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Abstract— Recent studies have shown that power-
proportional data centers can save energy cost by dynamically
“right-sizing” the data centers based on real-time workload.
More servers are activated when the workload increases
while some servers can be put into the sleep mode during
periods of low load. In this paper, we revisit the dynamic
right-sizing problem for heterogeneous data centers with
various operational cost and switching cost. We propose a
new online algorithm based on a regularization technique,
which achieves a better competitive ratio compared to the
state-of-the-art greedy algorithm in [17]. We further introduce
a switching cost offset into the model and extend our algorithm
to this new setting. Simulations based on real workload and
renewable energy traces show that our algorithms outperform
the greedy algorithm in both settings.

I. INTRODUCTION

Internet-scale services like web-mail, live streaming, on-
line gaming and social networks usually have millions or
even billions of active users everyday. Providers like Google,
Amazon and Facebook, in order to maintain the reliability,
accessibility and guaranteed performance of their systems,
have deployed numerous large data centers including massive
number of servers, causing a huge amount of electricity and
cooling cost. Based on [16], the electricity consumption of
large data centers has accounted for 1.3% of all the electricity
use of the world and almost 2% of the United States in 2010.

Recent research [20]–[22] shows that the energy cost
can be significantly reduced by dynamically distributing
the workload to various data centers based on the idea of
“Geographical Load Balancing” (GLB) and “Right-sizing”
to make the data center more power-proportional [4], [8],
[18]. Specifically, the central load balancer dynamically
dispatches the workload requests to geographically located
data centers that consist of thousands of servers. Each data
center dynamically adjusts the number of active servers to
serve the requests so that during low-load period, servers
that do not have jobs transfer to the power-saving mode or
are shut down completely after data and operation states are
reserved.

In [17], [18], Lin et al., propose a cost minimizing
model for the “right-sizing” of data centers incurring both
operational cost and switching cost. Their model is a general
convex optimization problem where the objective function
consists of two parts representing the operational cost and
switching cost, respectively. Examples are given to show
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how concrete energy and delay costs of data centers can fit
into their model. The operational cost is modeled as a time-
dependent convex function and a linear function is used to
represent the switching cost of switching certain number of
servers from power-saving mode to active mode to serve the
increasing workload [6]. The switching cost is incurred only
when the number of active servers increase. Such switching
cost not only includes the total energy cost, but also delay
in data migration, increased wear-and-tear on servers and
the risk involved in server mode toggling. A 3-competitive
online algorithm [18] is proposed for the case of a single
server. In [17], Lin et al. consider a more general setting with
multiple heterogeneous servers and look-ahead information,
and propose the AFHC online algorithm that is (1 + β

e0
)-

competitive where β is the maximum value of unit switching
cost and e0 refers to the minimum unit operational cost of
all data centers. The algorithm reduces to the simple greedy
algorithm when the look-ahead window size is zero. The
two online algorithms are the first attempts to deal with the
online convex right-sizing problem with switching cost and
provide performance guarantees. However, the 3-competitive
algorithm only works for the single-server setting, while the
greedy algorithm can have a large competitive ratio when the
minimum value of the unit operating cost e0 is very small
compared to the switching cost.

In this paper, we revisit the right-sizing problem studied
in [17] and propose a better algorithm. We consider a system
with multiple data centers located in different places. The
operational cost and switching cost of each data center vary
based on the local energy prices, the availability of renewable
energy, and other factors such as energy storage and servers’
wear-and-tear cost. The information of the workload and cost
functions of each data center are both revealed only at the
beginning of each time slot. There is no look-ahead window,
meaning that information for future time slots is not available
at the central load balancer. Real-time workload demand is
dispatched to different data centers at each time slot by the
central load balancer which tries to minimize the total cost
for all time slots.

We develop a new online algorithm based on the reg-
ularization technique proposed in [7] for the right-sizing
problem. We show that our online regularization algorithm
achieves a better competitive ratio compared to the greedy
algorithm in [17]. We further extend our system model by in-
troducing a new time-dependent parameter, called switching
cost offset, which enables a data center to serve the increase
in workload demand without incurring any switching cost
when the increase is less than the offset parameter. This
new parameter is meaningful since each data center may
have access to some local renewable energy source or energy



storage, which allows it to activate some number of sleeping
servers by paying a negligible cost. In addition, the switching
cost offset also includes the delay tolerance during data
migration when servers are activated or turned down and the
cost compensation by certain protection mechanism to reduce
the server state toggling cost. To the best of our knowledge,
this is the first work that considers such a switching cost
offset. We propose another online regularization algorithm
with guaranteed performance.

