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ABSTRACT
An essential step for achieving multiplexing gain in MIMO down-

link systems is to collect accurate channel state information (CSI)

from the users. Traditionally, CSIs have to be collected before any

data can be transmitted. Such a sequential scheme incurs a large

feedback overhead, which substantially limits the multiplexing gain

especially in a network with a large number of users. In this paper,

we propose a novel approach to mitigate the feedback overhead by

leveraging the recently developed Full-duplex radios. Our approach

is based on the key observation that using Full-duplex radios, when

the base-station (BS) is collecting CSI of one user through the up-

link channel, it can use the downlink channel to simultaneously

transmit data to other (non-interfering) users for which CSIs are

already known. By allowing concurrent channel probing and data

transmission, our scheme can potentially achieve a higher through-

put compared to traditional schemes using Half-duplex radios. The

new flexibility introduced by our scheme, however, also leads to

fundamental challenges in achieving throughout optimal sched-

uling. In this paper, we make an initial effort to this important

problem by considering a simplified group interference model. We

develop a throughput optimal scheduling policy with complexity

O ((N /I )I ), where N is the number of users and I is the number

of user groups. To further reduce the complexity, we propose a

greedy policy with complexity O (N logN ) that not only achieves

at least 2/3 of the optimal throughput region, but also outperforms

any feasible Half-duplex solutions. We derive the throughput gain

offered by Full-duplex under different system parameters and show

the advantage of our algorithms through numerical studies.
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1 INTRODUCTION
Mobile data traffic is expected to increase at rate of 53% per year

by 2020 [1]. Multi-user MIMO (MU-MIMO), which can potentially

increase the network capacity linearly with the number of users,

has been considered as an important technique to confront this data

traffic challenge. Theoretically, in a system with M transmit and

receive antennas, the throughput using MU-MIMO can beM times

of the throughput using a single transmit and receive antenna pair

[20], where M is commonly referred as the spatial multiplexing

gain.

In this paper, we consider one important application of MU-

MIMO, i.e., the downlink wireless cellular network consisting of

one Base Station (BS) equippedwithmany antennas andmany users

each equipped with one antenna. In such systems, the BS could

utilize MU-MIMO to transmit multiple data streams to multiple

users simultaneously. Nevertheless, to take the advantage of MU-

MIMO in practice, it is prerequisite for the transmitter to learn the

accurate channel state information (CSI) of the users [14]. Note that

in traditional wireless networks, radios can only operate in Half-

duplex (HD) mode, i.e., a radio cannot transmit and receive packets

on the same frequency at the same time. As a result, traditional

schemes to harness the multiplexing gain of MU-MIMO, e.g., [18,

24], require that the channel state information (CSI) of the users

have to be learned first before any data can be transmitted. Such a

sequential channel learning scheme incurs a large overhead when

there are a large number of users, which would in turn substantially

limit the multiplexing gains of MU-MIMO, especially if the channel

https://doi.org/10.1145/3084041.3084046
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coherence time is relatively short [18, 24], the large channel learning
overhead has been a long-standing open problem which limits the
achievable throughput of MU-MIMO in practice.

Recently, Full-duplex (FD) radios [5, 6, 9] have been developed,

which allow simultaneous transmission and reception on the same

frequency. The availability of Full-duplex provides significant flex-

ibility in designing wireless resource allocation algorithms. For

example, it has been shown that in some cases [22], Full-duplex

can almost double the throughput and effectively improve spec-

trum efficiency. This leads to the following natural and important

question: Is it possible to leverage Full-duplex to address the feedback
overhead challenge in Multi-user MIMO downlink systems?

In this paper, we answer this question in the affirmative. By using

a Full-duplex BS, we are able to break the boundary between the

channel learning phase and the data transmission phase. As shown

in Fig. 1, the BS receives the channel probing signal from Alice

in round 1 and measures the downlink channel to Alice assuming

channel is reciprocal
1
. Then in round 2, the BS uses Full-duplex

capability to send data to Alice and receive the probing signal from

Bob simultaneously, assuming Bob does not interfere with Alice.

After the BS measures all downlink channels, the BS operates in

MU-MIMO mode in round 3. Compared to Half-duplex systems,

once the BS knows the downlink channel to Alice, it can start

transmission immediately rather than waiting until the end of the

channel learning phase. Henceforth, we will refer to this concept

as concurrent channel probing and data transmission.

Base Station

Alice Bob

Round 1

Base Station

Alice Bob

Round 2

Base Station

Alice Bob

Round 3

Figure 1: Concurrent channel probing and data transmis-
sion.

Due to the interference between users, the performance of con-

current channel probing and data transmission scheme depends

highly on the set of users selected to send probing signals and the

ordering of these users. Therefore, the following important question

remains: How do we design a low-complexity scheduling policy that
achieves provably good throughput performance under the concurrent
channel probing and data transmission?

While the design of high performance scheduling policies have

been extensively studied in traditional wireless systems [13], rela-

tively few efforts [23] have focused on the scheduling problem in

Full-duplex systems. In particular, it is much more challenging to

consider this problem under concurrent channel probing and data

transmission. The reason is that: 1) The ordering of users sending

probing signal matters. A user that sends a probing signal earlier

also starts transmission earlier. 2) Within one channel coherence

time, the scheduling decisions are coupled in terms of time and in-

terference relations. The rate received by a certain user depends on

1
Measuring downlink channel to a user through channel probing from the user is

standard in a time division duplex (TDD) system [18, 24].

what time it transmits the probing signal as well as the interference

relations with the users scheduled to send probing signals later.

These two facts make the scheduling problem more complicated

and classical scheduling policies do not apply here. In this paper, we

aim to develop a throughput near-optimal scheduling policy and

investigate the Full-duplex gain for a various of network settings.

The key contributions of this paper are summarized as follows:

• We develop a scheduling policy that achieves the optimal

throughput region under concurrent channel probing and

data transmission. Compared to Brute-Force search, the

complexity has been decreased from O (N !) to O ((N /I )I ).
• To further reduce the scheduling complexity in large sys-

tems, we design a low-complexity greedy policy with com-

plexity O (N logN ) that not only achieves at least 2/3 of

the optimal throughput region but also outperforms any

feasible Half-duplex solutions. We conjecture that the real

performance of the greedy policy is very close to the opti-

mal, which is confirmed by simulations.

