
The Online Median Problem∗

Ramgopal R. Mettu C. Greg Plaxton

Abstract

We introduce a natural variant of the (metric uncapacitated)k-median problem that we call the online
median problem. Whereas thek-median problem involves optimizing the simultaneous placement ofk
facilities, the online median problem imposes the following additional constraints: the facilities are
placed one at a time; a facility cannot be moved once it is placed, and the total number of facilities to
be placed,k, is not known in advance. The objective of an online median algorithm is to minimize the
competitive ratio, that is, the worst-case ratio of the cost of an online placement to that of an optimal
offline placement. Our main result is a linear-time constant-competitive algorithm for the online median
problem. In addition, we present a related, though substantially simpler, linear-time constant-factor
approximation algorithm for the (metric uncapacitated) facility location problem. The latter algorithm is
similar in spirit to the recent primal-dual-based facility location algorithm of Jain and Vazirani, but our
approach is more elementary and yields an improved running time.

∗Department of Computer Science, University of Texas at Austin, Austin, TX 78712. This research was supported by NSF
Grant CCR–9821053. Email:{ramgopal , plaxton }@cs.utexas.edu . The second author is presently on leave at Akamai
Techologies, Inc., Cambridge, MA 02139.

1 Introduction

Suppose we wish to open a new chain of stores in a city withn neighborhoods, and that we have a good
estimate of the demand for our product in each neighborhood. In determining where to locate the stores,
our high-level strategy is to minimize theservice costassociated with our configuration of stores, which we
define as the demand-weighted average distance from a customer to the nearest store. Our business plan is
to start with one store, and then to gradually add new stores as allowed by our profits. (Remark: We will
never move a previously established store.) Thus our configuration of stores may change over time, and
hence the ratio between the service cost of our configuration and that of an optimal same-size configuration
may also change. The goal of theonline median problemis to choose a site for each new store so that the
maximum value of this ratio is minimized. An online median algorithm that guarantees a ratio of at mostr
is said to achieve acompetitive ratioof r, or to ber-competitive.

The variant of this problem in which the total number of stores to be built,k, is known in advance
corresponds to the classick-median problem. The k-median problem is known to be NP-hard and has
been studied extensively over several decades (see, e.g., [17] for many pointers to the literature). Recently,
Charikaret al. presented the first polynomial-time constant-factor approximation algorithm for thek-median
problem [3]; even more recently, improved time bounds and approximation factors have been obtained by
Charikar and Guha [2] and Jain and Vazirani [11].

Note that the online median problem can be viewed as the offline problem of determining a permutation
of then neighborhoods (specifying the order in which to build our stores) that minimizes the maximum ratio
between the service cost of any prefix of the permutation and that of an optimal same-size configuration.
We adopt this view throughout the remainder of the paper. Given the existence of constant-factor approx-
imation algorithms for thek-median problem, it is natural to ask whether there is a constant-competitive
algorithm for the online median problem. In other words, can we (efficiently) find a permutation of then
neighborhoods such that the service cost of any prefix of the permutation is at most a constant times that of
an optimal same-size configuration? Note that, given an arbitrary problem instance, it is not cleara priori
that such a permutation even exists.

In this paper, we affirm the existence of such a permutation and give a deterministic constant-competitive
algorithm for the online median problem. Furthermore, the running time of our algorithm isO(n2 + `n)
(where` is the number of bits required to represent each distance), which is linear in the size of the input.
While the main contribution of this paper is to identify and solve the online median problem, it worth noting
that thek-median problem is a special case of the online median problem. Hence our linear-time online
median algorithm is also the first linear-time constant-factor approximation algorithm for thek-median
problem. (The best previous running time ofO((n2 log n)(` + log n)) is given in [11].)

An obvious approach to the online median problem is to iteratively choose the point that minimizes the
objective function. Greedy strategies of this kind are commonly applied in the design of online algorithms [1,
10]. It turns out, however, that for the online median problem, the simple strategy suggested above has an
unbounded competitive ratio. We show that a modification of this strategy that we callhierarchically greedy
can be used to obtain a constant-competitive linear-time algorithm for the online median problem. We
develop this strategy by first considering a simple greedy algorithm for facility location.

1.1 Problem Definitions

Fix a set of pointsU , a distance functiond : U × U → IR, and nonnegative functionsf, w : U → IR. We
assume throughout thatd is a metric, that is,d is nonnegative, symmetric, satisfies the triangle inequality,
andd(x, y) = 0 iff x = y. For the online median problem, it will prove to be useful to consider a slightly
more general class of distance functions in which the triangle inequality is relaxed to the following “λ-

1

approximate” triangle inequality, whereλ ≥ 1: For any sequence of pointsx0, . . . , xm in U , d(x0, xm) ≤
λ ·
∑

0≤i<m d(xi, xi+1). We refer to such a distance function as aλ-approximate metric. We letn = |U |,
and define a subset ofU to be aconfiguration iff it is nonempty. For any pointx and configurationX, we
defined(x,X) asminy∈X d(x, y).