Our main contribution can be summarized as follows:
1) We propose an online regularization algorithm for the

right-sizing problem of multiple heterogenous data
centers with various operational cost and switching
cost. We prove a competitive ratio of our algorithm
in terms of the switching cost and the operational
cost functions, which is always better than that of the
greedy algorithm in [17].

2) We consider an extension of the right-sizing problem
by introducing a switching cost offset into the mod-
el, and propose an online algorithm with guaranteed
performance. Our algorithm is the first attempt to deal
with this important extension.

The rest of the paper is organized as follow: Section II
discusses the related work on energy cost minimization of
data centers and the regularization method. Section III intro-
duces our general system model and the online algorithm is
proposed in Section IV. We then discuss the model with
switching cost offset and the corresponding algorithm in
Section V. Numerical results are given in Section VI and
we conclude the paper in Section VII.

II. RELATED WORK

There are multiple recent works [8], [10], [12]–[14], [20]–
[22] discussing the “Geographical Load Balancing” and the
“Right-sizing” problem for data centers. The most relevant
works are [17], [18]. In [18], Lin et al., considered the case
of a single data center where the data center determines the
workload (number of active servers) based on general convex
operational cost function and linear switching cost. They
proposed the “Laze Capacity Provisioning” online algorithm
by utilizing the structure of the optimal offline solution,
which achieves a competitive ratio of 3. Later, Bansal et al.
[5] improved the competitive ratio to 2 by proposing a new
randomized online algorithm. However, the online algorithms
in both [18] and [5] only work for the single data center case
and their performance can be arbitrarily bad for the case
with multiple heterogenous data centers. In [17], Lin et al.,
considered the “right-sizing” problem for the heterogeneous
data center model and proposed the “Averaging Fixed Hori-
zon Control” algorithm. They proved that their algorithms
achieves a competitive ratio that depends on the switching
cost and the convex operational cost function. In this work,
we revisit the heterogeneous case and propose a new online
algorithm with a better performance guarantee.

There are extensive studies on online algorithm design
for cloud resource management [15], [24] and real-time
dispatch [9], [28], [29]. More specifically, [7] first introduced
the concept of regularization for online algorithm design
and proved that the online algorithm with a regularization
term can achieve a competitive ratio proportional to logN

where N is number of variables. In [27], Zhang et al.
investigate online resource management for Cloud-based
content delivery networks. They proposed an efficient online
algorithm by using the regularization technique and proved
its performance guarantee. However, the cost function is
linear in all these works and none of them take the switching
cost offset into consideration. In this work, we consider the
more general and practical case of convex operational cost
and compare the performance of regularization based online
algorithms and the greedy algorithms.

III. SYSTEM MODEL

In this section, we discuss our system model of multiple
heterogeneous data centers located in various places and the
overall optimization problem.

We study a system consisting of a central load balancer
and N heterogeneous data centers, each with thousands of
servers located in different places. The servers in each data
center are assumed to be homogeneous as in previous work.
The central load balancer distributes the workload to data
centers and each data center either activates or deactivates
a certain number of servers to serve the workload. The cost
of each data center for serving the workload consists of two
parts, operational cost and switching cost, both may vary
across data centers.

In this paper, we consider general classes of cost functions.
The operational cost is modelled by a time-dependent non-
decreasing convex function fi,t(·), where fi,t(si(t)) refers
to the total operational cost for data center i with workload
si(t) at time t, which includes the energy cost for serving the
workload as well as the cost associated with data transmis-
sion and delay, etc. We assume that fi,t(·) is continuously
differentiable. In [18], Lin et al. provided concrete examples
to show how the real data center cost can be fitted into this
general convex operational cost model.

In addition to the operational cost, data centers incur a
switching cost for activating servers, which is modelled by a
one-directional linear function. The switching cost generally
includes the energy cost of transferring server states, data
migration latency, server state toggling risk, and the wear-
and-tear cost [18]. Further, when the number of active servers
and computing resources are reduced, the user experience
may be degraded, resulting a decline in revenue [19], which
can also be captured by the switching cost. Formally, when
the workload dispatched to data center i changes from si(t−
1) to si(t), it incurs a switching cost βi(si(t)− si(t− 1))+

where the function (x)+ = max{0, x} and βi is a coefficient.
We only take into consideration the switching cost when the
workload increases, since turning off servers usually has a
negligible cost [18], [23].

