. Although not shown
in the figure, we observe that it is much more effective to adapt a well-trained
meta-policy (around 10 times faster) than training a new RL policy from scratch
(e.g., starting from a random initial policy) to obtain a similar level of protection.

5 Related Work

Stackelberg games for MTD. Stackelberg games [4] have been widely used
to derive robust defense against strategic attacks. In particular, one-shot Stack-
elberg games such as the classic Stackelberg security games (SSG) have been
extensively studied for various physical security and cybersecurity domains [36].
In the vanilla SSG, the defender commits to a mixed strategy while the attack
observes the strategy and chooses a best response accordingly. Various exten-
sions of SSG have been considered including Bayesian Stackelberg games (BSG)
[28], where a Bayesian approach is adopted to model the defender’s uncertainty
about attack types. A repeated BSG has been applied to MTD in [34] where
the defense policy is independent of the current system configuration. More re-
cently, asymmetric Markov game models have been proposed for MTD [13, 24,
23], which allow state-dependent defense but assume a fixed attack type. In [33],
a Bayesian Stackelberg Markov game (BSMG) is proposed where the attack type
can vary over time according to a pre-defined distribution.

Meta-reinforcement learning. The purpose of meta-RL is to generalize the
experience learned from training tasks to new tasks that can be never encoun-
tered during training. The adaptation stage in meta-learning is required to have
limited exposure to the new tasks, which is crucial for security or safety sen-
sitive domains as it can be expensive or even dangerous to collect samples in
real settings. Various approaches have been proposed for meta-learning includ-
ing metrics-based, model-based, and optimization-based methods [44]. In [43]
and [10], the meta-learning algorithm is encoded in the weights of a recurrent
neural network, hence gradient descent is not performed at test time. In [14], a
model-agnostic meta-learning (MAML) framework is proposed, which does not
require a recurrent model, but instead learns the parameters of any standard
model via solving a second-order meta-objective optimization. Reptile [27] is
a first-order meta-learning optimization algorithm, which is similar to MAML
in many ways, given that both relying on meta-optimization through gradient
descent and both are model-agnostic.

6 Conclusion

In this paper, we propose a meta-reinforcement learning based moving target de-
fense framework. The key observation of our work is that existing security game
models built upon the strong Stackelberg equilibrium (SSE) solution concept
(and its Bayesian variant) can lead to suboptimal defense due to the distribu-
tion shift between the attacks used for training the defense policy and the true

18 Henger Li and Zizhan Zheng

attacks encountered in reality. To this end, we first formulate the MTD problem
as an asymmetric Markov game with the defender as the leader and the attacker
as the follower. We show that the best-response attack at each state can be de-
termined by the current state of the system and the defender’s mix strategy in
the current state. This allows us to formulate the problem of finding the SSE
defense as a single agent Markov decision process (MDP). We then show that
by pre-training the defense policy across a pool of attacks (defined as different
MDPs) using model-agnostic meta-learning, the meta-defense policy can quickly
adapt to the true attacks at test time. Our two-stage defense approach improves
upon the SSE defense in the presence of uncertain/unknown attack type and
attack behavior.

Acknowledgements

This work has been funded in part by NSF grant CNS-1816495. We thank the
anonymous reviewers for their valuable and constructive comments.

References

1. Al-Shaer, E., Duan, Q., Jafarian, J.H.: Random host mutation for moving target
defense. In: International Conference on Security and Privacy in Communication
Systems. pp. 310–327. Springer (2012)

2. Allen, L., Heriyanto, T., Ali, S.: Kali Linux–Assuring security by penetration test-
ing. Packt Publishing Ltd (2014)

3. Basar, T.: Lecture notes on non-cooperative game theory.
https://www.hamilton.ie/ollie/Downloads/Game.pdf (2010)

4. Başar, T., Olsder, G.J.: Dynamic noncooperative game theory. SIAM (1998)
5. Booth, H., Rike, D., Witte, G.A., et al.: The national vulnerability database (nvd):

Overview (2013)
6. Bowers, K.D., Dijk, M.E.V., Juels, A., Oprea, A.M., Rivest, R.L., Triandopou-

los, N.: Graph-based approach to deterring persistent security threats. US Patent
8813234 (2014)

7. Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J.,
Zaremba, W.: Openai gym. ArXiv abs/1606.01540 (2016)

