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Abstract

We introduce a natural variant of the (metric uncapacitateaiedian problem that we call the online
median problem. Whereas tikemedian problem involves optimizing the simultaneous placemeht of
facilities, the online median problem imposes the following additional constraints: the facilities are
placed one at a time; a facility cannot be moved once it is placed, and the total number of facilities to
be placedk, is not known in advance. The objective of an online median algorithm is to minimize the
competitive ratio, that is, the worst-case ratio of the cost of an online placement to that of an optimal
offline placement. Our main result is a linear-time constant-competitive algorithm for the online median
problem. In addition, we present a related, though substantially simpler, linear-time constant-factor
approximation algorithm for the (metric uncapacitated) facility location problem. The latter algorithm is
similar in spirit to the recent primal-dual-based facility location algorithm of Jain and Vazirani, but our
approach is more elementary and yields an improved running time.
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1 Introduction

Suppose we wish to open a new chain of stores in a city witleighborhoods, and that we have a good
estimate of the demand for our product in each neighborhood. In determining where to locate the stores,
our high-level strategy is to minimize tlservice cosaissociated with our configuration of stores, which we

define as the demand-weighted average distance from a customer to the nearest store. Our business plan is
to start with one store, and then to gradually add new stores as allowed by our profits. (Remark: We will
never move a previously established store.) Thus our configuration of stores may change over time, and
hence the ratio between the service cost of our configuration and that of an optimal same-size configuration
may also change. The goal of tbaline median problers to choose a site for each new store so that the
maximum value of this ratio is minimized. An online median algorithm that guarantees a ratio of at most

is said to achieve eompetitive ratioof r, or to ber-competitive

The variant of this problem in which the total number of stores to be builts known in advance
corresponds to the classiemedian problem The k-median problem is known to be NP-hard and has
been studied extensively over several decades (see, e.g., [17] for many pointers to the literature). Recently,
Charikaret al. presented the first polynomial-time constant-factor approximation algorithm fériedian
problem [3]; even more recently, improved time bounds and approximation factors have been obtained by
Charikar and Guha [2] and Jain and Vazirani [11].

Note that the online median problem can be viewed as the offline problem of determining a permutation
of then neighborhoods (specifying the order in which to build our stores) that minimizes the maximum ratio
between the service cost of any prefix of the permutation and that of an optimal same-size configuration.
We adopt this view throughout the remainder of the paper. Given the existence of constant-factor approx-
imation algorithms for thé-median problem, it is natural to ask whether there is a constant-competitive
algorithm for the online median problem. In other words, can we (efficiently) find a permutation of the
neighborhoods such that the service cost of any prefix of the permutation is at most a constant times that of
an optimal same-size configuration? Note that, given an arbitrary problem instance, it is nat [tear
that such a permutation even exists.

In this paper, we affirm the existence of such a permutation and give a deterministic constant-competitive
algorithm for the online median problem. Furthermore, the running time of our algoritiinri$ + ¢n)

(where/ is the number of bits required to represent each distance), which is linear in the size of the input.
While the main contribution of this paper is to identify and solve the online median problem, it worth noting
that thek-median problem is a special case of the online median problem. Hence our linear-time online
median algorithm is also the first linear-time constant-factor approximation algorithm fds-thedian
problem. (The best previous running time®@(n? logn)(¢ + logn)) is given in [11].)

An obvious approach to the online median problem is to iteratively choose the point that minimizes the
objective function. Greedy strategies of this kind are commonly applied in the design of online algorithms [1,
10]. It turns out, however, that for the online median problem, the simple strategy suggested above has an
unbounded competitive ratio. We show that a modification of this strategy that weeralichically greedy
can be used to obtain a constant-competitive linear-time algorithm for the online median problem. We
develop this strategy by first considering a simple greedy algorithm for facility location.