• Wederive the throughput gain offered by Full-duplex under

different system parameters and use simulations to validate

our theoretical results.

The rest of the paper is organized as follows. We discuss related

works in Section 2. In Section 3, we describe the system model

and problem formulation. In Section 4, we develop a throughput

optimal policy which stabilizes the system under any feasible arrival

rates. In Section 5, we design a low-complexity greedy policy and

provide provable performance guarantees. In Section 6, we derive

the Full-duplex gain under different network settings and system

parameters. We conduct simulations to validate our theoretical

results in Section 7 and make concluding remarks in Section 8.

2 RELATEDWORK
In-band Full-duplex, as an emerging technology in wireless com-

munication, was implemented by combining RF and baseband inter-

ference cancellation [5, 6, 9], enabling simultaneous bi-directional

transmission between a pair of nodes. Full-duplex has now been

widely studied in a number of wireless communication scenarios.

Full-duplex WiFi-PHY based MIMO radios was first implemented

in [4], and experiments showed that the theoretical doubling of

throughput is practically achieved. While it is hard to make Full-

duplex MIMO radios fit in small personal devices, it is feasible

to build a Full-duplex MIMO Base Station due to bigger size and

more powerful computational ability [11]. In [7, 8], the authors pro-

posed the continuous feedback channel, which enables sequential

beamforming that update weights while also performing downlink

transmission. The authors showed that the system outperforms

its Half-duplex counterpart and reduced the control overhead at

the same time. This work can be viewed as an preliminary attempt

of the idea of concurrent channel probing and data transmission.

However, the authors assumed that users are symmetric and did not

consider the scheduling problem, which is the focus of our study

here.

In addition to the research efforts focused on implementation

and experiments, there have also been several theoretical works on

Full-duplex systems. Although Full-duplex is expected to double

the capacity in single pair of nodes, [21] showed that the inter-link
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interference and spatial reuse substantially reduces network-level

Full-duplex gain, making it less than 2 in typical cases. In order to

deal with the increasing inter-link interference, [17] presented a

new interference management strategy to achieve a larger rate gain

over Half-duplex systems. The capacity region of multi-channel

Full-duplex links was characterized in [15] and rate gain is illus-

trated for various channel and cancellation scenarios. The authors

in [22] also investigated the achievable throughput performance

of MIMO, Full-duplex and their variants that allow simultaneous

activation of two RF chains. The scheduling problem in Full-duplex

cut-through transmission was considered in [23], where the authors

characterized the interference relationship between links in the net-

work with cut-through transmission and designed a Q-CSMA type

of scheduling algorithm to leverage the flexibility of Full-duplex

cut-through transmission. In contrast to the aforementioned works,

this is the first work that considers the scheduling problem under

concurrent channel probing and data transmission and provides

analytical framework to characterize the network-level Full-duplex

gain.

3 SYSTEM MODEL
We consider the downlink phase of a single-cell Full-duplex MIMO

system. There are N users in this system and each of them is

equipped with only one antenna. The Base Station (BS) has multiple

antennas and Full-duplex capability. In addition, we assume time is

slotted and we consider a discrete-time system. We use N denote

the set of all users in the system.

3.1 Channel Model
We consider a block fading channel, where the channel state re-

mains the same within each time-slot, but may vary from time-slot

to time-slot. We assume channel state information (CSI) is only

available at the user side at the beginning of each time-slot. In order

to fully achieve the multiplexing gain of MU-MIMO, the BS needs

to collect CSI via feedback through the uplink channel. We assume

that channels are reciprocal, in which case a user could send a

probing signal on its single antenna and the BS, by measuring on

its antennas, learns the downlink CSI. Any CSI expires by the end

of the current time-slot, and it has to be learned again in the next

time-slot. In practice, collecting CSI from multiple users takes time

and its overhead is linear with respect to the number of the corre-

sponding users. We assume that in one time-slot, the transmitter

can collect CSI from at most K users. Therefore, each time-slot can

be further divided into K mini-slots and it takes one mini-slot to

learn each CSI. The BS can only transmit one packet per mini-slot

to each user whose channel information is already known.

In traditional Half-duplex systems, CSI collection and data trans-

mission must be separated in time to avoid interference. Data trans-

mission phase starts only if all desired CSIs are collected. Full-duplex

systems, on the other hand, allows data transmission immediately

after each CSI is collected.

3.2 User Groups
Full-duplex capability does not always offer “free lunch”, its per-

formance suffers from complex interference patterns. One way to

characterize interference is using user groups which guarantee

no inter-group interference. Thus, we can break the scheduling

problem into two steps: 1) Given N users, how to divide them into

different user groups. 2) Given group information, how to find a

scheduling policy that achieves good throughput performance. Di-

viding users into groups is not easy due to the conflict between

interference constraints and the desire to have more groups and

less users in each group. We focus on the second step in this work

and leave the joint problem as the future work. The problem is still

challenging even when the group information is already given.

Assume N users are split into I user groups, which guarantees

no inter-group interference. For example, suppose user ui and uj
are from different groups, the uplink stream of user ui does not
interfere with the downlink stream of user uj . Based on each user’s

geographical statistics, the group information will be determined

once over a much larger time scale. The group information is as-

sumed to be static and remains the same in a time-slot. Fig. 2 is an

illustration of a downlink system with 2 user groups. We use д(u)
to denote the group index of user u, and let Gд (u ) denote the set of

users in group д(u).

Alice

Bob

Base Station

Bob

Group 1 Group 2

Figure 2: A downlink system with 2 user groups, the BS re-
ceives probing signal from Alice and transmits data packets
to Bob (channel is already known) simultaneously.