8. Cho, J.H., Sharma, D.P., Alavizadeh, H., Yoon, S., Ben-Asher, N., Moore, T.J.,
Kim, D.S., Lim, H., Nelson, F.F.: Toward proactive, adaptive defense: A survey on
moving target defense. IEEE Communications Surveys & Tutorials 22(1), 709–745
(2020)

9. Derman, E., Mannor, S.: Distributional robustness and regularization in reinforce-
ment learning. In: The Theoretical Foundations of Reinforcement Learning Work-
shop at ICML 2020 (2020)

10. Duan, Y., Schulman, J., Chen, X., Bartlett, P.L., Sutskever, I., Abbeel, P.:
RL2: Fast reinforcement learning via slow reinforcement learning. arXiv preprint
arXiv:1611.02779 (2016)

11. Eldosouky, A., Saad, W., Niyato, D.: Single controller stochastic games for opti-
mized moving target defense. In: IEEE International Conference on Communica-
tions (ICC) (2016)

Title Suppressed Due to Excessive Length 19

12. Fallah, A., Mokhtari, A., Ozdaglar, A.: Generalization of model-agnostic meta-
learning algorithms: Recurring and unseen tasks. In: NeurIPS (2021)

13. Feng, X., Zheng, Z., Mohapatra, P., Cansever, D.: A stackelberg game and markov
modeling of moving target defense. In: International Conference on Decision and
Game Theory for Security. pp. 315–335. Springer (2017)

14. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation
of deep networks. In: International conference on machine learning (ICML). pp.
1126–1135 (2017)

15. Fujimoto, S., Hoof, H., Meger, D.: Addressing function approximation error in
actor-critic methods. In: International conference on machine learning (ICML).
pp. 1587–1596 (2018)

16. Ghavamzadeh, M., Mannor, S., Pineau, J., Tamar, A.: Bayesian reinforcement
learning: A survey. Foundations and Trends in Machine Learning 8(5-6), 359–492
(2015)

17. Hu, J., Wellman, M.P.: Nash q-learning for general-sum stochastic games. Journal
of Machine Learning Research 4, 1039–1069 (2003)

18. Huang, P., Xu, M., Fang, F., Zhao, D.: Robust reinforcement learning as a
stackelberg game via adaptively-regularized adversarial training. arXiv preprint
arXiv:2202.09514 (2022)

19. Jackson, T., Salamat, B., Homescu, A., Manivannan, K., Wagner, G., Gal, A.,
Brunthaler, S., Wimmer, C., Franz, M.: Compiler-generated software diversity. In:
Moving Target Defense, pp. 77–98. Springer (2011)

20. Jafarian, J.H., Al-Shaer, E., Duan, Q.: Openflow random host mutation: trans-
parent moving target defense using software defined networking. In: Proceedings
of the first workshop on Hot topics in software defined networks (HotSDN). pp.
127–132 (2012)

21. Jajodia, S., Ghosh, A.K., Swarup, V., Wang, C., Wang, X.S.: Moving target de-
fense: creating asymmetric uncertainty for cyber threats, vol. 54. Springer Science
& Business Media (2011)

22. Könönen, V.: Asymmetric multiagent reinforcement learning. Web Intelligence and
Agent Systems: An International Journal (WIAS) 2(2), 105–121 (2004)

23. Li, H., Shen, W., Zheng, Z.: Spatial-temporal moving target defense: A markov
stackelberg game model. In: International Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS) (2020)

24. Li, H., Zheng, Z.: Optimal timing of moving target defense: A stackelberg game
model. In: IEEE Military Communications Conference (MILCOM). IEEE (2019)

25. Luo, Y.B., Wang, B.S., Wang, X.F., Hu, X.F., Cai, G.L., Sun, H.: Rpah: Random
port and address hopping for thwarting internal and external adversaries. In: 2015
IEEE Trustcom/BigDataSE/ISPA. vol. 1, pp. 263–270. IEEE (2015)

26. Mell, P., Scarfone, K., Romanosky, S.: Common vulnerability scoring system. IEEE
Security & Privacy 4(6), 85–89 (2006)

27. Nichol, A., Achiam, J., Schulman, J.: On first-order meta-learning algorithms.
arXiv preprint arXiv:1803.02999 (2018)