1.1 Problem Definitions

Fix a set of pointd/, a distance functiod : U x U — IR, and nonnegative function§w : U — IR. We

assume throughout thdtis a metric, that is¢d is nonnegative, symmetric, satisfies the triangle inequality,
andd(z,y) = 0iff x = y. For the online median problem, it will prove to be useful to consider a slightly
more general class of distance functions in which the triangle inequality is relaxed to the following “



approximate” triangle inequality, whepe> 1: For any sequence of points, . .., z,, in U, d(zg, z,,) <
XY o<iem d(xi, xip1). We refer to such a distance function as-approximate metric We letn = |U|,
and define a subset &f to be aconfiguration iff it is nonempty. For any poini: and configurationX, we
defined(z, X') asmin,ecx d(x,y).

We consider three computational problenismedian, online median, and facility location. For the
k-median and online median problems, tlestof a configuration, which we denote asst(X), is defined
to be}", oy d(z, X) - w(x). The input to thek-median problem igU, d), w, and an integek, 0 < k < n.
The output is a minimum-cost configuration of sizeThe input to the online median problem(ig, d) and
w. The output is a total order aii. We define the competitive ratio of such an ordering as the maximum
over allk, 0 < k < n, of the ratio of the cost of the configuration given by the firgtoints in the ordering
to that of an optimak-median configuration. We define thempetitive raticof an online median algorithm
as the supremum, over all possible choices of the input instdned andw, of the competitive ratio of the
ordering produced by the algorithm.

For the facility location problem, theostof a configuration, denoteebst(X ), is defined as the sum of
Yowex flx)andy” iy d(x, X) - w(z). The input to the facility location problem {#/, d), f, andw. The
output is a minimum-cost configuration.

1.2 Previous Work

There has been much prior work on the facility location &Aahedian problems. In this paper we focus
on the metric versions of these problems; for recent work and pointers to the literature on the general (non-
metric) facility location andc-median problems, see [19]. The first constant-factor approximation algorithm
for facility location is due to Shmoyat al.[18] and is based on rounding the (fractional) solution to a linear
program. Chudak [4] gives an LP-basgd+ 2/¢)-approximation algorithm for facility location. This was
the best constant factor known until the recent work of Charikar and Guha [2], which establishes a slightly
lower approximation ratio of.728. The first constant-factor approximation for thanedian problem was
recently given by Charikagt al.[3] and is also LP-based. That work follows a sequence of bicriteria results
utilizing LP-based techniques [15, 16]. (These bicriteria results produce a configuration of(&izeith
cost at most a constant factor times that of an optimal configuration of 3idain and Vazirani [11] give the
first nearly linear-time combinatorial algorithms for the facility location &athedian problems, achieving
approximation ratios o3 and6, respectively. While the latter algorithms are combinatorial, the primal-dual
approach used in their analysis is based on linear programming theory. (See [6] for an excellent introduction
to the primal-dual method.)

Strategies based on local search and greedy techniques for facility location andhgdian problem
have previously been studied. The work of Korupetual. [12] shows that a simple local search heuristic
proposed by Kuehn and Hamburger [14] yields both a constant-factor approximation for the facility location
problem and a bicriteria approximation for thenedian problem [12]. Guha and Khuller [7] showed that
greedy improvement can be used as a postprocessing step to improve the approximation guarantee of certain
facility location algorithms. Guha and Khuller also provide the best lower bound knowni@3 on the
approximation ratio for this problem. More recently, Charikar and Guha [2] achieved the best approximation
ratio known for facility location by combining a local search heuristic with the best LP-based algorithm
known. Charikar and Guha also givedeapproximation for thek-median problem by building on the
techniques of Jain and Vazirani [11].

1.3 Contributions

Algorithms for problems in discrete location theory arise in many practical applications; see [5, 17], for
example, for numerous pointers to the literature. Given that many of these problems are NP-hard, it is desir-
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able to develop fast approximation algorithms. As mentioned above, it is not uncommon for approximation
algorithms to be based on a greedy approach. In this paper, we show that greedy strategies yield a fast
constant-factor approximation algorithm for the facility location problem and a fast constant-competitive
algorithm for the online median problem.

We give a linear-time algorithm for the facility location problem that achieves an approximation ratio of
3. The main idea of the algorithm is to compute and use the “value” of balls about every point in the metric
space. In retrospect, the idea of value is implicit in the work of Jain and Vazirani [11]. We make this idea
explicit and use the values of balls to make greedy choices. Additionally, our algorithm is faster than the
Jain-Vazirani algorithm by a logarithmic factor.