We further extend the model to the situation where each
data center has access to local renewable energy, or has a
certain protection mechanism and delay tolerance. For in-
stance, protection mechanisms can reduce the wear-and-tear
cost and the corresponding risk involved in the state toggling
of servers [11], while delay tolerant workload is less sensitive
to the latency for toggling servers out of power-saving mode.
On the other hand, timing-varying renewable energy supply



can help reduce both the operational and switching costs.1
To model these effects, we introduce a time-dependent offset
parameter ri(t) into our model such that no switching cost is
incurred when the increase of workload is less than or equal
to ri(t). Such an offset parameter allows each data center to
activate a certain number of servers without incurring any
switching cost. With this offset incorporated, the switching
cost for data center i when its workload changes from
si(t−1) to si(t) now becomes βi(si(t)−si(t−1)−ri(t))+.

We consider a time-slotted system from t = 1 to t =
T , and an online setting where all the future information
including the operational costs, switching costs, and the
workload is unknown. The central load balancer is only
aware of all the parameters at the current and past time slots.
Our objective is to minimize the overall cost by dynamically
dispatching the workload to each data center at the beginning
of each time slot under the constraint that the total demand
must be satisfied at each time slot.

At the beginning of each time-slot t, the workload D(t),
operational cost function fi,t(·), and the offset ri(t) are
revealed. The central load balancer then distributes work-
load si(t) to data center i, incurring a operational cost∑N
i=1 fi,t(si(t)) and a switching cost

∑N
i=1 βi(si(t)−si(t−

1) − ri(t))+ at time slot t. Note that we do not explicitly
include a capacity constraint for each data center in (1). This
can be easily modeled by setting the operational cost fi,t to
infinity when the workload assigned to data center i exceeds
its capacity. As long as fi,t(s) is continuously differentiable
when s is within the capacity region, all the results in this
paper remain valid. The objective of the central load balancer
is to minimize the overall operational cost and switching cost
among all time slots as in (1).

min
si(t)

T∑
t=1

N∑
i=1

[
fi,t(si(t)) + βi(si(t)− si(t− 1)− ri(t))+

]
s.t.

N∑
i=1

si(t) ≥ D(t) ∀t

si(t) ≥ 0 ∀i, t
si(0) = 0 ∀i

(1)
We use competitive ratio as the performance metric

throughout this paper. Denote A(1 : t) as the input informa-
tion (e.g., the workload D(t), the operational cost function
fi,t(·) and the switching cost offset ri(t)) from time slot 1 to
time slot t. For an online algorithm π, the decision si(t) ∀i
at each time slot t can only be based on input A(1 : t).
Let Cπ(A(1 : T )) be the total cost of algorithm π and we
compare it with the total cost of the optimal offline solution
Copt(A(1 : T )) which is obtained by solving (1). Then, the
competitive ratio of algorithm π is given by

CRπ = max
A(1:T )

Cπ(A(1 : T ))

Copt(A(1 : T ))

Table I summarizes the notations used in the paper.

1In this work, we assume that the allocation of renewable energy for
reducing operating cost and that for reducing switching cost follows a pre-
determined scheme, and incorporate the former into the operational cost
function.

TABLE I
LIST OF NOTATIONS

Symbol Meaning
T Number of time slots
N Number of data centers
D(t) Total workload demand at time t
Dmax maxtD(t)

fi,t(·) Operational cost of data center i at time t
βi Coefficient of switching cost for data center i
β maxi βi

ri(t) Switching cost offset for data center i at time t
si(t) Workload dispatched to data center i at time t

IV. ONLINE REGULARIZATION ALGORITHM

In this section, we study the right-sizing problem without
switching offset, that is ri(t) = 0 ∀i, t. We first review the
greedy algorithm (a.k.a the AFHC algorithm in [17] with-
out look-ahead information) and its performance guarantee.
Then, we present our online regularization based algorithm
and compare the competitive ratios of the two algorithms.

A. The Greedy Algorithm

Lin et al. [17] proposed the AFHC algorithm and analyzed
the pros and cons of AFHC compared to the classic Receding
Horizon Control (RHC) algorithm. They claimed that the
AFHC algorithm can outperform the RHC algorithm when
there are multiple heterogeneous data centers. Both AFHC
and RHC work for the case with look-ahead information.
When there is no look-ahead information as we consider in
the paper, both algorithms reduce to the simple greedy algo-
rithm. That is, both algorithm compute the load assignment
s̃i(t) by solving the following optimization problem in each
time-slot.

s̃i(t) = argminsi(t)

N∑
i=1

[
fi,t(si(t)) + βi(si(t)− s̃i(t− 1))+

]
s.t.

