
Fréchet Distance for Simple Polygons

Evan Cordell

April 29, 2013

Abstract

Shape matching has applications in such diverse fields such as archaeology, architec-

ture, medical imaging, image recognition, and vehicle tracking. The Fréchet distance

is one way to measure the similarity of shapes, and several algorithms have been

developed to compute the Fréchet distance for certain types of curves and surfaces.

The Fréchet distance between simple polygons, for example, can be computed in

polynomial time.

The primary result of this thesis is an improvement of O(n) to the runtime of the

algorithm to compute Fréchet distance for simple polygons. We model the problem in

a novel way that builds on previous work, which results in the runtime improvement

and the ability to recover the map or even maps that realize the Fréchet distance.

The additional information afforded by the capacity for recovering the original maps

lends itself to the investigation of the Fréchet distance as it applies to morphing and

other problems.

ii

Acknowledgments

There is a shortage of university professors that care passionately both about their

fields and about their students, and Carola Wenk is one of those few; it was a pleasure

and privilege to work with her. I would also like to thank Lev Kaplan and Tái Há for

their encouragement, support, and feedback. I am indebted to the countless others at

Tulane who have helped me beyond the normal call of duty this past year and earlier,

especially Elio Brancaforte, Agnieszka Nance, Dietmar Felber, and Michael Mislove.

I would also like to thank: my parents, for their continuing support in my aca-

demic endeavors; Emily Sherman, for putting up with my company despite my sleep

deprivation; and Tardar Sauce the Grumpy Cat, for bringing a smile to my face in

otherwise stressful times.