While a simple greedy algorithm yields a constant-factor approximation bound for the facility location
problem, it appears that a more sophisticated approach is needed to obtain a constant-factor approximation
guarantee for thé-median problem, let alone a constant-competitiveness result for the online median prob-
lem. For example, in Section 3 we show that perhaps the most natural greedy approach-toetiian
(resp., online median) problem leads to an unbounded approximation (resp., competitive) ratio.

Our main result is a linear-time constant-competitive algorithm for the online median problem. We
achieve this result using a “hierarchically greedy” approach. The basic idea behind this approach is as
follows: Rather than selecting the next point in the ordering based on a single greedy criterion, we greedily
choose a region (the set of points lying within some ball) and then recursively select a point within that
region. Thus, the choice of pointis influenced by a sequence of greedy criteria addressing successively finer
levels of granularity.

1.4 Outline

The rest of this paper is organized as follows. In Section 2, we present our facility location algorithm and
prove that it achieves a constant approximation ratio. In Section 3, we present our online median algorithm
and prove that it is constant-competitive. Section 4 offers some concluding remarks.

2 Facility Location

The following definitions are used throughout the present section as well as Section 3.
e For any nonnegative integet, let [m] denote the sefi | 0 < ¢ < m}.

e A ball Ais a pair(x,r), where thecenterz of A, denotedcenter(A), belongs td/, and theradius r
of A, denotedradius(A), is a nonnegative real.

e Given a ballA = (z,r), we let Points(A) denote the sefy € U | d(z,y) < r}. However, for
the sake of brevity, we tend to writé instead ofPoints(A). For example, we write € A” and
“AU B”instead of ¢ € Points(A)” and “Points(A) U Points(B)”, respectively.

e Thevalueof aballA = (x,r), denotedvalue(A), s>, c (1 — d(z,y)) - w(y).

e For any ballA = (z,r) and any nonnegative realwe definecA as the bal(z, cr).

2.1 Algorithm

In the first step of the following algorithm, we assume for the sake of convenience that there is at least
one pointx such thatw(z) > 0. (The problem is trivial otherwise.) The output of the algorithm is the
configurationZ,,, which we also refer to a&. Remark: The indexing of the set§ has been introduced
solely to facilitate the analysis.



e For each point;, determine an associated ball = (x,r,) such thawalue(A,) = f(z).
e Determine a bijectiorp : [n] — U such that,;_1) < ry;y, 0 <i < n.
e Let B; = (x;,r;) denote the balH,;), 0 <i <n.LetZ; = 0.

e Fori=0ton—1:If Z;N2B; = O thenletZ;;1 = Z; U {x;}; otherwise, letZ; 1 = Z;.

We now sketch a simple linear-time implementation of the above algorithm. For eachapdim
associated radius, can be computed iW(n) time. (This is essentially a weighted selection problem.)
Thus the first step requirg(n?) time. The second step involves sortingalues and can be accomplished
in O(nlogn) time. The running time for the third step is negligible. Each iteration of the fourth step can be
easily implemented i (n) time, for a total ofO(n?) time.

2.2 Approximation Ratio
In this section we establish the following theorem.
Theorem 1 For any configurationX, cost(Z) < 3 - cost(X).

Proof: Immediate from Lemmas 2.3 and 2.7 below. ]

Lemma 2.1 For any pointz;, there exists a point; in Z such thatj < i andd(z;,z;) < 2r;.

Proof: If there is no such point; with j < 7, thenZ; N 2B; is empty, and sa; belongs taZ. [

Lemma 2.2 Letz; andz; be distinct points inZ. Thend(x;, z;) > 2 - max{r;,r;}.

Proof: Assume without loss of generality thak . Thusr; > r;. Furthermored(z;, x;) > 2r; sincez;
belongs taZ; andZ; N 2B; is empty. |

For any pointz and any configuratioX, let

chargdz, X) = d(z, X)+ Z max{0,r; — d(z;,x)}.
T, €X

Lemma 2.3 For any configurationX, >~ . charge(z, X) - w(x) = cost(X).