N∑
i=1

si(t) ≥ D(t) ∀t

si(t) ≥ 0 ∀i, t
(2)

Let e0,i denote the minimum positive constant such that
fi,t(x) ≥ e0,ix, ∀x, t. The following result is proved in [17]:

Theorem IV.1. The greedy algorithm is (1 + β/e0)-
competitive where β = maxi{βi} and e0 = mini{e0,i}.

We note that since fi,t(x)/x may approach to 0 when
x is close to 0, e.g. when fi,t(x) = xα for α > 1, the
value of β/e0 can be huge. Moreover, our simulation results
using real data from Google Cloud platform (see Section VI)
indicate that the greedy algorithm may cause unnecessary
frequent server switching, leading to bad performance. To
tackle these issues, we present a new online algorithm based
on a regularization technique for problem (1) in the following
subsection, which achieves a better competitive ratio and
shows better empirical performance.



Algorithm 1 Online Regularization with Convex Operational
Cost

1: Input: ε > 0 and η = ln(1 +NDmax/ε)
2: Initialization: s̃i(0) = 0 for all i = 1, · · · , N
3: for t = 1 to T do

s̃i(t) = argminsi(t)∈Pt

{
fi,t(si(t))

+
1

η

N∑
i=1

βi

[
(si(t) + ε/N) ln

(
si(t) + ε/N

s̃i(t− 1) + ε/N

)
− si(t)

]}
(3)

where Pt , {si(t)|
∑T
i=1 si(t) ≥ D(t), si(t) ≥ 0 ∀i}

4: end for

B. Online Regularization Algorithm

Our algorithm adopts the novel framework proposed in [7]
for designing competitive online algorithms. The algorithm is
essentially greedy by solving a convex optimization problem
in each round, where the objective function includes both
the operating cost and the regularized switching cost. As
in [7], we use the relative entropy plus a linear term as the
regularizer. The regularizer for two (discrete) distributions
θ and u is defined as

∑
i θi ln(θi/ui) + θi − ui. But unlike

the regularization algorithm in [7] where the operational cost
function is linear and all the variables are within the range of
[0, 1], our algorithm deals with convex functions and general
non-negative domains for all the variables si(t). We present
our online algorithm in Algorithm 1.

In Algorithm 1, we assume that Dmax = maxtD(t) is
known in advance and N refers to the number of data centers.
We compute the workload dispatch s̃i(t) by solving the
convex optimization problem (3) in each time-slot, where ε
is a parameter that can be adjusted. Since (3) is a continuous
convex optimization problem, it can be solved in polynomial
time. Algorithm 1 computes s̃i(t) using only the information
available at the current time-slot and s̃i(t− 1).

To study the performance of our online algorithm, we
adopt a primal-dual analysis similar to [7]. Below we first
provide an overview of the main idea of the primal-dual
technique involved in the analysis. We start with the primal
problem (1) with ri(t) = 0 ∀i, t, which is equivalent to
the following where we introduce variables zi(t) so that the
objective function is continuous:

min
si(t)

T∑
t=1

N∑
i=1

(fi,t(si(t)) + βizi(t))

s.t.

N∑
i=1

si(t) ≥ D(t) ∀t

si(t) ≥ 0 ∀i, t
zi(t) ≥ si(t)− si(t− 1) ∀i, t
zi(t) ≥ 0 ∀i, t

(4)

The Lagrangian function of (4) is

L(µi,t, λt, li,t, ki,t, si(t), zi(t))

=

T∑
t=1

N∑
i=1

[fi,t(si(t)) + βizi(t)] +
∑
t

λt[D(t)−
∑
i

si(t)]

+
∑
t

∑
i

µi,t (si(t)− si(t− 1)− zi(t))

−
∑
t

∑
i

(li,tsi(t)− ki,tzi(t))

=
∑
t

∑
i

[fi,t(si(t)) + (µi,t − µi,t+1 − λt − li,t)si(t)]

+
∑
t

∑
i

(βi − µi,t − ki,t) zi(t) +
∑
t

λtD(t)

where λt, li,t, µi,t and ki,t are the Lagrangian multipliers
for the four constraints in (4). Thus, the dual function of (4)
is