iii

Contents

Abstract ii

Acknowledgments iii

1 Introduction 1

2 Notation and Terminology 4

2.1 Geometric Fundamentals . 4

2.2 Metrics and Distance . 5

3 Fréchet Distance for Curves 8

3.1 Hausdorff Distance . 9

3.1.1 Computability . 11

3.2 Fréchet Distance . 11

3.3 Decision vs. Optimization . 13

3.3.1 Binary Search . 13

3.3.2 Parametric Search . 15

3.4 Computing the Fréchet Distance for Polygonal Curves 15

4 Fréchet Distance for Simple Polygons 19

4.1 Simplifying the Fréchet Distance for Surfaces 20

4.1.1 Fréchet Distance between Boundary Curves 21

iv

CONTENTS v

4.2 Algorithm for the Fréchet Distance for Simple Polygons 27

4.2.1 Reachability Structure . 28

4.2.2 Combined Reachability Graph 30

4.2.3 Algorithm . 33

4.3 Improved Algorithm for the Fréchet Distance for Simple Polgyons . . 34

4.3.1 Intervals, Revisited . 34

4.3.2 Arrows . 35

4.3.3 Diagonals . 40

4.3.4 Runtime Preliminaries . 41

4.3.5 Algorithm . 47

5 Applications and Further Research 50

5.1 Morphing . 50

5.1.1 Isotopic Fréchet Distance . 52

5.2 ICP . 52

5.3 Future Research . 52

List of Tables

4.1 Number of arrows entering and exiting at each row. 45

vi

List of Figures

3.1 An example showing ~dH(B,A) and ~dH(B,A) 10

3.2 An example where the Hausdorff distance fails 10

3.3 The Fréchet distance can be viewed as the shortest leash length that

allows a man on f to walk his dog on g. 12

3.4 Fε for two line segments P and Q, with ε. 16

3.5 The free space for two polygonal curves P and Q showing the relation-

ship between Fε and the original curves. 17

4.1 The Fréchet distance between the boundaries is different from the

Fréchet distance between the surfaces. 22

4.2 The hourglass between S1 and S2 . 23

4.3 An illustration of simplifying a curve. Note that this simply removes

a column from the free space diagram. 24

4.4 Hourglass Lemma. The blue diagonal defines I1 and I2, and any short-

est path in the hourglass between them has Fréchet distance less than

ε to the diagonal. 24

4.5 The double free space for P and Q. 27

4.6 Two free space cells with interval types and pointers marked. 29

4.7 The same free space cells with their adjacent boundaries refined. . . . 29

4.8 Cells fully merged with all boundaries refined. 30

vii

LIST OF FIGURES viii

4.9 The diagonals of the convex decomposition define a nesting structure. 31

4.10 The diagonals of the convex decomposition correspond to a set of

columns in the free space. 32

4.11 The c and n intervals for a single cell on L∪B, and the corresponding

intervals on R ∪ T . 35

4.12 A single cell of the free space with arrows added. 36

4.13 On the right, A is drawn in so that I ′, the red interval, is stacked on

top of I1 . 37

4.14 The arrows are merged and the new arrow has references to modified

copies of the original arrows. 38

4.15 Two cells after merging arrows. The blue arrows are new, the gray

arrows are removed. 39

4.16 The diagonals drawn over the free space, which corresponds to the

nodes of the diagonal tree. 41

4.17 A column of height q with top, bottom, and middle arrows drawn in.

Arrows of height q omitted. 42

4.18 A column of height q showing how many middle arrows of height 1 and

2 can fit. 43

4.19 Counting how many arrows enter and exit at each row. Some arrows

have been drawn in for reference. 44

4.20 Counting how many arrows enter and exit at each row for pre-merged

columns. Some arrows have been drawn in for reference. 46

5.1 Two polygons, with diagonal and shortest path in blue, and an inter-

mediate polygon between them based on the Fréchet distance. 51

5.2 Morphing defined by a path in the free space. The diagonals have been

drawn in. 51

1

Introduction

Comparing the similarity of curves and surfaces is a difficult task that arises in nu-

merous areas and has plenty of real-world applications. There have been many ap-

proaches to the various manifestations of this problem, and while many of them are

highly specific to their applications, others find a broader appeal. Shape matching

has diverse applications in fields such as archaeology, architecture, medical imaging,

image recognition, and vehicle tracking.

The Fréchet distance is a measure of similarity that finds utility in its own small

circle of applications. It has been used in matching time series in databases [KKS05],

time warping [KP99], speech recognition [KHM+98], signature verification [MP99],

handwriting recognition [SKB07], aligning protein structures [JXZ07], computer vi-

sion, map matching [AW12, CDG+11, WS06], moving object analysis [BBG08a,

BBG+08b], matching coastlines over time [MDH06], and music information retrieval

[SGHS08], to name a few. The Fréchet distance is usefel in any situation where not

just the nearness of a set of points, but also the order of those points, is important

to the application. For a tangible, everyday example, consider how a map on the

GPS system in your car must decide on which roads to show your path — at first

this might be seem trivial, but consider how a simple “closest road” metric would

break down at intersections or on dense city grids, or even worse, on the high-flying

1

CHAPTER 1. INTRODUCTION 2

spaghetti junctions of larger cities. Couple that with an international restriction on

consumer GPS accuracy, and the need for smarter distance measures is clear.

With the broad applicability of the Fréchet distance comes a strong interest in its

computation, and much work has been done to determine the most efficient ways of

computing and applying the Fréchet distance in its various manifestations.

Alt and Godau describe a method for computing the Fréchet distance between

polygonal curves in O(pq log(pq)) for P andQ with p and q edges, respectively [AG95].

In the same paper, they also develop an algorithm for the case of closed polygonal

curves which runs in O(pq log2(pq)), and an algorithm for partial curve matching with

the same runtime. A variant of the Fréchet distance known as the discrete Fréchet

distance can be computed in O(pq) time [EEMM94].