Proof: Note that

Z charge(z, X) - w(x) = Z Z (ri —d(z,x)) - w(x) + Z d(z, X) - w(x)

zeU z,€X zEB; zelU
= Z value(B;) + Z d(z, X) - w(x),
r;€X zeU
which is equal tacost (X)) sincevalue(B;) = f(x;). ]

Lemma 2.4 Letz be a point, letX be a configuration, and let; belong toX. If d(z, x;) = d(z, X) then
charge(z, X) > max{r;, d(z, x;)}.



Proof: If = does not belong td;, then charge(z, X) > d(x,z;) > r;. Otherwise,charge(z,X) >
d(x, ;) + (r; — d(z,2;)) = r; > d(z, x;). [

Lemma 2.5 Letz be a point and let:; belong toZ. If = belongs taB;, thencharge(x, Z) < r;.

Proof: By Lemma 2.2, there is no point; in Z such that: # j andx belongs toB;. The claim now
follows from the definition ofcharge(z, Z), sinced(x, Z) < d(x, x;). [

Lemma 2.6 Let z be a point and letr; belong toZ. If x does not belong td;, then charge(x, Z) <
d(x,z;).

Proof: The claim is immediate unless there is a paintn Z such thatr belongs toB;. If such a point
x; exists, then Lemmas 2.2 and 2.5 implye;, z;) > 2 - max{r;,r;} andcharge(x, Z) < r;, respectively.
The claim now follows sincé(x, ;) > d(x;, x;) — d(x, ;) > 2r; —r; = 1;. [

Lemma 2.7 For any pointz and configurationX, charge(z, Z) < 3 - charge(z, X).

Proof: Letz; be some point inX such thati(z, z;) = d(x, X). By Lemma 2.1, there exists a poinf in
Z such thatj <iandd(x;,z;) < 2r;.

If = belongs toB;, then charge(x,Z) < r; by Lemma 2.5. The claim follows since < i implies
r; < r; and Lemma 2.4 impliegharge(z, X) > r;.

If = does not belong td3;, then charge(x, Z) < d(x,z;) by Lemma 2.6. Thusharge(x,Z) <
d(z, z;)+d(x;, x;) < d(x,x;)+2r;. The claim now follows by Lemma 2.4, since the ratialof, ;) +27;
to max{r;, d(z, z;)} is at most 3. ]

3 Online Median Placement

In the previous section, we found that a simple greedy algorithm yields interesting results for the facility
location problem. The most obvious greedy algorithm for the online median problem is to select as the
next point in the ordering the one that minimizes the objective function. Unfortunately, this algorithm gives
an unbounded competitive (resp., approximation) ratio for the online median (kesydian) problem.
To see this, consider an instance consisting af 3 points, one “red” and the rest “blue”, such that the
following conditions are satisfied: the red point has weightach blue point has weight the distance
from the red point to any blue point is and the distance between any pair of distinct blue poiris e
aforementioned greedy algorithm chooses the red point first in the ordering, since that gives acest of
while choosing any other point gives a costaf — 4. But then the ratio for a configuration of size— 1
is unbounded since the greedy cost iand the optimal cost i8. (This example also shows that no online
median algorithm can achieve a competitive ratio beIow%.

We show that a more careful choice of the point, which we call hierarchically greedy, works well. Let
A (resp.,6) denote the largest (resp., smallest) distance between two distinct points in the metric space.
We define a certain ball about each point, and select aball maximum value. But rather than simply
choosing the center of ball as the next point in the ordering, we apply the approach recursively to select
a point within a region defined byl. At each successive level of recursion, we consider geometrically
smaller balls about the remaining candidate points. Withjiog %) levels of recursion, we arrive at a ball
containing a single point, and we return this point as the next one in the ordering. Note that whereas the
greedy algorithm discussed in the previous paragraph makes a single greedy choice to select a point, the
hierarchically greedy algorithm makéxlog %) greedy choices per point.
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Throughout this section, lét, o, 5, andy denote real numbers satisfying the following inequalities.