D(µi,t, λt, li,t, ki,t) = min
si(t),zi(t)

L(µi,t, λt, li,t, ki,t, si(t), zi(t))

= min
si(t)

∑
t

∑
i

[fi,t(si(t)) + (µi,t − µi,t+1 − λt − li,t)si(t)]

+ min
zi(t)

∑
t

∑
i

(βi − µi,t − ki,t) zi(t) +
∑
t

λtDt (5)

To establish a relation between the optimal offline solution
and the online solution, the main idea is to assign the dual
variables with values µ̂i,t, λ̂t l̂i,t and k̂i,t based on the
optimal online solution s̃i(t). The weak duality tells us

max
µi,t,λt,li,t,ki,t

D(µi,t, λt, li,t, ki,t) ≤ value of (1)

Therefore, if we can prove
Total Online Cost ≤ Λ ·D(µ̂i,t, λ̂t, l̂i,t, k̂i,t)

for some Λ > 1, then our online algorithm is Λ-compeitive,
that is,

Total Online Cost ≤ Λ · value of (1)

All the theorems in this section and Section V are based
on this idea. We first show that Algorithm 1 has a smaller
competitive ratio compared with the greedy algorithm.

Theorem IV.2. Algorithm 1 is (1+ β
e0+C

)-competitive where

C ,

∑T
t=1

∑N
i=1

βi

η ln
(

s̃i(t)+ε/N
s̃i(t−1)+ε/N

)
s̃i(t)∑T

t=1D(t)
(6)

and C ∈ [0, β].

Proof. To show C ∈ [0, β], we need two inequality facts:∑
i ai log(ai/bi) ≥ (

∑
i ai) log(

∑
i ai∑
i bi

) ∀ai, bi > 0 and
a ln(a/b) ≥ a − b ∀a, b > 0. Due to limited space, we
omit the details of this part. Please refer to [26] for a proof.

Next, we show that the competitive ratio of Algorithm 1
is 1 + β

e0+C
. We assign dual variables λ̃t and l̃i,t to the

constraints
∑
i si(t) ≥ D(t) ∀t and si(t) ≥ 0 ∀i, t in (3)

respectively. Since (3) is a convex optimization problem, by
applying the KKT conditions of (3), we have for any i and
t,

βi
η

ln

(
s̃i(t) + ε/N

s̃i(t− 1) + ε/N

)
= λ̃t − f ′i,t(s̃i(t)) + l̃i,t (7)

By setting λt = λ̃t, µi,t = βi

η ln
(
Dmax+ε/N
s̃i(t−1)+ε/N

)
, ki,t = 0



and li,t = l̃i,t, and using the fact that βi ≥ µi,t, the dual
function associated with the offline problem becomes

D(µi,t, λt, li,t, ki,t) =
∑
t

λtD(t)

+ min
si(t)

∑
t

∑
i

[fi,t(si(t)) + (µi,t − µi,t+1 − λt − li,t)si(t)]

=
∑
t

λtD(t) + min
si(t)

∑
t

∑
i

[fi,t(si(t))− f ′i(s̃i(t))si(t)]

=
∑
t

λtD(t) +
∑
t

∑
i

[
fi,t(s̃i(t))− f ′i,t(s̃i(t))s̃i(t)

]
(8)

where the last equation follows from the convexity of fi,t(·).
Putting (7) into (8) and using the weak duality and the fact
that s̃i(t)l̃i,t = 0, we have the following

Offline Cost ≥ value of (8)

=

T∑
t=1

N∑
i=1

[
fi,t(s̃i(t)) +

βi
η

ln

(
s̃i(t) + ε/N

s̃i(t− 1) + ε/N

)
s̃i(t)

]
Thus, the competitive ratio of Algorithm 1 becomes

CR =
Online Cost
Offline Cost

≤
∑T
t=1

∑N
i=1 [fi,t(s̃i(t)) + βi(s̃i(t)− s̃i(t− 1))+]∑T

t=1

∑N
i=1

[
fi,t(s̃i(t)) + βi

η ln
(

s̃i(t)+ε/N
s̃i(t−1)+ε/N

)
s̃i(t)

]
≤ 1 +

∑T
t=1

∑N
i=1 βis̃i(t)∑T

t=1

∑N
i=1

[
fi,t(s̃i(t)) + βi

η ln
(

s̃i(t)+ε/N
s̃i(t−1)+ε/N

)
s̃i(t)