We consider three computational problems:k-median, online median, and facility location. For the
k-median and online median problems, thecostof a configuration, which we denote ascost(X), is defined
to be

∑
x∈U d(x,X) · w(x). The input to thek-median problem is(U, d), w, and an integerk, 0 < k ≤ n.

The output is a minimum-cost configuration of sizek. The input to the online median problem is(U, d) and
w. The output is a total order onU . We define the competitive ratio of such an ordering as the maximum
over allk, 0 < k ≤ n, of the ratio of the cost of the configuration given by the firstk points in the ordering
to that of an optimalk-median configuration. We define thecompetitive ratioof an online median algorithm
as the supremum, over all possible choices of the input instance(U, d) andw, of the competitive ratio of the
ordering produced by the algorithm.

For the facility location problem, thecostof a configuration, denotedcost(X), is defined as the sum of∑
x∈X f(x) and

∑
x∈U d(x,X) · w(x). The input to the facility location problem is(U, d), f , andw. The

output is a minimum-cost configuration.

1.2 Previous Work

There has been much prior work on the facility location andk-median problems. In this paper we focus
on the metric versions of these problems; for recent work and pointers to the literature on the general (non-
metric) facility location andk-median problems, see [19]. The first constant-factor approximation algorithm
for facility location is due to Shmoyset al. [18] and is based on rounding the (fractional) solution to a linear
program. Chudak [4] gives an LP-based(1 + 2/e)-approximation algorithm for facility location. This was
the best constant factor known until the recent work of Charikar and Guha [2], which establishes a slightly
lower approximation ratio of1.728. The first constant-factor approximation for thek-median problem was
recently given by Charikaret al. [3] and is also LP-based. That work follows a sequence of bicriteria results
utilizing LP-based techniques [15, 16]. (These bicriteria results produce a configuration of sizeO(k) with
cost at most a constant factor times that of an optimal configuration of sizek.) Jain and Vazirani [11] give the
first nearly linear-time combinatorial algorithms for the facility location andk-median problems, achieving
approximation ratios of3 and6, respectively. While the latter algorithms are combinatorial, the primal-dual
approach used in their analysis is based on linear programming theory. (See [6] for an excellent introduction
to the primal-dual method.)

Strategies based on local search and greedy techniques for facility location and thek-median problem
have previously been studied. The work of Korupoluet al. [12] shows that a simple local search heuristic
proposed by Kuehn and Hamburger [14] yields both a constant-factor approximation for the facility location
problem and a bicriteria approximation for thek-median problem [12]. Guha and Khuller [7] showed that
greedy improvement can be used as a postprocessing step to improve the approximation guarantee of certain
facility location algorithms. Guha and Khuller also provide the best lower bound known of1.463 on the
approximation ratio for this problem. More recently, Charikar and Guha [2] achieved the best approximation
ratio known for facility location by combining a local search heuristic with the best LP-based algorithm
known. Charikar and Guha also give a4-approximation for thek-median problem by building on the
techniques of Jain and Vazirani [11].

1.3 Contributions

Algorithms for problems in discrete location theory arise in many practical applications; see [5, 17], for
example, for numerous pointers to the literature. Given that many of these problems are NP-hard, it is desir-

2

able to develop fast approximation algorithms. As mentioned above, it is not uncommon for approximation
algorithms to be based on a greedy approach. In this paper, we show that greedy strategies yield a fast
constant-factor approximation algorithm for the facility location problem and a fast constant-competitive
algorithm for the online median problem.

We give a linear-time algorithm for the facility location problem that achieves an approximation ratio of
3. The main idea of the algorithm is to compute and use the “value” of balls about every point in the metric
space. In retrospect, the idea of value is implicit in the work of Jain and Vazirani [11]. We make this idea
explicit and use the values of balls to make greedy choices. Additionally, our algorithm is faster than the
Jain-Vazirani algorithm by a logarithmic factor.

While a simple greedy algorithm yields a constant-factor approximation bound for the facility location
problem, it appears that a more sophisticated approach is needed to obtain a constant-factor approximation
guarantee for thek-median problem, let alone a constant-competitiveness result for the online median prob-
lem. For example, in Section 3 we show that perhaps the most natural greedy approach to thek-median
(resp., online median) problem leads to an unbounded approximation (resp., competitive) ratio.

Our main result is a linear-time constant-competitive algorithm for the online median problem. We
achieve this result using a “hierarchically greedy” approach. The basic idea behind this approach is as
follows: Rather than selecting the next point in the ordering based on a single greedy criterion, we greedily
choose a region (the set of points lying within some ball) and then recursively select a point within that
region. Thus, the choice of point is influenced by a sequence of greedy criteria addressing successively finer
levels of granularity.

1.4 Outline

The rest of this paper is organized as follows. In Section 2, we present our facility location algorithm and
prove that it achieves a constant approximation ratio. In Section 3, we present our online median algorithm
and prove that it is constant-competitive. Section 4 offers some concluding remarks.