3.3 Traffic Model
The BS maintains a queue Qu to store packets requested by each

useru. The arrival process to each queue is assumed to be stationary

and ergodic. We assume packet arrival and departure both occur

at the beginning of each time-slot. Let Au [t] denote the number

of packet arrivals to queue Qu in time-slot t . Let Ru [t] denote the
downlink rate to queue Qu in time-slot t . The queue-length Qu [t]
evolves as:

Qu [t + 1] = max {Qu [t] +Au [t] − Ru [t], 0} . (1)

3.4 Scheduling Policy
In each time-slot t , a scheduling policy P determines the sched-

ule based on the system state, e.g., queue-length and delay. Such

schedule can be described as a scheduling vector f = (u1, · · · ,uK ),

which indicates that user ui sends a probing signal in the ith mini-

slot. ui = 0 implies that the BS is only transmitting, not learning

any channel in the ith mini-slot. “0” element is also considered

as a dummy user from a dummy group with zero queue-length.

Due to interference constraints, once the BS chooses to learn user

u’s channel during the ith mini-slot, it will block all other users in

Gд (u ) from receiving any packet. However, the BS can transmit data

packets to users from other groups since there is no interference
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between these groups. We use Rfui to denote the downlink rate to

userui under scheduling vector f . For all i = 1, . . . ,K , Rui [t] = Rfui
if scheduling vector f is adopted in time-slot t . From now on, we

omit the subscript [t] when looking into the schedule made in a

certain time-slot t . Note that Rfui is the number of mini-slots from

i + 1 to K such that the group of the scheduled user is different

from group д(ui ), i.e., R
f
ui =

∑K
j=i+1 1{д (ui ),д (uj ) } . For example,

if f = (ua ,ub ,uc , 0, · · · , 0) and д(ua ) = д(ub ) , д(uc ). From the

second mini-slot to the Kth
mini-slot, there are K − 2 users in f

such that its group is other than д(ua ). Thus, R
f
ua = K −2. Similarly,

we have Rfub = K − 2 and Rfuc = K − 3. Denote the set of feasible
scheduling policies as Π.

In this paper, we mainly focus on the throughput performance

of the system. First we define the optimal throughput region for

any given system parameters N and K . As in [3, 12], a stochastic

queueing network is said to be stable if it behaves as a discrete-

time countable Markov chain and the Markov chain is stable in the

following sense: 1) The set of positive recurrent states is non-empty.

2) It contains a finite subset such that with probability one, this

subset is reached within finite time from any initial state. When

all the states communicate, stability is equivalent to the Markov

chain being positive recurrent [16]. The throughput region ΛP of a

scheduling policy P is defined as the set of arrival rate vectors for

which the network remains stable under this policy.

Definition 3.1. (Optimal throughput region) The optimal through-

put region is defined as the union of the throughput regions of all

possible scheduling policies, which is denoted by Λ∗, i.e.,

Λ∗ =
⋃
P ∈Π

ΛP . (2)

Definition 3.2. (Throughput optimal policy) A scheduling policy is

throughput-optimal if it can stabilize any arrival rate vector strictly

inside Λ∗.

4 OPTIMAL SCHEDULING POLICY
In this section, we propose a throughput-optimal scheduling pol-

icy to the concurrent probing and transmission problem. We first

observe that the following classic result applies to our setting as

well.

Theorem 4.1. Any policy that maximizes the weight w (f ) =∑
u ∈N

QuR
f
u in each time-slot, a.k.a., the MaxWeight scheduling policy,

is throughput-optimal.

Proof. Please refer to the proof in [19]. □

From the theorem, it suffices to find a scheduling vector f∗ such
that the weightw (f ) is maximized in each time-slot, i.e.,

f∗ = argmax

f

∑
u ∈N

QuR
f
u . (3)

However, it is not trivial to find a MaxWeight schedule with

low complexity. We note that for traditional wireless scheduling

under 1-hop interference, MaxWeight scheduling boils down to

finding a maximum weighted matching in each time-slot, which

can be done in O (N 3) where N is the number of nodes. This result

does not apply to our setting, however, since the ordering of users

sending probing signal matters. A Brute-Force search enumerates

all possible permutations of users, leading to a high complexity of

O (N !), which is infeasible when N is large. Thus, an interesting

question is how to find a MaxWeight schedule in our setting in a

more efficient way. To this end, we propose the following algorithm

with complexity O ((N /I )I ) (polynomial when I is a constant re-
gardless of N ). In the algorithm,mi indicates the number of users

to be chosen from group i , 1 ≤ i ≤ I , and m = (m1, · · · ,mI ) is the
user-selection vector. Algorithm 1 will be applied to each time-slot

to generate the MaxWeight schedule.

Algorithm 1 Search algorithm for MaxWeight Schedule

Input: For all u ∈ N , group д(u) and queue-length Qu .

Output: Scheduling vector f̂
1: Initialization: User-selection vector m = (0, 0, · · · , 0),

ŵ = 0, f̂ = (0, 0, · · · , 0).
2: for all m such that

∑
imi ≤ K do

3: Set scheduling vector f = (0, 0, · · · , 0).
4: Set scheduled user setU = ∅
5: for i=1, 2, · · · , I do
6: Addmi users with longest queue-length from group i to

U .

7: Fill in scheduling vector f with users inU ,

following the Longest Queue-length First order.

8: if w (f ) > ŵ then
9: ŵ = w (f )
10: f̂ = f
11: return f̂

For a given user-selection vector m, Algorithm 1 picksmi users

from group i with longest queue-length, for all i = 1, 2, · · · , I . It
then generates a candidate scheduling vector f by filling in users

following the Longest Queue-length First (LQF) order. The weight

w (f ) is evaluated for all possible user-selection vectors m and its

resulting scheduling vector, Algorithm 1 returns the scheduling

vector f̂ that has the maximum weight.

Theorem 4.2. The schedule f̂ returned by Algorithm 1 maximizes
weightw (f ).

Proof. We divided the proof into two steps. For the first step,

we show that the LQF order maximizes the weight for a given

scheduled user set. Then for the user-selection part, we show that

it is sufficient to evaluate all possible user-selection vectors m and

its resulting scheduled user set by addingmi users with longest

queue-length from each group i . The proof details are provided in

our technical report [2].