]
≤ 1 +

β
∑T
t=1

∑N
i=1 s̃i(t)∑T

t=1

∑N
i=1

[
e0,is̃i(t) + βi

η ln
(

s̃i(t)+ε/N
s̃i(t−1)+ε/N

)
s̃i(t)

]
≤ 1 +

β

e0 + C

Theorem IV.2 shows that Algorithm 1 has a smaller
competitive ratio compared to the greedy algorithm whenever
C > 0. Although it is difficult to get the accurate value of
C due to the complex correlation between ε and s̃i(t), we
have C = 0 when all si(t) are equal and C = β when
N = T = 1 and s̃i(1) = Dmax. Moreover, C approaches
to β when the workload dispatched to each data center
oscillates dramatically, a usual case in real world as shown
in Section VI. Thus, the new bound in Theorem IV.2 can
be close to 1 + β

e0+β
, which is very helpful especially when

e0 is very small compared to β. Further, the regularization
algorithm outperforms the greedy algorithm in our real-data
based simulation in Section VI.

When implemented in practice, Algorithm 1 can be de-
ployed on a central load balancer that dispatches workload
to each data center based on the algorithm’s result. According
to the numerical results in Section VI, the regularization
algorithm responds to the change of switching cost more
dramatically compared to the greedy algorithm in [17]. When
the switching cost is low, regularization algorithm leads to
more frequent workload switching compared to the greedy
algorithm. On the contrary, the workload switching is per-
formed more conservatively as the switching cost increases.

V. ONLINE REGULARIZATION ALGORITHM WITH
SWITCHING COST OFFSET

In this section, we consider the case when ri(t) > 0, that
is, when there is a non-zero offset for the switching cost. We
note that ri(t) can capture the saving from renewable energy
access, the delay tolerance of computing workload, as well
as the reduced server’s wear-and-tear cost and state-toggling
risk with certain protection mechanisms as discussed in
Section III. Further, we assume that the operational cost
function is linear in this section and let ci(t) denote the unit
operational cost. Problem (1) then becomes

min
si(t)

T∑
t=1

N∑
i=1

[
ci(t)si(t) + βi(si(t)− si(t− 1)− ri(t))+

]
s.t.

N∑
i=1

si(t) ≥ D(t) ∀t

si(t) ≥ 0 ∀i, t
si(0) = 0 ∀i

(9)
The problem with a general convex operational cost and a
non-zero switching offset remains open.

We first note that Algorithm 1 may perform poorly in
the presence of ri(t) as shown in Section VI. Thus, we
have designed a new regularization based online algorithm
as shown in Algorithm 2. Compared with Algorithm 1, the
main difference is that Algorithm 2 distinguishes two cases
when solving the convex optimization problem (12) based on
the values of Kc and Ks. When 1 ≤ Ks ≤ Kc, meaning that
ri(t) is relatively small, Algorithm 2 runs the same convex
optimization as in Algorithm 1 since small ri(t) will not
result in a big performance loss. When Ks > Kc (e.g.,
when ri(t) is large), Algorithm 2 sets a different value of
η to utilize the large switching offset for a more aggressive
switching policy. Note that, Algorithm 2 needs the bound
of ci(t) and ri(t). As a result, the competitive ratio of
Algorithm 2 also depends on these two parameters.

Theorem V.1. The optimal solution s̃i(t) of Algorithm 2
can achieve a competitive ratio of Λ(1 + 2 ln(1 +N Dmax

Dmin
))

compared to the offline optimal solution of (9) where

Λ =

{
Ks if 1 ≤ Ks ≤ Kc

Kc otherwise,
(13)

by setting ε = Dmin.

The main challenge of the proof is that the offline dual
function of (9) has an extra negative term that is related to
ri(t), leading to the coupling of workload dispatch decisions
across multiple time slots and data centers. Therefore, we
prove the competitive ratio in two cases based on the value
of Ks and Kc as in Algorithm 2. We assign two different
sets of dual variables in different cases. In case 1 where
1 ≤ Ks ≤ Kc, the dual variables of (12) are assigned to the
same values as in the proof of Theorem IV.2. In the other case
where Ks < 1 or Ks > Kc, we assign different values for
the dual variables. Please refer to [26] for a detailed proof.