2 Facility Location

The following definitions are used throughout the present section as well as Section 3.

• For any nonnegative integerm, let [m] denote the set{i | 0 ≤ i < m}.

• A ball A is a pair(x, r), where thecenterx of A, denotedcenter(A), belongs toU , and theradiusr
of A, denotedradius(A), is a nonnegative real.

• Given a ballA = (x, r), we letPoints(A) denote the set{y ∈ U | d(x, y) ≤ r}. However, for
the sake of brevity, we tend to writeA instead ofPoints(A). For example, we write “x ∈ A” and
“A ∪B” instead of “x ∈ Points(A)” and “Points(A) ∪ Points(B)”, respectively.

• Thevalueof a ballA = (x, r), denotedvalue(A), is
∑

y∈A(r − d(x, y)) · w(y).

• For any ballA = (x, r) and any nonnegative realc, we definecA as the ball(x, cr).

2.1 Algorithm

In the first step of the following algorithm, we assume for the sake of convenience that there is at least
one pointx such thatw(x) > 0. (The problem is trivial otherwise.) The output of the algorithm is the
configurationZn, which we also refer to asZ. Remark: The indexing of the setsZi has been introduced
solely to facilitate the analysis.

3

• For each pointx, determine an associated ballAx = (x, rx) such thatvalue(Ax) = f(x).

• Determine a bijectionϕ : [n] → U such thatrϕ(i−1) ≤ rϕ(i), 0 < i < n.

• Let Bi = (xi, ri) denote the ballAϕ(i), 0 ≤ i < n. Let Z0 = ∅.

• For i = 0 to n− 1: If Zi ∩ 2Bi = ∅ then letZi+1 = Zi ∪ {xi}; otherwise, letZi+1 = Zi.

We now sketch a simple linear-time implementation of the above algorithm. For each pointx, the
associated radiusrx can be computed inO(n) time. (This is essentially a weighted selection problem.)
Thus the first step requiresO(n2) time. The second step involves sortingn values and can be accomplished
in O(n log n) time. The running time for the third step is negligible. Each iteration of the fourth step can be
easily implemented inO(n) time, for a total ofO(n2) time.

2.2 Approximation Ratio

In this section we establish the following theorem.

Theorem 1 For any configurationX, cost(Z) ≤ 3 · cost(X).

Proof: Immediate from Lemmas 2.3 and 2.7 below.

Lemma 2.1 For any pointxi, there exists a pointxj in Z such thatj ≤ i andd(xi, xj) ≤ 2ri.

Proof: If there is no such pointxj with j < i, thenZi ∩ 2Bi is empty, and soxi belongs toZ.

Lemma 2.2 Letxi andxj be distinct points inZ. Thend(xi, xj) > 2 ·max{ri, rj}.

Proof: Assume without loss of generality thatj < i. Thusri ≥ rj . Furthermore,d(xi, xj) > 2ri sincexj

belongs toZi andZi ∩ 2Bi is empty.

For any pointx and any configurationX, let

charge(x,X) = d(x,X) +
∑

xi∈X

max{0, ri − d(xi, x)}.

Lemma 2.3 For any configurationX,
∑

x∈U charge(x,X) · w(x) = cost(X).

Proof: Note that∑
x∈U

charge(x,X) · w(x) =
∑

xi∈X

∑
x∈Bi

(ri − d(xi, x)) · w(x) +
∑
x∈U

d(x,X) · w(x)

=
∑

xi∈X

value(Bi) +
∑
x∈U

d(x,X) · w(x),

which is equal tocost(X) sincevalue(Bi) = f(xi).

Lemma 2.4 Let x be a point, letX be a configuration, and letxi belong toX. If d(x, xi) = d(x, X) then
charge(x,X) ≥ max{ri, d(x, xi)}.

4

Proof: If x does not belong toBi, thencharge(x,X) ≥ d(x, xi) > ri. Otherwise,charge(x,X) ≥
d(x, xi) + (ri − d(x, xi)) = ri ≥ d(x, xi).

Lemma 2.5 Letx be a point and letxi belong toZ. If x belongs toBi, thencharge(x, Z) ≤ ri.

Proof: By Lemma 2.2, there is no pointxj in Z such thati 6= j andx belongs toBj . The claim now
follows from the definition ofcharge(x,Z), sinced(x, Z) ≤ d(x, xi).

Lemma 2.6 Let x be a point and letxi belong toZ. If x does not belong toBi, thencharge(x,Z) ≤
d(x, xi).

Proof: The claim is immediate unless there is a pointxj in Z such thatx belongs toBj . If such a point
xj exists, then Lemmas 2.2 and 2.5 implyd(xi, xj) > 2 ·max{ri, rj} andcharge(x,Z) ≤ rj , respectively.
The claim now follows sinced(x, xi) ≥ d(xi, xj)− d(x, xj) > 2rj − rj = rj .