For two-dimensional surfaces, the computation of the Fréchet distance is surpris-

ingly hard. Computing the Fréchet distance between piecewise linear surfaces, even

if one surface is a triangle, is NP-hard [God98], as is the case when both surfaces are

polygons with holes or terrains [BBS10]. In general, the Fréchet distance is upper-

semi-computable, and it is unknown if it is computable [AB10]. However, when more

restrictive cases are considered, the problems become more tractable: the Fréchet dis-

tance for simple polygons can be computed in polynomial time [BBW07], the partial

Fréchet distance for simple polygons can be decided in polynomial time [SW12], and

the Fréchet distance for folded polygons (polygons folded in specific, nice ways) can

be approximated in polynomial time [CDHP+11].

The primary result of this thesis is an improvement of O(n) to the runtime of the

Fréchet distance for simple polygons. We model the problem in a slightly different

way than before [BBW07], which results in the runtime improvement and the ability

to recover the map or even maps that realize the Fréchet distance. The additional

information afforded by the capacity for recovering the original maps lends itself to

the investigation of the Fréchet distance as it applies to morphing and other problems.

CHAPTER 1. INTRODUCTION 3

We begin by defining notation and terms that will be used in later chapters. We

assume a basic familiarity with mathematics and computation in general, but not with

the specifics of this topic. We then consider the Fréchet distance for curves, including

an overview of the Hausdorff distance (a related metric), focusing in particular on the

computation of the Fréchet distance for polygonal curves, but also giving due time to

the Fréchet distance defined for piecewise smooth curves. The important distinction

between a decision problem and an optimization problem are discussed, as well as

several methods of converting between the two that are particularly beneficial to this

specific application.

We continue to define the Fréchet distance for simple polygons, situating it within

the larger context of the computability of various incarnations of the Fréchet dis-

tance for surfaces. The approach for the computation of the Fréchet distance for

surfaces will be discussed at length, followed by an equally involved discussion of the

reconceptualization of that approach and corresponding differences in runtime and

computation. We finish by discussing some of the applications to which this new

approach is particularly well suited, including our own investigation into the problem

of morphing.

2

Notation and Terminology

Below is an overview of the notation and terminology that will be used in this thesis.

This should serve as both a review of simple concepts, an overview of the work to

come, and a reference for later use.

2.1 Geometric Fundamentals

Definition 2.1. (Vector Space) A vector space over a field F is a set V together with

two binary operations such that the operation (addition) over elements in V (vectors)

is associative and commutative, has an identity element, and has inverse elements.

The operation (scalar multiplication) of elements in F (scalars) with elements in V

distributes over both F and V , is compatible with the field multiplication, and also

has an identity element.

Definition 2.2. (Line Segment) A line segment L = {~u + t~v | t ∈ [0, 1]}, where

~u,~v ∈ V and V is a vector space over R or C.

Definition 2.3. (Polygonal Line) A polygonal line, polygonal curve, or piecewise

linear curve P is a curve defined by a series of points (A1, A2, . . . , An) called vertices

such that the curve consists of line segments connecting adjacent vertices.

4

CHAPTER 2. NOTATION AND TERMINOLOGY 5

Definition 2.4. (Polygon) A polygon is a closed polygonal line; i.e., a polygonal line

such that the start and end points are the same.

Definition 2.5. (Simple) A polygon or polygonal curve is simple if no two segments

intersect.

Definition 2.6. (Parametric Curve) A parametric curve or parameterized curve is a

representation of a curve as a function of a variable called the parameter.

Definition 2.7. (Convex) A shape is convex if for every pair of points within the

object, every line segment that joins them lies entirely within the object. A convex

polygon is a polygon that is convex.

Definition 2.8. (Convex Decomposition) A convex decomposition is the division of

an object into convex pieces by the addition of line segments between vertices.

Definition 2.9. (Shortest Path) A shortest path is a path (curve) between two points

with the shortest total length. Shortest paths within polygonal surfaces, even those

with holes, are always polygonal lines under the Euclidean norm.

Definition 2.10. (Piecewise Linear Surface) A piecewise linear surface is a surface

in which the shortest path between any two points is a piecewise linear curve.