A > 1 1)

a > 14+ ()

i ®
Oé2 (87

vz (fflﬁm)A @

The online median algorithm of Section 3.1 below makes use of the following additional definitions.
A child of a ball (z,) is any ball(y, &) whered(x,y) < Br. For any pointz, let isolated(x,()) denote
the ball (z, max,cy d(z,y)). For any pointz and configurationX, let isolated(x, X) denote the ball
(z,d(z, X)/~). For any nonempty sequengewe lethead(o) (resp.,tail(p)) denote the first (resp., last)
element ofp.

3.1 Algorithm

Let Zy = (). Fori = 0 ton — 1, execute the following steps:

e Leto; denote the singleton sequenck) whereA is a maximum value ball idisolated(z, Z;) | « €
U\ Z;}.

e While the balltail(o;) has more than one child, append a maximum value child#@fo;) to ;.
o LetZ, 11 = Z; U {center(tail(o;))}.

The output of the online median algorithm is a collection of point getsuch thatZ;| =i, 0 < i < n,
andZ; C Z;11,0 < i < n. Note that it is sufficient for an implementation of the algorithm to maintain the
ball tail(c;), as opposed to the entire sequeaceT he sequence; has been introduced in order to facilitate
the analysis.

We discuss two implementations of the online median algorithm in Section 3.4. The firstimplementation
has a slightly superlinear running time. The second implementation runs in linear time, but assumes a
(linear) preprocessing phase in which all distances are rounded down to the nearest integral power of
(Note that for the preprocessing phase to be well-defined, we rejuiré.) If the input distance function
is a metric, it is straightforward to see that such rounding produceagproximate metric.

3.2 Competitive Ratio

Before proceeding with the analysis, we introduce a number of additional definitions.

e Let z; denote the unique point iff; 1 \ Z;, 0 < i < n.
e For any configuratioX’ and set of point&”, let cost(X,Y) = 37 oy d(y, X) - w(y).

e For any configurationX, we partitionU into | X| sets{celli(z, X) | = € X} as follows: For each
pointy in U, we choose a point in X such thatl(y, X) = d(y,x) and addy to cell(z, X).

e For any configuratiorX, pointz in X, and set of pointy”, we definein(z, X,Y") ascell(z, X) N
isolated(x,Y") andout(z, X,Y) ascell(x, X) \ in(z, X,Y).



e For any configuratioX” and set of point¥”, we definein(X,Y') asUzexin(z, X,Y) andout(X,Y)
asU \ in(X,Y).

In this section we present our main result, Theorem 2 below. In order to minimize the competitive ratio
of 2\(y + 1) implied by the theorem, we setto 1, seta to 2 + /3 and set3 and~ to the right-hand
sides of Equations (3) and (4), respectively. We thereby establish a competitive ratio of slightly below
30 for the online median problem. In Section 3.4 we describe a linear-time implementation of the online
median algorithm for which the parametgiis required to be strictly greater than The degradation in
the competitive ratio that results by settinggreater thari can be made arbitrarily small by choosiihg
sufficiently close tal.

Theorem 2 For any configurationX, cost(Z|x|) < 2A(y + 1) - cost(X).

Proof: LetY = in(X, Z|x|) and letY’ = out(X, Zx|) = U \ Y. Note thatcost(X) = cost(X,Y) +
cost(X,Y") andcost(Z x|) = cost(Z|x|,Y)+cost(Z x|, Y'). Thus the theorem follows immediately from
Lemmas 3.2, 3.4, and 3.5 below. [

Lemma 3.1 For any configurationX, pointz in X, and pointy in out(x, X, Z|x|), d(y, Z|x|) < Ay +

Proof: Letisolated(x, Z|x|) = (z,r). Note thatd(z,y) > r. Also, by the definition ofsolated(z, Z|x)),
there is a point in Z x| such thati(x, z) = yr. Henced(y, z) < Ad(x, y) +d(z, 2)] = A[d(z,y) +r] <
Ald(x, y)+v-d(z,y)] = A(y+1)-d(x,y) = AM(y+1)-d(y, X). The claim follows sincd(y, z) > d(y, Z|x|)-

]
Lemma 3.2 For any configurationX,
costZ x|, out(X, Zx|)) < Ay+1)-cost(X, out(X, Zx)))
Proof:  Summing the inequality of Lemma 3.1 over glin out(z, X, Z|x|), we obtain
cos(Z x|, out(z, X, Z|x|)) < Ay +1)-cost(X, out(w, X, Z|x))).
The claim now follows by summing the above inequality oversdh X. L]

Lemma 3.3 For any configurationX and pointz in X,
costZ| x|, in(z, X, Z|x|)) < Ay +D[cost(X,in(z, X, Z|x|)) + value(isolated(x, Zx/))].