Lemma 2.7 For any pointx and configurationX, charge(x,Z) ≤ 3 · charge(x,X).

Proof: Let xi be some point inX such thatd(x, xi) = d(x,X). By Lemma 2.1, there exists a pointxj in
Z such thatj ≤ i andd(xi, xj) ≤ 2ri.

If x belongs toBj , thencharge(x,Z) ≤ rj by Lemma 2.5. The claim follows sincej ≤ i implies
rj ≤ ri and Lemma 2.4 impliescharge(x, X) ≥ ri.

If x does not belong toBj , then charge(x,Z) ≤ d(x, xj) by Lemma 2.6. Thuscharge(x,Z) ≤
d(x, xi)+d(xi, xj) ≤ d(x, xi)+2ri. The claim now follows by Lemma 2.4, since the ratio ofd(x, xi)+2ri

to max{ri, d(x, xi)} is at most 3.

3 Online Median Placement

In the previous section, we found that a simple greedy algorithm yields interesting results for the facility
location problem. The most obvious greedy algorithm for the online median problem is to select as the
next point in the ordering the one that minimizes the objective function. Unfortunately, this algorithm gives
an unbounded competitive (resp., approximation) ratio for the online median (resp.,k-median) problem.
To see this, consider an instance consisting ofn > 3 points, one “red” and the rest “blue”, such that the
following conditions are satisfied: the red point has weight0; each blue point has weight1; the distance
from the red point to any blue point is1, and the distance between any pair of distinct blue points is2. The
aforementioned greedy algorithm chooses the red point first in the ordering, since that gives a cost ofn− 1
while choosing any other point gives a cost of2n − 4. But then the ratio for a configuration of sizen − 1
is unbounded since the greedy cost is1 and the optimal cost is0. (This example also shows that no online
median algorithm can achieve a competitive ratio below2− 2

n−1 .)
We show that a more careful choice of the point, which we call hierarchically greedy, works well. Let

∆ (resp.,δ) denote the largest (resp., smallest) distance between two distinct points in the metric space.
We define a certain ball about each point, and select a ballA of maximum value. But rather than simply
choosing the center of ballA as the next point in the ordering, we apply the approach recursively to select
a point within a region defined byA. At each successive level of recursion, we consider geometrically
smaller balls about the remaining candidate points. WithinO(log ∆

δ) levels of recursion, we arrive at a ball
containing a single point, and we return this point as the next one in the ordering. Note that whereas the
greedy algorithm discussed in the previous paragraph makes a single greedy choice to select a point, the
hierarchically greedy algorithm makesO(log ∆

δ) greedy choices per point.

5

Throughout this section, letλ, α, β, andγ denote real numbers satisfying the following inequalities.

λ ≥ 1 (1)

α > 1 + λ (2)

β ≥ λ(α− 1)
α− 1− λ

(3)

γ ≥
(

α2β + αβ

α− 1
+ α

)
λ (4)

The online median algorithm of Section 3.1 below makes use of the following additional definitions.
A child of a ball (x, r) is any ball(y, r

α) whered(x, y) ≤ βr. For any pointx, let isolated(x, ∅) denote
the ball (x, maxy∈U d(x, y)). For any pointx and configurationX, let isolated(x,X) denote the ball
(x, d(x,X)/γ). For any nonempty sequence%, we lethead(%) (resp.,tail(%)) denote the first (resp., last)
element of%.

3.1 Algorithm

Let Z0 = ∅. For i = 0 to n− 1, execute the following steps:

• Let σi denote the singleton sequence〈A〉 whereA is a maximum value ball in{isolated(x,Zi) | x ∈
U \ Zi}.

• While the balltail(σi) has more than one child, append a maximum value child oftail(σi) to σi.

• Let Zi+1 = Zi ∪ {center(tail(σi))}.

The output of the online median algorithm is a collection of point setsZi such that|Zi| = i, 0 ≤ i ≤ n,
andZi ⊆ Zi+1, 0 ≤ i < n. Note that it is sufficient for an implementation of the algorithm to maintain the
ball tail(σi), as opposed to the entire sequenceσi. The sequenceσi has been introduced in order to facilitate
the analysis.

We discuss two implementations of the online median algorithm in Section 3.4. The first implementation
has a slightly superlinear running time. The second implementation runs in linear time, but assumes a
(linear) preprocessing phase in which all distances are rounded down to the nearest integral power ofλ.
(Note that for the preprocessing phase to be well-defined, we requireλ > 1.) If the input distance function
is a metric, it is straightforward to see that such rounding produces aλ-approximate metric.

3.2 Competitive Ratio

Before proceeding with the analysis, we introduce a number of additional definitions.

• Let zi denote the unique point inZi+1 \ Zi, 0 ≤ i < n.

• For any configurationX and set of pointsY , let cost(X, Y) =
∑

y∈Y d(y, X) · w(y).