2.2 Metrics and Distance

Definition 2.11. (Metric) A metric or distance function is a function which defines

a distance between elements of a set. A metric d over a set X is a function X ×X →

[0,∞) such that the following conditions hold:

• d(x, y) = 0 if and only if x = y

• d(x, y) = d(y, x)

CHAPTER 2. NOTATION AND TERMINOLOGY 6

• d(x, z) ≤ d(x, y) + d(y, z)

Definition 2.12. (Metric Space) A set equipped with a metric is a metric space.

Definition 2.13. (Homeomorphism) A homeomorphism is a function f : X → Y

between two topological spaces such that the following properties are true:

• f is a bijection

• f is continuous

• The inverse, f−1, is continuous.

Two spaces are homeomorphic if there exists a homeomorphism between them.

Definition 2.14. (Parameter Space) The set of all possible combinations of values

of parameters.

Definition 2.15. (Hausdorff Distance) The Hausdorff distance dH is a function such

that

dH(A,B) = max(~dH(A,B), ~dH(B,A))

where,

~dH(A,B) = max
a∈A

min
b∈B

d(a, b)

and A and B are subsets of a metric space, and d is the associated metric. We will

be working in Euclidean space where d(a, b) = ‖a− b‖.

Definition 2.16. (Fréchet Distance for Curves) Let V be an arbitrary Euclidean

vector space, and let f : [a, a′] → V and g : [b, b′] → V be parametric curves. The

Fréchet distance δF for curves is defined as

δF (f, g) = inf
α[0,1]→[a,a′]
β[0,1]→[b,b′]

max
t∈[0,1]

‖f(α(t))− g(β(t))‖

CHAPTER 2. NOTATION AND TERMINOLOGY 7

where α and β denote continuous, monotonically increasing reparameterizations of f

and g, respectively.

Definition 2.17. (Fréchet Distance for Surfaces) Let f : A → Rd and g : B → Rd

for some A,B ⊆ Rk where 1 ≤ k ≤ d be two surfaces with homeomorphic parameter

spaces A and B. The Fréchet distance between those surfaces is defined as.

δF (f, g) = inf
σ : A→B

sup
x∈A

‖f(x)− g(σ(x))‖

Definition 2.18. (Free Space) Given curves P and Q, the free space Fε is a subset

of the parameter space of P and Q such that

Fε = {(s, t) ∈ [0, 1]2 | d(P (s), Q(t)) ≤ ε}

Definition 2.19. (Ambient Isotopy) An ambient isotopy is a continuous distortion

of a manifold that takes a submanifold to another submanifold. Let N and M be

manifolds and g and h be embeddings of N in M . A continuous map

F : M × [0, 1] → M

is defined to be the ambient isotopy taking g to h if F0 is the identity map, each

map Ft is a homeomorphism from M to itself, and F1 ◦ g = h.

Definition 2.20. (Isotopic Fréchet Distance) LetM be a metric space withA,B ⊂ M

and with A, B, and X homeomorphic. The isotopic Fréchet distance between them

is

I(A,B) = inf
h
max
x∈X

len h(x, ·)

where h : M×I → M , h(·, t) homeomorphism, h(x, 0) = x ∀ x ∈ X , and h(A, 1) = B

3

Fréchet Distance for Curves

There are innumerable ways to define distance outside the standard notion from

Euclidean geometry, and many such metrics have useful applications in the real world.

In a dense city grid, for example, the shortest path between two points follows the

zig-zagging path of the streets rather than simply a straight line (this is known as

the Manhattan distance). Another metric, sometimes called the Post Office metric

or the British Rail metric, measures distance by enforcing that any path from one

point to another must pass through some other predefined point (the “post office”).

Everything that follows will be defined for the Euclidean norm and Euclidean metric,

but many of the theorems and definitions below are equally applicable in any metric

space or vector space.