The competitive ratio in Theorem V.1 depends on the
values of βi, ri(t) and ci(t), which we believe is necessary
for all online algorithms. We plot Λ versus ri(t) in Figure 1



Algorithm 2 Online Regularization with Linear Operational
Cost and Switching Cost Offset

1: Compute

Kc = max{ 2(1 + ε/Dmin)Dmaxβi
mini,t{ri(t)}mini,t{ci(t)}

, 1} (10)

Ks =
1

1−
∑

i βi maxi,t{ri(t)}
mini,t{ci(t)}Dmin

(11)

2: For input ε > 0, set

η =

{
ln(1 +NDmax/ε) if 1 ≤ Ks ≤ Kc

Kc ln(1 +NDmax/ε) o/w

3: Initialize s̃i(0) = 0 for all i = 1, · · · , N
4: for t← 1 to T do
5: The ISO solves the following problem to obtain s̃i(t)

s̃i(t) = argminsi(t)∈Pt

{
ci(t)si(t)

+
1

η

N∑
i=1

βi

[
(z̃i(t) + ε/N) ln

(
z̃i(t) + ε/N

s̃i(t− 1) + ε/N

)
− z̃i(t)

]}
(12)

where Pt = {si(t)|
∑T
i=1 si(t) ≥ D(t), si(t) ≥ 0 ∀i}

and

z̃i(t) =

{
si(t) if 1 ≤ Ks ≤ Kc

max{si(t)− ri(t), s̃i(t− 1)} o/w
6: end for
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Fig. 1. Competitive Ratio with Switching Offset

with the same setting as in Section VI, where we have five
data centers and use real data for unit electricity prices ci(t),
as well as actual workload trace from the Google Cloud
Platform as D(t) and β = 6. ri(t) ∀i, t in Figure 1 are all
equal. The blue solid line refers to the case when Λ = Ks

and the red dash line refers to the case when Λ = Kc.
Figure 1 shows that Λ increases first and goes down after
a certain value as ri(t) increases. When ri(t) = 0, we have
Λ = 1 and the competitive ratio is 1 + 2 ln(1 + N Dmax

Dmin
),

similar to the bound in [7]. As ri(t) increases, Λ becomes
significantly large due to (11). When ri(t) keeps increasing,
we eventually have Ks < 0 and Kc ≈ 1 from (10). Thus,
Λ ≈ 1 and the competitive ratio becomes close to the upper
bound 1+2 ln(1+N Dmax

Dmin
) again. Thus, Λ is determined by

Kc when ri(t) is large and is determined by Ks when ri(t)
is small as illustrated by Figure 1. Note that if we directly

apply Algorithm 1 to (9), the performance can be very bad
for large ri(t) as shown in Section VI.

VI. NUMERICAL RESULTS

In this section, we evaluate the performance of our
algorithms in various circumstances using real-data based
simulations.

A. Simulation Setup

Our simulation is based on real-world data traces for data
center locations, workload, energy prices, and renewable
energy supply as discussed below.

1) The workload: We use the workload trace in May 2011
from a Google Cluster of about 12.5k machines [25] shown
in Figure 2(a). We count the average number of jobs arrived
at the cluster every five minutes over two days.

2) The availability of renewable energy: We use traces
with 5 minutes granularity from [1], [2] for solar and
wind energy in five states where Google data centers are
located. Figure 2(b) shows the normalized Global Horizontal
Irradiance from five solar plants and Figure 2(c) shows the
normalized energy generation from five wind farms in the
corresponding states.

Note that both the solar and wind energy data shown
in the figures are normalized with respect to the workload.
Specifically, we first find the ratio between the total renew-
able energy (across all the sources and the two-day time
horizon) and the corresponding total workload. The value
of the renewable energy supply at each time slot is then
divided by this ratio. Since it is unknown how much of
the renewable energy supply was available to the cluster,
we further introduce a parameter ρo and assume that the
amount of workload that each renewable energy source can
serve at each time slot equals to the normalized renewable
energy supply times ρ0. Similarly, we introduce a parameter
ρs to model the portion of the switching cost that can be
covered by renewable energy supply. That is, the switching
cost offset for each data center at each time slot equals to
the corresponding normalized renewable energy times ρs.