• For any configurationX, we partitionU into |X| sets{cell(x,X) | x ∈ X} as follows: For each
pointy in U , we choose a pointx in X such thatd(y, X) = d(y, x) and addy to cell(x,X).

• For any configurationX, point x in X, and set of pointsY , we definein(x,X, Y) ascell(x, X) ∩
isolated(x, Y) andout(x, X, Y) ascell(x,X) \ in(x,X, Y).

6

• For any configurationX and set of pointsY , we definein(X, Y) as∪x∈X in(x,X, Y) andout(X, Y)
asU \ in(X, Y).

In this section we present our main result, Theorem 2 below. In order to minimize the competitive ratio
of 2λ(γ + 1) implied by the theorem, we setλ to 1, setα to 2 +

√
3 and setβ andγ to the right-hand

sides of Equations (3) and (4), respectively. We thereby establish a competitive ratio of slightly below
30 for the online median problem. In Section 3.4 we describe a linear-time implementation of the online
median algorithm for which the parameterλ is required to be strictly greater than1. The degradation in
the competitive ratio that results by settingλ greater than1 can be made arbitrarily small by choosingλ
sufficiently close to1.

Theorem 2 For any configurationX, cost(Z|X|) ≤ 2λ(γ + 1) · cost(X).

Proof: Let Y = in(X, Z|X|) and letY ′ = out(X, Z|X|) = U \ Y . Note thatcost(X) = cost(X, Y) +
cost(X, Y ′) andcost(Z|X|) = cost(Z|X|, Y)+cost(Z|X|, Y

′). Thus the theorem follows immediately from
Lemmas 3.2, 3.4, and 3.5 below.

Lemma 3.1 For any configurationX, point x in X, and pointy in out(x,X, Z|X|), d(y, Z|X|) ≤ λ(γ +
1) · d(y, X).

Proof: Let isolated(x,Z|X|) = (x, r). Note thatd(x, y) > r. Also, by the definition ofisolated(x,Z|X|),
there is a pointz in Z|X| such thatd(x, z) = γr. Henced(y, z) ≤ λ[d(x, y) + d(x, z)] = λ[d(x, y) + γr] <
λ[d(x, y)+γ·d(x, y)] = λ(γ+1)·d(x, y) = λ(γ+1)·d(y, X). The claim follows sinced(y, z) ≥ d(y, Z|X|).

Lemma 3.2 For any configurationX,

cost(Z|X|, out(X, Z|X|)) ≤ λ(γ + 1) · cost(X, out(X, Z|X|)).

Proof: Summing the inequality of Lemma 3.1 over ally in out(x,X, Z|X|), we obtain

cost(Z|X|, out(x,X, Z|X|)) ≤ λ(γ + 1) · cost(X, out(x,X, Z|X|)).

The claim now follows by summing the above inequality over allx in X.

Lemma 3.3 For any configurationX and pointx in X,

cost(Z|X|, in(x,X, Z|X|)) ≤ λ(γ + 1)[cost(X, in(x,X, Z|X|)) + value(isolated(x,Z|X|))].

Proof: Assume thatisolated(x,Z|X|) = (x, r). Note thatd(x, y) = γr for somey in Z|X|. Thus, for any
z in isolated(x,Z|X|), d(y, z) ≤ λ[d(y, x)+d(x, z)] ≤ λ(γ+1)r. It follows thatcost(Z|X|, in(x,X, Z|X|))
is at mostλ(γ + 1) times∑

z∈in(x,X,Z|X|)

r · w(z) ≤
∑

z∈in(x,X,Z|X|)

d(x, z) · w(z) +
∑

z∈isolated(x,Z|X|)

(r − d(x, z)) · w(z)

= cost(X, in(x,X, Z|X|)) + value(isolated(x,Z|X|)).

7

Lemma 3.4 For any configurationX and pointx in X,

cost(Z|X|, in(X, Z|X|)) ≤ λ(γ + 1)[cost(X, in(X, Z|X|)) +
∑
x∈X

value(isolated(x, Z|X|))].

Proof: The claim follows by summing the inequality of Lemma 3.3 over allx in X.

Our main technical lemma is stated below. The proof is given in the next subsection.

Lemma 3.5 For any configurationX,
∑

x∈X value(isolated(x, Z|X|)) ≤ cost(X).

3.3 Proof of Lemma 3.5

In this section we establish our main technical lemma, Lemma 3.5.

Lemma 3.6 LetA = (x, r) belong toσi. Thend(x,Zi) ≥ γr.

Proof: Let z be a point inZi such thatd(x, z) = d(x,Zi). If A = head(σi) thenA = isolated(x,Zi) and
the result is immediate. Otherwise, letB = (y, s) denote the predecessor ofA in σi and assume inductively
thatd(y, Zi) ≥ γs. Note thatd(x, y) ≤ βs ands = αr. Thusd(x,Zi) = d(x, z) ≥ d(y, z)/λ− d(x, y) ≥
(γ/λ− β)αr ≥ γr, where the last step follows from Equation (4).