There are several ways that one could generalize the notion of distance between

points to distance between sets or curves. The Hausdorff distance is one of the most

straightforward generalizations, so we begin there. The Hausdorff distance is used in

numerous applications, but its utility is limited when considering curves as continuous

collections of points rather than simply sets of points. We then move to the Fréchet

distance, which is far better suited to measuring the distance between continuous

objects such as curves or surfaces. The Fréchet distance for curves will provide a

useful starting point for a later discussion about distances between surfaces, and

8

CHAPTER 3. FRÉCHET DISTANCE FOR CURVES 9

simple polygons in particular.

3.1 Hausdorff Distance

Let M be a metric space with an associated metric d, so that d(x, y) is the distance

between two points in M . Suppose that we wish to define the distance between a

point and a set. The intuitive definition would be

d(x, Y) = inf{d(x, y) | y ∈ Y }

where x is a point and Y is a set. If Y is continuous, we can think of this as being

the normal distance from Y to x. Suppose then that we wish to define a distance

between two sets. A further straightforward extension would be

d(X, Y) = sup{d(x, Y) | x ∈ X}

where X and Y are both sets.

This is exactly the definition of the (directed) Hausdorff distance, and we can

rewrite it as

~dH(X, Y) = sup inf{d(x, y) | x ∈ Xand y ∈ Y }

It is important to note that ~dH(X, Y) 6= ~dH(Y,X) in general and that ~dH(X, Y) =

0 does not always imply that X = Y , therefore ~dH for sets is not a metric. For this

reason we define the undirected Hausdorff distance as below:

dH(X, Y) = max{~dH(X, Y), ~dH(Y,X)}

which is in fact a metric on the set of compact subsets of M .

CHAPTER 3. FRÉCHET DISTANCE FOR CURVES 10

A

B

~dH(A,B) ~dH(B,A)

Figure 3.1: An example showing ~dH(B,A) and ~dH(B,A)

We now have a basic way to talk about the distance between sets of points.

Figure 3.1 shows the two directed distances between A and B, considered as sets of

points. The undirected distance is, then, the larger of the two.

Figure 3.2: An example where the Hausdorff distance fails

Before we get too excited, however, let us consider a case where the Hausdorff

distance gives undesirable results. Figure 3.2 shows two polygonal curves. Note that

they have a very small Hausdorff distance, because for every point in A there is a

point in B that is very close. If we think about them as curves, however, they seem

about as dissimilar as could be! The Hausdorff distance is clearly inadequate for use

in comparing the similarity of curves.

CHAPTER 3. FRÉCHET DISTANCE FOR CURVES 11

3.1.1 Computability

We briefly mention the computability of the Hausdorff distance for completeness, but

we will not explore the details of different algorithms or implementations.

The Hausdorff distance dH(A,B) in two dimensions can be computed efficiently

if A and B are sets of line segments or, in a higher fixed dimension d, if A and B are

sets of k-dimensional simplices for k < d [AB10]. The Hausdorff distance between

two polygons can be determined in time O(n logn) [ABB95]. If P and Q are sets

of n and m points respectively, then the Hausdorff distance can be computed in

O((m + n) log(m + n)) by first constructing the Voronoi diagram and then using a

sweep algorithm [ABG+03]. Generalizing further, given two sets P,Q ⊆ R
d of n and

m k-dimensional simplices, respectively, then ~dH(P,Q) can be computed in O(nmk+2)

time [ABG+03]. Faster algorithms for specific special cases of the general problem

have been developed, see [ABB95, AB10, AG99, ABG+03].

3.2 Fréchet Distance

We saw in Figure 3.2 why the Hausdorff distance does not work well for curves and

surfaces. It is then necessary to define a new metric that accounts for the continuous,

connected nature of curves.

If we have two curves f and g, then they have a defined start and endpoint.

We might consider taking parameterizations of f and g, and comparing the distance

between the two curves at each point along those parameterizations. In this sense,

we are measuring a notion of distance that takes the continuity into account, and this

is perhaps the most straightforward way to do so. There are two problems with this,

though, which is that there are an infinite number of parameterizations (which one

do we choose?) of f and g, and that this approach gives us a set of distances rather

than a single value, so it has no utility as a distance metric.