28. Paruchuri, P., Pearce, J.P., Marecki, J., Tambe, M., Ordonez, F., Kraus, S.: Playing
games for security: An efficient exact algorithm for solving bayesian stackelberg
games. In: Proceedings of the 7th international joint conference on Autonomous
agents and multiagent systems (AAMAS). pp. 895–902 (2008)

29. Paulin, A.: Secure sql server-enabling secure access to remote relational data. arXiv
preprint arXiv:1201.1081 (2012)

20 Henger Li and Zizhan Zheng

30. Peng, W., Li, F., Huang, C.T., Zou, X.: A moving-target defense strategy for cloud-
based services with heterogeneous and dynamic attack surfaces. In: International
Conference on Communications (ICC). pp. 804–809. IEEE (2014)

31. Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., Dormann, N.: Stable-
baselines3: Reliable reinforcement learning implementations. Journal of Machine
Learning Research (2021)

32. Saputro, N., Tonyali, S., Aydeger, A., Akkaya, K., Rahman, M.A., Uluagac, S.:
A review of moving target defense mechanisms for internet of things applications.
Modeling and Design of Secure Internet of Things pp. 563–614 (2020)

33. Sengupta, S., Kambhampati, S.: Multi-agent reinforcement learning in bayesian
stackelberg markov games for adaptive moving target defense. arXiv preprint
arXiv:2007.10457 (2020)

34. Sengupta, S., Vadlamudi, S.G., Kambhampati, S., Doupé, A., Zhao, Z., Taguinod,
M., Ahn, G.J.: A game theoretic approach to strategy generation for moving target
defense in web applications. In: International Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS). pp. 178–186 (2017)

35. Sharma, D.P., Kim, D.S., Yoon, S., Lim, H., Cho, J.H., Moore, T.J.: Frvm: Flex-
ible random virtual ip multiplexing in software-defined networks. In: IEEE Inter-
national Conference on Trust, Security and Privacy in Computing and Communi-
cations (TrustCom). pp. 579–587. IEEE (2018)

36. Sinha, A., Nguyen, T.H., Kar, D., Brown, M., Tambe, M., Jiang, A.X.: From
physical security to cybersecurity. Journal of Cybersecurity 1(1), 19–35 (2015)

37. von Stengel, B., Zamir, S.: Leadership with commitment to mixed strategies.
CDAM Research Report LSE-CDAM-2004-01 (2004)

38. Taguinod, M., Doupé, A., Zhao, Z., Ahn, G.J.: Toward a moving target defense for
web applications. In: 2015 IEEE International Conference on Information Reuse
and Integration. pp. 510–517. IEEE (2015)

39. Thomas, S., Williams, L.: Using automated fix generation to secure sql statements.
In: International Workshop on Software Engineering for Secure Systems (SESS).
IEEE (2007)

40. Thompson, M., Evans, N., Kisekka, V.: Multiple os rotational environment an
implemented moving target defense. In: The 7th International Symposium on Re-
silient Control Systems (ISRCS). pp. 1–6. IEEE (2014)

41. Vorobeychik, Y., Singh, S.: Computing stackelberg equilibria in discounted stochas-
tic games (corrected version). In: Twenty-Sixth Conference on Artificial Intelligence
(AAAI) (2012)

42. Vu, Q.L., Alumbaugh, Z., Ching, R., Ding, Q., Mahajan, A., Chasnov, B., Burden,
S., Ratliff, L.J.: Stackelberg policy gradient: Evaluating the performance of leaders
and followers. In: ICLR 2022 Workshop on Gamification and Multiagent Solutions
(2022)

43. Wang, J.X., Kurth-Nelson, Z., Tirumala, D., Soyer, H., Leibo, J.Z., Munos, R.,
Blundell, C., Kumaran, D., Botvinick, M.: Learning to reinforcement learn. arXiv
preprint arXiv:1611.05763 (2016)

44. Weng, L.: Meta-learning: Learning to learn fast. lilianweng.github.io (2018),
https://lilianweng.github.io/posts/2018-11-30-meta-learning/

45. Xie, Q., Chen, Y., Wang, Z., Yang, Z.: Learning zero-sum simultaneous-move
markov games using function approximation and correlated equilibrium. In: COLT
(2020)

46. Zhang, Y., Li, M., Bai, K., Yu, M., Zang, W.: Incentive compatible moving target
defense against vm-colocation attacks in clouds. In: IFIP International Information
Security Conference. pp. 388–399. Springer (2012)