Lemma 3.7 LetA = (x, r) belong toσi and letB = (y, s) belong toσj . If i < j andd(x, y) ≤ r + s, then
the following claims hold: (i)radius(head(σj)) ≤ r

α ; (ii) A 6= tail(σi); (iii) the successor ofA in σi, call
it C, satisfiesvalue(C) ≥ value(head(σj)).

Proof: Let head(σj) = (y′, s′). For part (i), we know thatd(y′, zi) ≥ γs′ by Lemma 3.6. Also, we have

d(y′, zi) ≤ λ
[
d(y′, y) + d(y, x) + d(x, zi)

]
≤ λ

[
β

(
s′ +

s′

α
+ · · ·+ αs

)
+ s + r + β

(
r +

r

α
+ · · ·

)]
≤

[
αβ

α− 1
· (r + s′) + r

]
λ.

Combining the two inequalities and applying Equation (4), we obtain(
α2β + αβ

α− 1
+ α

)
λs′ ≤

[
αβ

α− 1
· (r + s′) + r

]
λ.

Multiplying through by(α−1)/λ and rearranging, we getr ≥ α2β+α2−α
αβ+α−1 · s′ = αs′, establishing the claim.

For part (ii), note thatd(x, y) ≤ r + r
α < βr by part (i) and Equation (3). ThusA has at least two

children; the claim follows.
For part (iii), we use Equations (2) and (3) and part (i) to observe that

d(x, y′) ≤ λ
[
d(x, y) + d(y, y′)

]
≤ λ

[
r + s +

(
αs + α2s + · · ·+ s′

)
β
]

≤ λr +
αβλ

α− 1
· s′

≤ λr +
αβλ

α− 1
· r

α

≤
(

β

α− 1
+ 1

)
λr,

8

which is at mostβr by Equation (3). It follows thathead(σj) is contained in a child ofA. Thusvalue(C) ≥
value(head(σj)).

For ease of notation, throughout the remainder of this section we fix a configurationX, and letk denote
|X|. We now describe apruning procedurethat takes as input thek sequencesσi, 0 ≤ i < k, and produces
as outputk sequencesτi, 0 ≤ i < k. The sequenceτi is initialized toσi, 0 ≤ i < k. The (nondeterministic)
pruning procedure then performs a number of iterations. In a general iteration, the pruning procedure checks
whether there exist two ballsA = (x, r) andB = (y, s) in distinct sequencesτi andτj , respectively, such
thati < j andd(x, y) ≤ r + s. If not, the pruning procedure terminates. If so, the sequenceτi is redefined
as the proper suffix of (the current)τi beginning at the successor ofA. Note that part (ii) of Lemma 3.7
ensures that the pruning procedure is well-defined. Furthermore, the procedure is guaranteed to terminate
since each iteration reduces the length of some sequenceτi.

Lemma 3.8 LetA = (x, r) belong toτi and letB = (y, s) belong toτj . If i < j thend(x, y) > r + s.

Proof: Immediate from the definition of the pruning procedure.

Lemma 3.9 Each sequenceτi is nonempty.

Proof: Immediate from part (ii) of Lemma 3.7 and the definition of the pruning procedure.

Lemma 3.10 Letx be a point and assume that0 ≤ i < j ≤ n. Then

value(isolated(x,Zi)) ≥ value(isolated(x,Zj)).

Proof: SinceZi ⊆ Zj , radius(isolated(x, Zi)) ≥ radius(isolated(x, Zj)). The claim follows.

Lemma 3.11 Letx be a point and assume that0 ≤ i < k. Then

value(head(σi)) ≥ value(isolated(x, Zk)).

Proof: If x belongs toZi, thenradius(isolated(x,Zi)) = 0, so value(isolated(x, Zi)) = 0 and there
is nothing to prove. Otherwise,value(head(σi)) ≥ value(isolated(x,Zi)) by the definition of the online
median algorithm, and the claim follows by Lemma 3.10.

Lemma 3.12 Letx be a point and assume that0 ≤ i < k. Then

value(head(τi)) ≥ value(isolated(x,Zk)).

Proof: We prove that the claim holds before and after each iteration of the pruning procedure. Initially,
τi = σi and the claim holds by Lemma 3.11. If the claim holds before an iteration of the pruning procedure,
then it holds after the iteration by part (iii) of Lemma 3.7.

A ball A = (x, r) is defined to becoverediff d(x, X) < r. A ball is uncoverediff it is not covered.

Lemma 3.13 For any uncovered ballA = (x, r), cost(X, A) ≥ value(A).

9

Proof: Note thatcost(X, A) ≥
∑

y∈A d(y, X) · w(y) ≥
∑

y∈A(r − d(y, x)) · w(y) = value(A).

Let I denote the set of all indicesi in [k] such that some ball inτi is covered. We now construct a
matching between the sets[k] andX as follows. First, for eachi in I, we matchi with a pointx in X that
belongs to the last covered ball in the sequenceτi. (Note that such a pointx is guaranteed to exist by the
definition ofI. Furthermore, Lemma 3.8 ensures that we do not match the same point with more than one
index.) Second, for eachi in [k] \ I in turn, we matchi with an arbitrary unmatched pointx in X.