Given m, the schedule yields maximum weight is determined

by: (1) For each group i , addmi users with longest queue-length

into the scheduled user setU (m). (2) Schedule the users fromU (m)
following the LQF order. Thus, traversing all possible m will re-

turn the MaxWeight schedule. And this proves the optimality of

Algorithm 1. □

Remark 4.2.1. Applying LQF to the set of all users does not guar-
antee the maximum. Since LQF is a myopic rule, it always gives higher
priority to users with longer queue-length regardless of their interfer-
ence relations. In fact, queue-length and interference relations both
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play a key role in this problem, and we need to do user-selection to
get a good balance between these two factors.

5 A LOW-COMPLEXITY GREEDY POLICY
Although Algorithm 1 returns throughput optimal policy in poly-

nomial time, the complexity O ((N /I )I ) grows very high when the

number of groups I is large. It is interesting to see whether there is

any low-complexity policy that achieves provably good throughput.

In this section, we propose a greedy algorithm which incremen-

tally adds users to the schedule and prove that it achieves at least

2/3 of the optimal throughput region. In addition, our proposed

greedy policy always achieves a larger throughput region than any

scheduling policies under Half-duplex.

5.1 Greedy Algorithm Description
Definition 5.1. (Marginal Gain) Given a schedule f = (u1, · · · ,uΩ,

0, · · · , 0) and a user u that is a candidate user to be considered in

jth mini-slot (when evaluating useru, the first j −1 scheduled users

have already been determined in f ), themarginal gain∆
f, j
u is defined

to be the weight difference caused by adding user u as the jth ele-

ment of f , assuming there are no future scheduled users, i.e., ∆
f, j
u =

w
(
(u1, · · · ,uj−1,u, 0, · · · , 0)

)
−w
(
(u1, · · · ,uj−1, 0, · · · , 0)

)
.

To evaluate the marginal gain of adding user u to the schedule

f , we must consider the benefit as well as the cost. The benefit is

obvious, we have one more user and it keeps transmitting packets

until the end of the current time-slot, i.e., receives a rate of K − j.
Hence its weight contribution is Qu (K − j ). On the other hand, if

we schedule user u in jth mini-slot, it will block the transmission of

the previously scheduled users that are from the same group д(u).

Thus, the weight loss is

∑j−1
i=1 Qui 1{д (ui )=д (u ) } . Therefore, we have:

∆
f, j
u = Qu (K − j ) −

j−1∑
i=1

Qui 1{д (ui )=д (u ) } . (4)

A positive marginal gain means that by adding a new user, the

weight will not be decreased. Marginal gain considers queue-length

as well as the group information and is able to discriminate different

cases (e.g., long queue-length & strong interference v.s. short queue-

length & weak interference). Although the marginal gain is not the

actual gain of user uj since we do not know the future scheduled

users, it is still a good metric to evaluate the potential gain of

adding one candidate user to the current schedule. Moreover, as we

will soon see, the Marginal Gain-based Greedy (MGG) Algorithm

achieves good throughput performance.

The MGG Algorithm, inspired by Section 4, we first sort users

according to their queue-lengths, and then start from the user that

has the longest queue-length in the system, the MGG Algorithm

iteratively evaluates the useru with next longest queue-length. The

MGG Algorithm will add user u if its marginal gain is positive,

otherwise skip user u and continue to evaluate the user with the

next longest queue-length until K users have been scheduled or all

N users are all evaluated.

The complexity of Algorithm 2 is at most O (N logN ) (comes

from the sorting operation), regardless of the value I takes. Com-

pared to Algorithm 1, Algorithm 2 uses LQF and marginal gain to

efficiently select valuable users. Again, applying LQF only would

Algorithm 2 Marginal Gain-based Greedy Algorithm

Input: ∀ user u ∈ N , group д(u) and queue-length Qu .

Output: Scheduling vector fG

1: Initialization: fG = (0, · · · , 0)
2: Initialization: index = 1

3: Sort queue-length, assume Qu1 ≥ Qu2 ≥ · · ·QuN
4: for all i from 1 to N do
5: if index ≤ K then
6: if ∆fG ,index

ui ≥ 0 then
7: Add user ui to fG as the index

th
element

8: index = index + 1
9: return fG

work poorly, since it only gives higher priority to those users with

longer queue-length rather than large marginal gain. In fact, the

inter-user interference is very important and should not be ignored.

5.2 Performance Analysis
The MGG Algorithm is simple, however it sacrifices some through-

put performance. In this section, we aim to provide a theoretical

worst-case lower bound on its throughput performance.

Theorem 5.2. The Greedy Algorithm 2 stabilizes at least 2/3-
fraction of the arrival vector on the optimal throughput region, i.e.,
achieves 2/3 of the optimal throughput region.

Proof. From [10], we know that it suffices to show thatw (fG ) ≥
2/3w (f∗), where f∗ is the MaxWeight schedule. Consider the users

selected by fG and f∗. LetA denote the set of users shared by both

schedules, let B denote the set of users only scheduled in f∗ and
let C denote the set of users only scheduled in fG .

Remark 5.2.1. The MaxWeight schedule is not necessarily unique,
but these schedules have the same weight. We can choose any of these
schedules to be schedule f∗ here.

Remark 5.2.2. In practice, users in B could interfere with users in
A. Here in the proof, we aim to show a stronger claim which assumes
that in the MaxWeight schedule, users from B do not interfere with
users in A and B itself.

Definition 5.3. (Extra weight) Extra weight ϵ is defined to be the

weight loss in the MGG schedule caused by interference from users

in C. That is to say, the total weight w (fG ) + ϵ is calculated as if

there is no interference caused by users in C, adding each user in

C does not block the downlink transmission of all the scheduled

users which are from the same group.

We divide the proof into two parts, for the first part, we show that

w (fG ) + ϵ ≥ w (f∗). Then we show that ϵ ≤ 1/2w (fG ). Combining

both parts, we knoww (fG ) ≥ 2/3w (f∗), which concludes the proof.