CHAPTER 3. FRÉCHET DISTANCE FOR CURVES 12

There are different ways to solve these two problems, and they result in different

variants of the Fréchet distance. The standard Fréchet distance (Definition 2.16) con-

siders the infimum of the maximum point-to-point distance for every monotonically

increasing parameterization of f and g. If we allow the parameterizations to back-

track (remove the monotonicity requirement), we have what is known as that weak

Fréchet distance. If we want to consider the average point-to-point distance instead

of the maximum, then we have the integral Fréchet distance. We will focus on the

standard Fréchet distance.

Figure 3.3: The Fréchet distance can be viewed as the shortest leash length that
allows a man on f to walk his dog on g.

There is a stock illustration for the Fréchet distance, as shown in Figure 3.3.

Imagine that you have two curves, f and g, and there is a man walking continuously

on f and his dog is walking continuously on g. They are both only allowed to go

forward or stop. The Fréchet distance is then defined as the shortest leash length

between them that will still allow them to make their walk.

Although in general dH(f, g) ≤ δF (f, g), it is worth noting that if f and g are

convex closed curves, then dH(f, g) = δF (f, g) [ABW90].

Most curves and surfaces can be well approximated by polygonal curves and poly-

gons, therefore the majority of this thesis will concern itself with those cases. It is

worth noting, however, that work has been done for the Fréchet distance between

piecewise smooth curves rather than simply piecewise linear curves. Günter Rote

showed in 2004 that the Fréchet distance between piecewise smooth curves (whose

segments are algebraic curves bounded by a constant degree) can be computed in

CHAPTER 3. FRÉCHET DISTANCE FOR CURVES 13

O(pq log pq) for curves with p and q segments.

3.3 Decision vs. Optimization

At first glance it may seem difficult to compute the Fréchet distance between two

curves; after all, a näıve approach might involve inspecting every leash length in

every possible parameterization of f and g — an infinite number of possibilities,

which would be intractable even by sampling.

This seemingly insurmountable obstacle can be hurdled simply by changing the

our perspective. Instead of asking “What is the Fréchet distance between f and g?”

we ask “Is the Fréchet distance between f and g less than ε?”

In other words, we turn the original question into a decision problem which can

then be optimized. We must first decide if δF < ε, and then either increase or

decrease our estimation of ε. This is a common technique for developing algorithms

for otherwise difficult problems.

We will develop an algorithm for the decision problem later. This section focuses

on methods of computing the actual value of ε, assuming an algorithm for the deci-

sion problem exists (we assume it can be determined in O(pq) time). As one might

imagine, there are several ways of optimizing the value of ε, and the choice of which

to implement is often a trade-off between simplicity and speed.

3.3.1 Binary Search

The most straightforward method to optimize ε is one familiar to anyone who has

ever played a simple number guessing game (“I’m thinking of a number between 0

and 100”). A smart strategy here is to start at the midpoint: 50. If the other player

says that is too high, subtract half of the length of the interval (25); if it is too low,

add half of the length of the interval. Thus if the number was 65, then the guesses

CHAPTER 3. FRÉCHET DISTANCE FOR CURVES 14

would be as follows: 50, 75, 63, 69, 66, 65.

In the worst case, this strategy will find the solution in O(logn) time. This

strategy is commonly called a binary search, since each guess leads to two possible

better estimations, either greater than or less than the guess. Although the idea is

relatively simple, because of overflows and rounding, a correct implementation can

be tricky. [Knu98].

The runtime O(logn) assumes that we can decide if the number is less than, equal

to, or greater than the guess in constant time. If instead it takes some amount of

time to determine the value of the comparison, the runtime is much higher. For our

decision problem of O(pq), finding the optimum value with a binary search would

take O(pq log n). The problem is that, unlike the guessing example, we don’t know

what n is to begin with.

The range of ε is bounded below by 0, because it comes from a distance metric.