We now construct a functionϕ mapping each pointx in X to an uncovered ball. For eachx in X that is
matched with an indexi in [k] \ I, we setϕ(x) to head(τi). For eachx in X that is matched with an index
i in I, we setϕ(x) to the successor of the last covered ball inτi unlesstail(τi) is covered, in which case we
setϕ(x) to the ball(x, 0).

Lemma 3.14 For any pair of distinct pointsx andy in X, ϕ(x) ∩ ϕ(y) = ∅.

Proof: Immediate from Lemma 3.8 and the fact that the ball(x, 0) is contained intail(τi).

Lemma 3.15 For any pointx in X, value(ϕ(x)) ≥ value(isolated(x,Zk)).

Proof: If x is matched with an indexi in [k] \ I, the claim follows by Lemma 3.12. Ifx is matched
with an indexi in I, we consider two cases. Iftail(τi) is covered, thenx = zi sincetail(τi) has exactly
one child. The claim follows sinceϕ(x) = isolated(x,Zk) = (x, 0). If tail(τi) is uncovered, then the
predecessor ofϕ(x) in τi, call it A = (y, r), exists and containsx. It follows thatvalue(ϕ(x)) ≥ value(B),
whereB = (x, r/α) is the child ofA centered atx. Let C = (x, s) denote the ballisolated(x,Zk).
Below we complete the proof of the claim by showing thatr/α ≥ s, which implies thatB ⊇ C and hence
value(B) ≥ value(C).

It remains to prove thatr/α ≥ s in the final case considered above. We have

d(x, zi) ≤ λ [d(x, y) + d(y, zi)]

≤ λr + βλ

(
r +

r

α
+ · · ·

)
≤

(
1 +

αβ

α− 1

)
λr,

which is less thanγr/α by Equation (4). The desired inequality follows sinced(x, zi) ≥ γs by the definition
of C.

Lemmas 3.13, 3.14, and 3.15 together yield a proof of Lemma 3.5.

3.4 Time Complexity

In this section we describe two implementations of the online median algorithm given in Section 3.1.
Throughout this section, let` denote the quantitylog ∆

δ . The first implementation runs inO((n+`)·n log n)
time. The second implementation runs inO(n2 + `n) time and assumes anO(n2)-time preprocessing phase
in which all distances are rounded down to the nearest integral power ofλ. To analyze the running time of
the implementations given below, we make use of the following lemma.

Lemma 3.16 Let A = (x, r) be a child of a ballB in sequenceσi and letA′ = (x, r′) be a child of a ball
B′ in sequenceσj . If i < j thenr > (α + 1)r′.

10

Proof: First, note thatd(x, zi) ≤ β (r + r/α + · · ·) ≤ αβr/(α − 1). By Lemma 3.6,γr′ ≤ d(x,Zj) ≤
d(x, zi). Combining these inequalities and using Equation (4), we obtain

r ≥ (α− 1)γ
αβ

· r′

>
α− 1
αβ

· α2β + αβ

α− 1
· r′

= (α + 1)r′.

In the first implementation, for each pointx in U , we sort the remaining points by their distance from
x. The total sorting time isO(n2 log n). Using these sorted arrays, we can compute the value of any given
ball in O(log n) time. We also maintain the distance fromx to the nearest point inZi. Note thatd(x,Zi+1)
can be determined in constant time givend(x,Zi) andzi. The total time to maintain such distances is thus
O(n2). It follows that the first step of each iteration can be implemented inO(n) time. The total time for
the second step isO(log n) times the sum over all ballsA appearing in some sequenceσi, 0 ≤ i < n, of the
number of children ofA. By Lemma 3.16, it is straightforward to see that the latter sum isO(`n), and thus
the total time for the second step isO(`n log n). The running time of the third step is negligible. Thus the
running time of the first implementation isO((n + `) · n log n), as claimed above.

For the second implementation, note that after the preprocessing phase, there areO(`) distinct distances.
Thus, for each pointx, O(n+`) time is sufficient to construct anO(`)-sized table that can be used to compute
the value of any ball(x, r) in O(1) time. It follows that the total time for the second step can be improved
to O(`n). The running time of the second implementation is thereforeO(n2 + `n), which is linear in the
size of the input (in bits).

4 Concluding Remarks

We plan to investigate whether the ideas presented in this paper can be applied to other problems. Korupolu
et al. [13] give an algorithm and an efficient distributed implementation for hierarchical cooperative caching
in which the distance function is an ultrametric. We would like to see if the hierarchical greedy strategy can
be used or extended to solve the cooperative caching problem in an arbitrary metric space. It would also be
interesting to see if the hierarchical greedy strategy admits an efficient distributed implementation for this
problem.