Proof:  Assume thatsolated(z, Z|x|) = (x,). Note thatd(z, y) = yr for somey in Zx|. Thus, for any
zinisolated(r, Z|x), d(y, z) < Md(y, x)+d(z, 2)] < A(y+1)r. Itfollows thatcost(Z| x|, in(z, X, Z|x|))
is at most\(y + 1) times

Z r-w(z) Z d(z,z)-w(z) + Z (r —d(z,2))  w(z)

z€in(z,X,Z x|) z€in(z,X, 2 x|) z€isolated(z,Z x|)
= cos(X,in(x, X, Z|x|)) + value(isolated(z, Z| x/)).

IN



Lemma 3.4 For any configurationX and pointx in X,

costZ x|, in(X, Z|x|)) < My+1)[cost(X,in(X, Zx|)) + Z value(isolated(z, Zx/))].
zeX

Proof: The claim follows by summing the inequality of Lemma 3.3 overah X. [
Our main technical lemma is stated below. The proof is given in the next subsection.

Lemma 3.5 For any configurationX', > x value(isolated(z, Z|x|)) < cost(X).

3.3 Proof of Lemma 3.5
In this section we establish our main technical lemma, Lemma 3.5.
Lemma 3.6 Let A = (x,r) belong tos;. Thend(z, Z;) > ~r.

Proof: Letz be a pointinZ; such thati(z, z) = d(z, Z;). If A = head(o;) thenA = isolated(x, Z;) and
the result is immediate. Otherwise, Bt= (y, s) denote the predecessor4fn ; and assume inductively
thatd(y, Z;) > ~s. Note thatd(z,y) < fs ands = ar. Thusd(z, Z;) = d(z,z) > d(y, z)/\ — d(z,y) >
(v/\ — B)ar > ~yr, where the last step follows from Equation (4). [

Lemma 3.7 Let A = (z,r) belong tos; and letB = (y, s) belong tos;. If i < j andd(z,y) < r+s, then
the following claims hold: (iyadius(head(o;)) < =, (i) A # tail(o;); (iii) the successor ofd in o, call
it C, satisfiesvalue(C) > value(head(o;)).

Proof: Lethead(c;) = (y',s’). For part (i), we know thad(y’, z;) > s’ by Lemma 3.6. Also, we have
dly',z) < ANd,y) +dy,z) +d(z, %))
< A {ﬁ(s/—ki-k"'—kas) +s+r+ﬁ<r+;+-~>}
=
a—1

-(?"—I—s')—l—r} A.

Combining the two inequalities and applying Equation (4), we obtain

<a25+aﬁ+a> A < [ af -(r—+—s/)—|—7“] N

a—1 a—1

. . . a25+a2_a ’ / . . .
Multiplying through by(a — 1) /A and rearranging, we get> “afra1 S =as establishing the claim.

For part (i), note thati(z,y) < r + = < (r by part (i) and Equation (3). Thud has at least two
children; the claim follows.

For part (iii), we use Equations (2) and (3) and patrt (i) to observe that

d(z,y') < Xd(z,y) +d(y, )]
< /\[r+s+ (as+a28+‘~-+s/>ﬂ]

< Ar+ aﬂ)\-s'
a—1
< Ar+ aﬁ)\'z
a—1 «
< ( b +1)/\r,
a—1
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which is at mospir by Equation (3). It follows thaktead (o) is contained in a child ofl. Thusvalue(C) >
value(head(oj)). [