3) The data center system: We consider a system with
five data centers located in CA, IL, OR, TX and NC where
Google has data centers. Each data center has access to the
closest solar plant and wind turbine farm. We consider two
operating cost functions in the simulation. In Figure 3, the
operating cost equals to the energy price plus an extra penalty
term as the following:

fi,t(x) = (pi +Mi,t)x (14)
where pi is the industrial electricity price in each of the five
states in May 2011 [3] and Mi,t is a cyclic penalty term

Mi,t =

{
10pi if t mod N ≥ i
0 otherwise

In Figures 4 and 5, we consider another operational cost
function consisting of the energy cost and delay cost. The
energy cost is defined as follows:

pi(x− εi,t)+ (15)
where pi is the same price as in (14) and εi,t models
the amount of workload that can be served by renewable
energy and is set to a fixed portion (20%) of the normalized
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Fig. 2. Workload and the Renewable Energy Supply

renewable energy, that is, ρo = 0.2. For the delay cost, we
use a similar model as in [17]:

Li,t = δi +
1000ms

µi − x
where δi is the transmission delay between each data center
and the central workload balancer (CA) resulting in delays
between 10ms and 260ms. µi = 0.1(ms)−1 refers to the
average number of jobs processed per unit time.

We use the renewable energy in each state as the switching
offset ri(t) with normalized portion ρs = 0.3 in Figure 4 and
vary its value in Figure 5. For switching cost, we set β = 20
in Figure 5 and vary β in Figures 3 and 4 to show its impact
on total cost in different algorithms.

B. Simulation Results

We perform several simulations to evaluate the impact of
the switching cost and the switching cost offset in various
circumstances. In Figure 3, we set the switching cost offset
ri(t) = 0 and compare the greedy algorithm and the
regularization algorithm. In Figures 4 and 5, we set ri(t)
to be the renewable energy supply at t and investigate its
effect.
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Fig. 3. Regularization Algorithm vs. Greedy Algorithm

We first compare the performance of the greedy algorithm
and the regularization based algorithm when there is no
switching cost offset. In Figure 3, we vary the value of
the switching cost β while fixing all the other parameters.
The top two subfigures show the operational and switching
cost of both regularization algorithm and greedy algorithm
respectively. The bottom one compares the overall perfor-
mance of the two algorithms. Based on our analysis in
Section IV, the greedy algorithm has a larger competitive
ratio. Moreover, the real performance of the regularization
algorithm is also much better than the greedy algorithm
when β increases as shown in Figure 3. In addition, as β
increases, the regularization algorithm reduces the amount
of workload switching (difference of workload assigned to a
data center between two consecutive time slots) to each data
center more dramatically compared to the greedy algorithm.
The workload switching for regularization algorithm is more
aggressive when β is small and more conservative when β is
large. We can see that the switching cost of the regularization
algorithm increases much slower than the greedy algorithm,
leading to a higher operational cost than the latter.
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Fig. 4. Cost vs. β with Real Data

In Figure 4 and Figure 5, we consider 20% of the
normalized renewable energy serving the operational cost
and the switching cost offset ri(t) equals to the value that the
normalized renewable energy multiplies ρs. In both figures,
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Fig. 5. Cost vs. Switching Offset with Real Data

we plot the operational cost, switching cost and total cost
respectively. We compare the performance of Algorithm 2,
Algorithm 1 and the greedy algorithm to investigate the
impact of β and ri(t). In Figure 4, we vary the value of
β. The top two sub-figures show that the two regulariza-
tion algorithms (with and without considering ri(t)) have
higher operational cost and smaller switching cost, which
is consistent with the observation in Figure 3. The bottom
sub-figure shows that Algorithm 2 outperforms the other
two as expected. In Figure 5, we study the impact of ri(t)
by varying the value of ρs, which is linearly proportional
to ri(t). We observe that the total cost of Algorithm 2 is
much smaller than the other two algorithms and the gap
increases as ri(t) becomes larger. This is expected since
Algorithm 2 utilizes ri(t) to adjust the workload dispatch
more aggressively to reduce the total cost. For Algorithm 1
and the greedy algorithm, the decrease in the total cost only
comes from the increase of ri(t).

VII. CONCLUSION

In this paper, we study the right-sizing problem in a sys-
tem consisting of a central workload balancer and multiple
heterogeneous data centers with different operational cost
and switching cost. We further introduce a switching cost
offset to our model. Two online regularization algorithms
are proposed for the case with and without the switching
cost offset. For the case without switching cost offset, we
show that our algorithm performs better than the greedy
algorithm in terms of both the competitive ratio obtained
and the real performance in real data based simulations.
When considering the switching cost offset, our algorithms
achieves a competitive ratio proportional to the logarithm of
the number of data centers
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