We can find an upper bound easily using geometric properties of the Fréchet distance

(discussed later) or by repeatedly doubling the guess for the upper bound. Once we

have a range, we can begin the binary search to find ε, however, unlike the integers we

were working with before, we have a continuous space that can be infinitely divided.

Therefore we must pick some precision ρ ahead of time, and say that the solution has

been reached if the two previous guesses are within ρ of each other.

If our range is determined to be [0, µ], then the number of possible solutions for

the binary search, in other words n, is µ

ρ
. Since ρ must be very small with respect to

µ in order to ensure a good solution, we can conclude that n will be quite large for

this application. In general for a binary search with a desired precision of b bits runs

in O(log b).

CHAPTER 3. FRÉCHET DISTANCE FOR CURVES 15

3.3.2 Parametric Search

Parametric search is an approach to optimization that was developed by Meggido

in the early 1980s [Meg83] and has plenty of applications in computational geome-

try [AST92]. It assumes that the decision problem is monotonous (i.e. if δF (f, g) < ε,

then for all ε′ < ε, δF (f, g) < ε′), and requires the design of a parallel algorithm. For

many applications, it suffices to use a parallel sorting algorithm, of which there are sev-

eral, but few of which are easy to implement. Cole later improved the runtime of the

original technique, but his optimization is complex and difficult to implement [Col87].

In 2002, Oostrum and Veltkamp [OV02] showed that for several applications, includ-

ing computation of the Fréchet distance, it suffices to use a simple QuickSort as the

search algorithm, and that an efficient algorithm can be obtained even without Cole’s

optimization. Parametric search rarely sees practical use because of how difficult it

is to implement, and it therefore usually remains a theoretical tool.

Although an in-depth treatment of parametric searching is outside the scope of

this thesis, it should be noted that it is particularly suited to computing the Fréchet

distance. When applied to the Fréchet distance problem, Oostrum and Veltkamp

showed that their QuickSort-based, randomized algorithm without Cole’s trick still

resulted in an expected runtime of O(pq log pq) [OV02]. We will take it for granted

in later sections that the Fréchet distance between two polygonal curves with p and

q segments can be computed in O(pq log pq).

3.4 Computing the Fréchet Distance for Polygonal

Curves

Alt and Godau developed an algorithm that computes the Fréchet distance between

polygonal curves in O(pq log pq) for curves with p and q nodes, respectively [AG95].

CHAPTER 3. FRÉCHET DISTANCE FOR CURVES 16

We discuss their approach here, as many of the concepts they develop will be used or

extended later. Their algorithm employs parametric search as described above; the

meat of their work is an efficient algorithm for the decision problem.

P

Q

ε

Fε

P

Q

Figure 3.4: Fε for two line segments P and Q, with ε.

The key idea is their use of the free space (see Definition 2.18). Consider the case

where p = q = 1, in other words, where P and Q are line segments. Then the free

space Fε is the intersection of the unit square with an ellipse. Figure 3.4 shows this

case. Note that this defines at most four free intervals, one per side.

We now wish to extend the notion of free space for arbitrary polygonal curves.

Definition 3.1. Given curves P and Q, the free space Fε is a subset of the parameter

space of P and Q such that

Fε = {(s, t) ∈ [0, p]× [0, q] | d(P (s), Q(t)) ≤ ε}

This clearly corresponds to the free space for all possible pairs of line segments

in polygonal curves P and Q, see Figure 3.5. We define a free space cell Cij by

Cij = [i− 1, i]× [j− 1, j]. For each cell, we can see that the free space corresponds to

the first definition, and is therefore the intersection of an ellipse with a square. The

approach for the free space will be to calculate the intersection of pq ellipses with pq

squares. Note that the intersection of a single cell with an ellipse can be computed

in O(1) time.

CHAPTER 3. FRÉCHET DISTANCE FOR CURVES 17

ε

P

Q

∂P

∂Q

Figure 3.5: The free space for two polygonal curves P and Q showing the relationship
between Fε and the original curves.