For ease of notation, throughout the remainder of this section we fix a configuiétiand letk denote

| X'|. We now describe pruning procedurethat takes as input thesequences;, 0 < i < k, and produces

as outputt sequences;, 0 < i < k. The sequence is initialized too;, 0 < ¢ < k. The (nondeterministic)

pruning procedure then performs a number of iterations. In a general iteration, the pruning procedure checks
whether there exist two balld = (z,r) andB = (y, s) in distinct sequences andr;, respectively, such

thati < j andd(x,y) < r + s. If not, the pruning procedure terminates. If so, the sequeniseredefined

as the proper suffix of (the current) beginning at the successor df Note that part (i) of Lemma 3.7
ensures that the pruning procedure is well-defined. Furthermore, the procedure is guaranteed to terminate
since each iteration reduces the length of some sequence

Lemma 3.8 Let A = (z,r) belong tor; and letB = (y, s) belong tor;. If i < j thend(z,y) > r + s.

Proof: Immediate from the definition of the pruning procedure. |

Lemma 3.9 Each sequence is nonempty.

Proof: Immediate from part (ii) of Lemma 3.7 and the definition of the pruning procedure. [

Lemma 3.10 Letx be a point and assume that< ¢ < j < n. Then
value(isolated(x, Z;)) > value(isolated(x, Z;)).

Proof: SinceZ; C Z;, radius(isolated(x, Z;)) > radius(isolated(x, Z;)). The claim follows. ]

Lemma 3.11 Letx be a point and assume that< ¢ < k. Then
value(head(o;)) > value(isolated(x, Zy)).

Proof: If = belongs toZ;, thenradius(isolated(x, Z;)) = 0, SO value(isolated(x, Z;)) = 0 and there
is nothing to prove. Otherwiseglue(head(o;)) > value(isolated(x, Z;)) by the definition of the online
median algorithm, and the claim follows by Lemma 3.10. [

Lemma 3.12 Letx be a point and assume that< ¢ < k. Then
value(head(7;)) > value(isolated(x, Z)).

Proof: We prove that the claim holds before and after each iteration of the pruning procedure. Initially,
T; = o; and the claim holds by Lemma 3.11. If the claim holds before an iteration of the pruning procedure,
then it holds after the iteration by part (iii) of Lemma 3.7. [

Aball A = (z,r) is defined to beoveredff d(z, X) < r. A ball is uncoveredff it is not covered.

Lemma 3.13 For any uncovered ball = (z,r), cost(X, A) > value(A).



Proof:  Note thatcost(X, A) > 37, c 4 d(y, X) - w(y) = Xyealr — d(y,z)) - w(y) = value(A). (]

Let I denote the set of all indicesin [k] such that some ball im; is covered. We now construct a
matching between the sdig and X as follows. First, for eachin I, we matchi with a pointz in X that
belongs to the last covered ball in the sequenc&Note that such a point is guaranteed to exist by the
definition of I. Furthermore, Lemma 3.8 ensures that we do not match the same point with more than one
index.) Second, for eachin [k] \ I in turn, we match with an arbitrary unmatched pointin X

We now construct a functiop mapping each point in X to an uncovered ball. For eaetin X that is
matched with an indexin [k] \ I, we setp(z) to head(r;). For eachr in X that is matched with an index
iin I, we setp(x) to the successor of the last covered balt;imnlesstail(r;) is covered, in which case we
sety(x) to the ball(x, 0).

Lemma 3.14 For any pair of distinct points: andy in X, ¢(x) N ¢(y) = 0.

Proof: Immediate from Lemma 3.8 and the fact that the ball0) is contained irtail(7;). (]

Lemma 3.15 For any pointz in X, value(¢(x)) > value(isolated(x, Zy)).

Proof: If = is matched with an indexin [k] \ I, the claim follows by Lemma 3.12. If is matched
with an index: in I, we consider two cases. til(;) is covered, then: = z; sincetail(r;) has exactly
one child. The claim follows since(z) = isolated(z, Zy) = (x,0). If tail(r;) is uncovered, then the
predecessor a(x) in 7;, call it A = (y, r), exists and contains. It follows thatvalue(p(x)) > value(B),
whereB = (z,r/a) is the child of A centered ate. Let C' = (z,s) denote the ballsolated(x, Zy).
Below we complete the proof of the claim by showing that > s, which implies thatB O C and hence
value(B) > value(C).