Part 1 In this part, we want to show that w (fG ) + ϵ ≥ w (f∗),
which means the weight of the MGG schedule by ignoring the

interference caused by users in C is greater than the weight of the

MaxWeight schedule. The following lemmas illustrate the relation-

ship between the MGG schedule and MaxWeight schedule, and

these results will be used later.
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Lemma 5.4. Consider theMaxWeight schedule f∗ = (u∗
1
, · · · ,u∗Ω, 0,

· · · , 0). For each 1 ≤ i ≤ Ω, the marginal gain ∆f∗,i
u∗i
≥ 0.

Proof. Please see our technical report [2]. □

Remark 5.4.1. Similar to the MGG schedule generated by Algo-
rithm 2, the MaxWeight schedule adds a user only if the marginal
gain is non-negative. The only difference is that the MGG schedule
will give higher priority to users with longer queue-length, whereas
the MaxWeight schedule may skip some users with long queue lengths
and choose other users with large marginal gain.

In the MaxWeight schedule, for each user u ∈ A ∪ B, we use
t1 (u) to denote the mini-slot that user u is scheduled. In the MGG

schedule, for each user u ∈ N we define t2 (u) to be the mini-slot

that its marginal gain is evaluated (either schedule u or skip u in

t2 (u)
th

mini-slot), if u has never been considered as a candidate,

t2 (u) = K .

Lemma 5.5. In the MaxWeight schedule, for each b ∈ B, consider
user d which has the longest queue-length among all users in group
д(b) that are not scheduled in the MGG schedule. We have: t1 (b) <
t2 (d ), i.e., b is scheduled earlier in the MaxWeight schedule than the
time that d is skipped in the MGG schedule.

Proof. Please see our technical report [2]. □

Define NB (t ) and NC (t ) to be the number of users in B and

C scheduled in the MaxWeight and MGG schedule from the first

mini-slot to t th mini-slot. We have the following lemma:

Lemma 5.6. For each b ∈ B, which is scheduled in t1 (b)th mini-
slot, we have NB (t1 (b)) ≤ NC (t1 (b)).

Proof. Please see our technical report [2]. □

From Lemma 5.6, we can find amapping h : B → C , ith user bi
inB corresponds to ith user ci in C, such that ci is always scheduled
earlier than bi , i.e., t1 (bi ) ≥ t2 (ci ). For each user bi , consider user
di which has the longest queue-length among all users in group

д(bi ) that are not scheduled in the MGG schedule. Note that users

from group д(bi ) only belongs to A or B, user di has the longest
queue-length among all users in B ∩ Gд (bi ) , thus Qdi ≥ Qbi . From

Lemma 5.5, we know t1 (bi ) < t2 (di ) and thus t2 (ci ) < t2 (di ). Then
Qci ≥ Qdi due to the LQF order of evaluating users in the MGG

policy. Therefore, Qci ≥ Qbi .

Lemma 5.7. The MGG schedule will schedule more users than the
MaxWeight schedule, i.e., |B| ≤ |C|.

Proof. Please see our technical report [2]. □

Nowwe are ready to prove the result of part 1. Comparew (fG )+ϵ
withw (f∗), we have two kinds of losses.

A loss: For each user a ∈ A, a will be scheduled no earlier

in the MGG schedule than that in the MaxWeight schedule, i.e.,

t1 (a) ≤ t2 (a) (corollary of Lemma 5.6). Each user a in the MGG

schedule will receive lower or equal rate than that in theMaxWeight

schedule.

B loss: In the MGG schedule, there is no weight contributed by

users in B.

If the total weight of the users in C can be used to cover A and

B losses, thenw (fG ) + ϵ ≥ w (f∗) holds. First, we consider A loss:

let Lossai denote the weight loss on user ai .

Lossai = Qai (K − t1 (ai )

− |{a ∈ A|a is scheduled after ai in f∗}|)

−Qai (K − t2 (ai )

− |{a ∈ A|a is scheduled after ai in fG }|)

= Qai (t2 (ai ) − t1 (ai )) ≥ 0. (5)

Similarly, we use Lossbi to denote the weight loss on user bi :

Lossbi = Qbi (K − t1 (bi )) ≥ 0. (6)

The weight differencew (fG ) + ϵ −w (f∗) is the total weight of
C minus A loss and B loss:

w (fG ) + ϵ −w (f∗)

=

|C |∑
i=1

Qci (K − t2 (ci )) −

|A |∑
i=1

Lossai −

|B |∑
i=1

Lossbi

=

|C |∑
i=1

Qci (K − t2 (ci )) −

|A |∑
i=1

Qai (t2 (ai ) − t1 (ai ))

−

|B |∑
i=1

Qbi (K − t1 (bi ))

(d )
≥

|B |∑
i=1

Qci (t1 (bi ) − t2 (ci )) +

|C |∑
i= |B |+1

Qci (K − t2 (ci ))

−

|A |∑
i=1

Qai (t2 (ai ) − t1 (ai ))

(e )
=

|C |∑
i=1

Qci (t1 (bi ) − t2 (ci )) −

|A |∑
i=1

Qai (t2 (ai ) − t1 (ai )). (7)

where inequality (d) comes from the property of mapping h and

equation (e) is derived by setting t1 (bi ) = K for any dummy user

bi , |B| < i ≤ |C|. Note that for each i , t1 (bi ) − t2 (ci ) ≥ 0 and

t2 (ai ) − t1 (ai ) ≥ 0.

Lemma 5.8. The R. H. S. of (7) is non-negative.

Proof. Please see APPENDIX A. □

The result of Lemma 5.8 concludes the proof of part 1.

Part 2 In this part, we want to show that ϵ ≤ 1/2w (fG ), i.e., the
extra weight is upper bounded by one half of the weight of the

MGG schedule. We use ϵi andwi (fG ) to denote the extra and actual
weight from group i . It suffices to show a stronger (per-group) claim:

For each group i , we have ϵi ≤ 1/2wi (fG ).
For each group i , note that we only need to consider the worst

case where all the users from group i are in C. Otherwise, assume

there are some users in A, thenwi (fG ) remains the same while ϵi
is smaller.