This paper has focused on the development of fast deterministic algorithms for the facility location
problem and the online median problem. It would be interesting to investigate whether randomization
yields sublinear-time constant factor approximation algorithms for problems of this kind. Indyk gives such
approximation algorithms for a collection of metric space problems [9]. For the uniform-demandk-median
problem, he gives a bicriteria approximation algorithm that uses random sampling and a black-boxk-median
algorithm. His algorithm has a constant probability of success and runs inÕ(nk3)1 time. Assuming the
existence of añO(n2)-time bicriteriak-median algorithm, this time bound can be reduced toÕ(nk) [8].
Recently, we have obtained anO(n(k + log n))-time approximation algorithm for the uniform-demandk-
median problem that uses the online median algorithm in this paper as a black box for solving thek-median
problem. (Remark: It is not hard to show anΩ(nk) lower bound for thek-median problem, even in a
randomized setting.) The cost of the configuration of sizek returned by our algorithm is within a constant
factor of optimal with high probability (i.e., arbitrary inverse polynomial failure probability). We would like

1The tilde notation omits polylogarithmic factors inn andk.

11

to see if ourO(n(k +log n))-time randomized algorithm for the uniform-demandk-median problem can be
modified to handle arbitrary demands while preserving the time bound.

References

[1] A. Borodin and R. El-Yaniv.Online Computation and Competitive Analysis. Cambridge University
Press, Cambridge, UK, 1998.

[2] M. Charikar and S. Guha. Improved combinatorial algorithms for facility location andk-median prob-
lems. InProceedings of the 40th Annual IEEE Symposium on Foundations of Computer Science, pages
378–388, October 1999.

[3] M. Charikar, S. Guha,́E. Tardos, and D. B. Shmoys. A constant-factor approximation algorithm for
thek-median problem. InProceedings of the 31st Annual ACM Symposium on Theory of Computing,
pages 1–10, May 1999.

[4] F. A. Chudak. Improved approximation algorithms for uncapacitated facility location. In R. E. Bixby,
E. A. Boyd, and R. Z. Ŕıos-Mercado, editors,Integer Programming and Combinatorial Optimization,
volume 1412 ofLecture Notes in Computer Science, pages 180–194, Berlin, 1998. Springer.

[5] W. Domschke and A. Drexl.Location and Layout Planning: An International Bibliography, volume
238 ofLecture Notes in Economics and Mathematical Systems. Springer-Verlag, Berlin, 1985.

[6] M. X. Goemans and D. P. Williamson. The primal-dual method for approximation algorithms and its
application to network design problems. In D. S. Hochbaum, editor,Approximation Algorithms for
NP-Hard Problems. PWS Publishing Company, Boston, MA, 1995.

[7] S. Guha and S. Khuller. Greedy strikes back: Improved facility location algorithms. InProceedings of
the 9th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 649–657, January 1998.

[8] P. Indyk. Sublinear time algorithms for metric space problems. Revised version of conference paper
(available athttp://theory.stanford.edu/˜indyk).

[9] P. Indyk. Sublinear time algorithms for metric space problems. InProceedings of the 31st Annual
ACM Symposium on Theory of Computing, pages 428–434, May 1999.

[10] S. Irani and Karlin A. R. Online computation. In D. S. Hochbaum, editor,Approximation Algorithms
for NP-Hard Problems. PWS Publishing Company, Boston, MA, 1995.

[11] K. Jain and V. V. Vazirani. Primal-dual approximation algorithms for metric facility location andk-
median problems. InProceedings of the 40th Annual IEEE Symposium on Foundations of Computer
Science, pages 2–13, October 1999.

[12] M. R. Korupolu, C. G. Plaxton, and R. Rajaraman. Analysis of a local search heuristic for facility
location problems. InProceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 1–10, January 1998.

[13] M. R. Korupolu, C. G. Plaxton, and R. Rajaraman. Placement algorithms for hierarchical cooperative
caching. InProceedings of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
586–595, January 1999.

12

[14] A. A. Kuehn and M. J. Hamburger. A heuristic program for locating warehouses.Management Science,
9:643–666, 1963.

[15] J.-H. Lin and J. S. Vitter. Approximation algorithms for geometric median problems.Information
Processing Letters, 44:245–249, 1992.

[16] J.-H. Lin and J. S. Vitter.ε-approximations with minimum packing constraint violation. InProceedings
of the 24th Annual ACM Symposium on Theory of Computing, pages 771–782, May 1992.

[17] P. Mirchandani and R. Francis, editors.Discrete Location Theory. Wiley, New York, NY, 1990.

[18] D. B. Shmoys,́E. Tardos, and K. Aardal. Approximation algorithms for facility location problems. In
Proceedings of the 29th Annual ACM Symposium on Theory of Computing, pages 265–274, May 1997.

[19] N. E. Young.K-medians, facility location, and the Chernoff-Wald bound. InProceedings of the 11th
Annual ACM-SIAM Symposium on Discrete Algorithms, January 2000.

13