It remains to prove that/a > s in the final case considered above. We have

d(@,z) < Ad(z,y)+d(y, z)]
< A+ 6A <r+;+"->

< (1 + aﬂ1> Ar,

o —

which is less thanr/a by Equation (4). The desired inequality follows sinffe, z;) > s by the definition
of C. .

Lemmas 3.13, 3.14, and 3.15 together yield a proof of Lemma 3.5.

3.4 Time Complexity

In this section we describe two implementations of the online median algorithm given in Section 3.1.
Throughout this section, létdenote the quantitipg %. The firstimplementation runs iD((n+¢)-nlogn)

time. The second implementation rungiin? + ¢n) time and assumes &@»n?)-time preprocessing phase

in which all distances are rounded down to the nearest integral powerTaf analyze the running time of

the implementations given below, we make use of the following lemma.

Lemma 3.16 Let A = (x,r) be a child of a ballB in sequence; and letA’ = (z, ") be a child of a ball
B'’in sequence;. If i < j thenr > (a+ 1)r'.
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Proof: First, note thati(z, z;) < B(r+r/a+---) < afr/(a—1). By Lemma 3.65r" < d(z,Z;) <
d(z, z;). Combining these inequalities and using Equation (4), we obtain

ro> (a—l)'y.r,
> B
a—1 o?f+aB
aﬂ. a—1 T
= (a+1)r.

In the first implementation, for each pointin U, we sort the remaining points by their distance from
x. The total sorting time i€)(n? log n). Using these sorted arrays, we can compute the value of any given
ball in O(log n) time. We also maintain the distance franto the nearest point i&f;. Note thatd(z, Z; 1)
can be determined in constant time givém, Z;) andz;. The total time to maintain such distances is thus
O(n?). It follows that the first step of each iteration can be implemented(in) time. The total time for
the second step i9(log n) times the sum over all balld appearing in some sequengg0 < i < n, of the
number of children ofA. By Lemma 3.16, it is straightforward to see that the latter su@(#3:), and thus
the total time for the second step@g¢n logn). The running time of the third step is negligible. Thus the
running time of the first implementation ((n + ¢) - nlogn), as claimed above.

For the second implementation, note that after the preprocessing phase, tliefé alistinct distances.
Thus, for each point, O(n+/) time is sufficient to construct an(¢)-sized table that can be used to compute
the value of any bal{z, ) in O(1) time. It follows that the total time for the second step can be improved
to O(¢n). The running time of the second implementation is therefo¢e? + ¢n), which is linear in the
size of the input (in bits).

4 Concluding Remarks

We plan to investigate whether the ideas presented in this paper can be applied to other problems. Korupolu
et al.[13] give an algorithm and an efficient distributed implementation for hierarchical cooperative caching

in which the distance function is an ultrametric. We would like to see if the hierarchical greedy strategy can
be used or extended to solve the cooperative caching problem in an arbitrary metric space. It would also be
interesting to see if the hierarchical greedy strategy admits an efficient distributed implementation for this
problem.

This paper has focused on the development of fast deterministic algorithms for the facility location
problem and the online median problem. It would be interesting to investigate whether randomization
yields sublinear-time constant factor approximation algorithms for problems of this kind. Indyk gives such
approximation algorithms for a collection of metric space problems [9]. For the uniform-defravedian
problem, he gives a bicriteria approximation algorithm that uses random sampling and a blackabdian
algorithm. His algorithm has a constant probability of success and ru6)$7ih3)1 time. Assuming the
existence of arD(n?)-time bicriteriak-median algorithm, this time bound can be reducedfak) [8].
Recently, we have obtained &hn(k + logn))-time approximation algorithm for the uniform-demaikd
median problem that uses the online median algorithm in this paper as a black box for solirmdakan
problem. (Remark: It is not hard to show &ink) lower bound for thek-median problem, even in a
randomized setting.) The cost of the configuration of &izeturned by our algorithm is within a constant
factor of optimal with high probability (i.e., arbitrary inverse polynomial failure probability). We would like

The tilde notation omits polylogarithmic factorsinandk.
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to see if ourO(n(k + log n))-time randomized algorithm for the uniform-demaenedian problem can be
modified to handle arbitrary demands while preserving the time bound.
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