Lemma 5.9. Assume in theMGG schedule, we havem users (u1, · · · ,
um , with queue-length Qu1 ≥ · · · ≥ Qum ) from group i , define Tm
to be the smallest rate of the last scheduled user such that the MGG
schedule is feasible (marginal gain is always non-negative). Consider
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the case K = Km ≜ Tm + t2 (um ), we have ϵKmi ≤ 1/2wi
(
fGKm
)
,

where ϵKmi andwi
(
fGKm
)
are extra weight and actual weight of fG

from group i under Km .

Proof. Please see APPENDIX B. □

Note that Km is the smallest value of K such that the MGG

schedule is feasible, for any K ≥ Km , extra weight ϵi will be the
same since it is only related to u1, · · · ,um , however, wi (fG ) will
increase with K .

ϵKi

wi (fGK )
≤

ϵKmi

wi (fGKm )
≤ 1/2. (8)

Therefore, we know for every feasible MGG schedule, ϵi/wi (fG )
is less than one half for any group i = 1, · · · , I . We finish the proof

of part 2 and now we are able to showw (fG ) ≥ 2/3w (f∗). □

Proposition 5.10. The 2/3 worst-case lower bound is tight in terms
of weight.

Proof. Assume K = 2
r
for some positive integer r > 0. All

the users have the same queue-length, and there are K − 1 groups
where each group has sufficiently many users. Then the MaxWeight

schedule will serve K − 1 users, one for each group, which gives a

total rate ofK (K −1)/2, while the MGG Algorithm servesK/2 users
from group 1, K/4 users from group 2, · · · and 1 user from group

r , which gives a total rate of (K2 − 1)/3. As K → ∞, the efficiency

ratio becomes arbitrarily close to 2/3. □

Theorem 5.11. The throughput region of the proposed MGG policy
is no smaller than the optimal throughput region under Half-duplex.

Proof. We first prove the following lemma, which shows that

the weight of MGG policy dominates the weight of any Half-duplex

policy.

Lemma 5.12. The weight of the MGG policy is no smaller than
the maximum weight under Half-duplex, i.e.,w (fG ) ≥ w∗HD , where
wHD (·) is the total weight calculated under Half-duplex.

Proof. Please see our technical report [2]. □

Now we need to show that the MGG policy stabilizes any arrival

vector λ = (λ1, · · · , λn ) within the optimal throughput region

under Half-duplex Λ∗HD . The following lemma can be used to prove

this claim.

Lemma 5.13. Consider the capacity regionΛHD under Half-duplex,
w∗HD is the maximum weight among all feasible scheduling policies
under Half-duplex. If there exists a Full-duplex scheduling policy fG ,
such thatw (fG ) ≥ w∗HD (f ) for any queue-length vector, then policy
fG can stabilize any arrival vector within Λ∗HD .

Proof. Please see our technical report [2]. □

Applying Lemma 5.12 and 5.13, Theorem 5.11 follows. □

Remark 5.13.1. Other promising low-complexity algorithms, such
as greedily select users with the largest marginal gain or simply adopt
certain amount of users from each group cannot work well either
in the comparison with traditional Half-duplex schemes or under
heterogeneous traffic arrivals.

6 CAPACITY GAIN OF FULL-DUPLEX OVER
HALF-DUPLEX

In this section, we will discuss the capacity gain of Full-duplex

over Half-duplex. Let ΛFD and ΛHD denote the capacity region

under Full-duplex and Half-duplex mode, respectively. To simplify,

we only evaluate the capacity magnitude νFD and νHD along the

(1, · · · , 1) vector (e.g., (νFD , · · · ,νFD ) is the largest arrival vector
such that all users have the same arrival rate and the queuing

system can be stabilized under Full-duplex mode). In addition, we

assume all groups have the same size, i.e., N1 = · · · = NI = N /I .
For Half-duplex, if the sum-rate is upper bounded by BHD , then

the lowest service rate is upper bounded by BHD/N . According to

the basic queuing theory, νHD ≤ BHD/N . The sum-rate is calcu-

lated by:

N∑
i=1

RHD
i =

*.
,
K −

I∑
j=1

mj
+/
-

I∑
j=1

mj . (9)

wheremj is the j
th

element in the user-selection vector. If N ≥ K/2,

the maximum of the sum-rate is achieved by taking

∑I
j=1mj = K/2,

thus the upper bound BHD =
K 2

4
. Otherwise, if K is larger, the

maximum is achieved by scheduling all users in the system, BHD =
(K − N ) N . To sum up,

νHD =



K 2

4N , N ≥ K/2,

K − N , otherwise.

(10)

Next, we will look at the Full-duplex case, consider a randomized

policy P which uses random schedules from time-slot to time-slot,

denote its sum-rate as BFD . Since the optimal throughput region

is the union of the throuutghput regions of all possible scheduling

policies, we have νFD ≥ BFD/N . The sum-rate under f is calculated
by:

N∑
i=1

Rfi =
I∑
j=1

∑
k<j

mjmk +
*.
,
K −

I∑
j=1

mj
+/
-

I∑
j=1

mj . (11)

wheremj is the j
th

element in the user-selection vector m.

The first term of the R. H. S. of (11) calculates the total rate from

the first mini-slot to

∑I
j=1m

th
j mini-slot, we only need to count

the number of user pairs (ui ,uj ) such that д(ui ) , д(uj ) and ui is

scheduled before uj . After
∑I
j=1m

th
j mini-slot, all scheduled user

will have K −
∑I
j=1mj additional rate. The total rate from the re-

maining mini-slot is just

(
K −
∑I
j=1mj

) ∑I
j=1mj . To get the upper

bound of the sum-rate, we need to solve the following maximization

problem.

maximize

m

I∑
j=1

∑
k<j

mjmk +
*.
,
K −

I∑
j=1

mj
+/
-

I∑
j=1

mj

subject to mi ≤ N /I ,mi ∈ N,

for all i = 1, 2, · · · , I .

If N /I ≥ K
I+1 for all i = 1, 2, · · · , I , then the maximum is achieved

by takingmi =
K
I+1 for all i = 1, 2, · · · , I . In this case, BFD =

IK 2

2(I+1) .

Otherwise, the maximum is achieved by takingmi = N /I for all i .
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BFD =
N (2IK−N−I N )

2I . In a word,

νFD =



IK 2

2N (I+1) , N ≥ IK
I+1 ,

2IK−N−I N
2I , otherwise.

(12)

Define Full-duplex gain GFD =
νFD
νHD

, α = K/N . We have:

GFD =




2I
I+1 , α < I+1

I ,
2(2I α−1−I )

I α 2
, I+1

I ≤ α < 2,

1 + I−1
2I (α−1) , α ≥ 2.

(13)

Fix group number I = 10, Fig. 3 shows the Full-duplex gain GFD
for different α . As we can see in the figure, if α is smaller than 1.1,

K/N ratio (α )
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Figure 3: Full-duplex gain versus α , when the group number
I = 10.

Full-duplex gain GFD remains larger than 1.8. In this regime, the

number of usersN is larger than (or comparable to)K , which means

the learning phase takes as long as nearly K/2 mini-slots. Note that

the Full-duplex gain comes from concurrent channel probing and

data transmission, the longer learning phase takes, the larger GFD
will be observed. On the other hand, when α becomes larger,GFD
decreases from 1.82 to 1.18. This is because the learning phase is

negligible compared to K , thus we don’t have much gain compared

to the traditional schemes. In general, when I becomes larger, the

upper bound of the GFD becomes closer to 2, which matches the

expected potential of the Full-duplex gain.

Fix α to be 1.0, 1.5 and 3, Fig. 4 shows how does the Full-duplex

gain GFD change with different group number I . From Fig. 4, we

can observe that the Full-duplex gain GFD keeps increasing as I
becomes larger. The scheduler has more flexibility when given more

groups, thus a larger Full-duplex gain should be expected. Moreover,

in many user regime (green and blue curve), GFD has improved by

40% and 30% when I increases from 2 to 15. However, GFD does

not improve much in small user regime (red curve). The learning

phase only takes a small fraction of time, thusGFD is always a little

larger than 1.1, regardless of what value I takes.

7 NUMERICAL RESULTS
In this section, we use simulations to evaluate our proposed greedy

policy and compare its performance with traditional Half-duplex

and Full-duplex MaxWeght Scheduling (MWS) schemes.

Group Number I
2 3 4 5 6 7 8 9 10 11 12 13 14 15

F
u

ll
-d

u
p

le
x

 G
a

in
 i

n
 S

u
m

-r
a

te
 G

F
D

1

1.2

1.4

1.6

1.8

2
α=1.0
α=1.5
α=3.0

Figure 4: Full-duplex gain versus group number I , when the
K/N ratio (α ) is fixed.

7.1 Simulation Settings
We consider the downlink system of a single-cell Full-duplex MIMO

system. There are N users in this system and each user is equipped

with only one antenna. The BS is assumed to have sufficiently

large number of antennas. Suppose all users are divided into I user
groups such that users from different group does not interfere with

each other. Unlike the assumption we make in Section 6, each user

group now could have different group size. In addition, we assume

that each time-slot has 15 mini-slots, i.e., K = 15. We consider i.i.d.

arrival, i.e.,

Au [t] =



K , with probability λ,

0, otherwise.

where λ is the scaled arrival rate of queue u, u ∈ N .

7.2 Performance of Greedy Policy under
Different Regimes

Fix group number I = 4, we then evaluate the performance of the

proposed greedy policy in three regimes which represent three

conditions of (13). Define regime 1 as the many-user regime such

that α ≤ 1.25. In regime 1, we take N1 = 8,N2 = 5,N3 = 6,N4 = 1,

with sum N = 20 and α = 0.75. Regime 2 denotes the moderate

regime, where N is comparable with K such that 1.25 ≤ α ≤ 2.

In regime 2, N1 = 3,N2 = 2,N3 = 2,N4 = 3, with sum N = 10

and α = 1.5. Regime 3 represents the small-user regime such that

α ≥ 2. In regime 3, we take N1 = 1,N2 = 1,N3 = 1,N4 = 1, with

sum N = 4 and α = 3.75. For all these three scenarios, we plot the

average queue-length under different arrival rate λ in Fig. 5.

In all three regimes, the performance of the MGG policy is very

close to the Full-duplex MaxWeight policy. Thus, the throughput

performance of the MGG policy is also very close to optimal. The

Full-duplex gain is larger if α is small, meaning K is smaller com-

pared to N . In this case, the control overhead of sending probing

signals becomes the system bottleneck. Introducing Full-duplex

reduces the control overhead and thus the throughput is improved

substantially. As α becomes larger, the control overhead no longer

limits the throughput, since it only takes a small fraction of time to

send probing signals. As a result, Full-duplex gain decreases from

1.5 to 1.13 from as α increases from 0.75 to 3.75.
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Figure 5: Average queue-length under different arrival rate.

7.3 Performance of Greedy Policy under
Random Group Assignments

GivenN users, the way of assigning users to different groups affects

the Full-duplex gain. In this section, we would like to evaluate

throughput performance under random group assignments. Fix

group number I = 4, number of users N = 10 and K = 15. Assume

that each user has equal probability to be assigned to each group,

the following figure shows the empirical CDF of the Full-duplex

gain for 10000 samples of random group assignments.
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Figure 6: The empirical CDF for Full-duplex gain compared
to Half-duplex throughput optimal policy

From Fig. 6, we can observe that the Full-duplex gain of the MGG

policy and MaxWeight policy have similar distributions. Although

in theory there may exist scenarios in which the MGG policy is sub-

optimal, in typical scenarios it achieves near-optimal throughput

performance. The median Full-duplex gain under the MaxWeight

scheduling and the MGG policy is around 1.48. Although the lowest

Full-duplex gain is around 1.3, in typical scenarios (90% of all sam-

ples), the Full-duplex gain is larger than 1.44 (44% improvement).

8 CONCLUSION
In this paper, we develop a throughput optimal scheduling policy for

concurrent channel probing and data transmission scheme. To fur-

ther reduce the complexity when there are a large number of groups,

we propose a greedy policy with complexity O (N logN ) that not
only achieves at least 2/3 of the optimal throughput region but also

outperforms any feasible Half-duplex solutions. Furthermore, we

derive the Full-duplex gain for different system parameters. Finally,

we use numerical simulations to validate our theoretical results.
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A PROOF OF LEMMA 5.8
Definition A.1. (Available rate) Let S (t ) denote the “available rate”

in t th mini-slot:

S (t + 1) = S (t ) +



t1 (bj ) − t2 (c j ) if uGt = c j ,

−(t2 (aj ) − t1 (aj )) if uGt = aj .

where the initial value S (0) = 0 and uGt is the t th element in the

MGG schedule fG .

Start with the first scheduled user in fG , if we encounter with a

user from C, then the “available rate” will be added t1 (bj ) − t2 (c j )
more rates offered by users in C. Otherwise, the “available rate”

will be deducted by “A loss rate” t2 (aj )− t1 (aj ). In general, S (t + 1)
is the sum of available rate of queue-length no smaller than QuGt

.

The definition of S (t ) allows us to decouple the queue-length from

its rate, and to evaluate (7), we only need to compare the “available

rate" and “A loss rate". If for any 1 ≤ t ≤ K , S (t ) is always non-
negative, then the R. H. S. of (7) is also non-negative. Consider each

t such that uGt ∈ A, S (t + 1) ≥ 0 means the sum of available rate

received by users with queue-length higher thanQuGt
is larger than

the “A loss rate” on user uGt . That is to say, for each ai , there will
be sufficiently many rate offered by users in C which have longer

queue-length than Qai . It is sufficient to show that the R. H. S. of

(7) is non-negative.

On the other hand, we can rewrite the recursion formula of S (t )
as:

S (t + 1) = S (t ) +



t1 (bj ) − t2 (c j ) if uGt = c j ,

t1 (aj ) − t2 (aj ) if uGt = aj .

Start from t = 1, for each user uGt , S (t ) increments by the time

difference of scheduling the same user or the corresponding user

under mapping h. Thus, S (t ) is actually the difference between the

sum of t different timestamps in MaxWeight schedule and the sum

of t consecutive timestamps from 1, 2, · · · up to t . The later sum is

the minimum of the sum of t different timestamps, hence S (t ) ≥ 0

holds for any 1 ≤ t ≤ K .

B PROOF OF LEMMA 5.9
We use mathematical induction to prove this lemma.

Base Case: Ifm = 1, it is the trivial case, since ϵK1

i = 0.

Ifm = 2, we have:

ϵK2

i

wi (fGK2

)
=

Qu1
Qu1 (T2 + t2 (u2) − t2 (u1) − 1) +Qu2T2

. (14)

We know that Qu2T2 ≥ Qu1 and T2 ≥ 1, t2 (u2) − t2 (u1) ≥ 1.

HenceQu1 (T2 + t2 (u2) − t2 (u1) − 1) +Qu2T2 ≥ 2Qu1 and
ϵK2

i
wi (fGK

2

)
≤

1/2.

Inductive hypothesis: Assume the lemma holds for m users

from group i , i.e.,
ϵKmi

wi
(
fGKm
) ≤ 1/2.

Inductive step: consider the case where we havem + 1 users
from group i (Qu1 ≥ Qu2 · · · ≥ Qum+1 ). Tm+1 must satisfy:




Qum+1Tm+1 ≥
m∑
j=1

Quj . (15)

Qum+1 (Tm+1 − 1) <
m∑
j=1

Quj . (16)

User u1,u2, · · · ,um will determine Tm :




QumTm ≥
m−1∑
j=1

Quj . (17)

Qum (Tm − 1) <
m−1∑
j=1

Quj . (18)

We then evaluate ϵKm+1i /wi (fGKm+1 ):

ϵKm+1i

wi
(
fGKm+1

)

=

ϵKmi +
m∑
j=1

Quj

wi
(
fGKm
)
+Qum+1Tm+1 +

m∑
j=1

Quj (Km+1 − Km − 1)

. (19)

Given the inductive hypothesis, it suffices to show

2

m∑
j=1

Quj ≤ Qum+1Tm+1 +
m∑
j=1

Quj (Km+1 − Km − 1) . (20)

From (15), we already know

∑m
j=1Quj ≤ Qum+1Tm+1. We only need

to show

∑m
j=1Quj ≤

∑m
j=1Quj (Km+1 − Km − 1), or equivalently,

Km+1 − Km − 1 ≥ 1. By definition, Km+1 = t2 (um+1) + Tm+1 ≥
t2 (um ) + 1 + Tm+1, Km = t2 (um ) + Tm . The only thing left is to

showTm+1 −Tm ≥ 1 (Tm+1 > Tm ). SupposeTm ≥ Tm+1, from (18),

we know:

QumTm <
m−1∑
j=1

Quj +Qum =

m∑
j=1

Quj . (21)

Then,

Qum+1Tm+1 ≤ QumTm <
m∑
j=1

Quj . (22)

(22) contradicts (15), therefore,Tm+1 > Tm ,Tm+1 −Tm ≥ 1, Lemma

5.9 holds.


	Abstract
	1 Introduction
	2 Related Work
	3 System model
	3.1 Channel Model
	3.2 User Groups
	3.3 Traffic Model
	3.4 Scheduling Policy

	4 Optimal Scheduling Policy
	5 A Low-complexity Greedy Policy
	5.1 Greedy Algorithm Description
	5.2 Performance Analysis

	6 Capacity Gain of Full-duplex over Half-duplex
	7 Numerical Results
	7.1 Simulation Settings
	7.2 Performance of Greedy Policy under Different Regimes
	7.3 Performance of Greedy Policy under Random Group Assignments

	8 Conclusion
	A Proof of Lemma 5.8
	B Proof of Lemma 5.9
	Acknowledgments
	References