Why is the free space useful? Any given point in the free space corresponds to

a point on P and a point on Q such that the distance between those points is less

than ε (Figure 3.5). Note that a path from [0, 0] to [p, q] defines a correspondence

between every point in P and every point in Q, in other words, it corresponds to a

parameterization of P and Q. It is apparent that a monotone path through the free

space would correspond exactly to monotone parameterizations of P and Q, thus,

to answer the decision problem we need only decide if there exists a monotone path

through the entire free space.

Since the free space itself does not hold information about the monotone paths

through it, we define a subset of free space called the reachable space.

Definition 3.2. (Reachable Space) The reachable space Rε is a subset of the param-

eter space of the free space Fε such that

Rε = {(s, t) ∈ Fε | there exists a monotone curve within Fε from (0, 0) to (s, t)}

From the reachable space we can develop the following dynamic programming

algorithm, which builds Rε along the bottom and left edges of the free space first,

CHAPTER 3. FRÉCHET DISTANCE FOR CURVES 18

and then fills in the rest, until finally we know if (p, q) is reachable. If (p, q) is

reachable, there exists a monotone path through Fε, and therefore δF < ε.

Algorithm 3.1 Compute the Fréchet distance between polygonal curves (decision
problem)

for all cells Ci,j do

compute the free space

end for

for i = 1 → p do

determine Rε ∩ Ci,1

end for

for j = 1 → q do

determine Rε ∩ C1,j

end for

for i = 1 → p do

for j = 1 → q do

determine Rε ∩ Ci,j+1 and Rε ∩ Ci+1,j from previously computed cells

answer yes if (p, q) ∈ Rε ∩ Ci + 1, j, no otherwise

end for

end for

The runtime of Algorithm 3.1 is dominated by the nested for loop, which runs in

O(pq) time. As mentioned in Section 3.3.2, the decision problem can then be used to

find the Fréchet distance between polygonal curves in O(pq log pq) time.

4

Fréchet Distance for Simple Polygons

Recall that the Fréchet distance can be defined for surfaces rather than curves (see

Definition 2.17). In general, computing the Fréchet distance between arbitrary sur-

faces is NP-hard [God98]. It has been shown that for a general surface, the Fréchet dis-

tance is upper-semi-computable, and it is currently unknown if it is computable [AB10].

Computing the Fréchet distance between piecewise linear surfaces, even if one surface

is a triangle, is NP-hard [God98], as is the case when both surfaces are polygons with

holes or terrains [BBS10]. Much of the previous and current work on the Fréchet

distance between surfaces relies on either restricting the surfaces that are considered

so that they have some “nice” properties that make them easier to compute, or on

approximating the Fréchet distance, or both.

For example, if we restrict the surfaces to simple polygons, the Fréchet dis-

tance can be computed in polynomial time [BBW07], as can the partial Fréchet

distance [SW12]. The Fréchet distance for folded polygons can be approximated in

polynomial time [CDHP+11].

In this chapter we discuss the Fréchet distance for surfaces, with a focus on simple

polygons. For the same reason that we focused on polygonal curves in the previous

chapter, we focus here on simple polygons, namely, because simple polygons can

often be employed as good approximations of other shapes or surfaces. We begin by

19

CHAPTER 4. FRÉCHET DISTANCE FOR SIMPLE POLYGONS 20

discussing previous work by Kevin and Maike Buchin and Carola Wenk [BBW07] on

simple polygons and then describe a new approach to their algorithm which improves

the runtime by a linear factor.

4.1 Simplifying the Fréchet Distance for Surfaces

The Fréchet distance for surfaces (Definition 2.17) is difficult to work with because it

involves taking the infimum over an infinite set of homeomorphisms. In this section

we develop the theory needed to simplify the homeomorphisms to a certain, well-

behaved class of maps that will allow us to compute the Fréchet distance between

simple polygons. First we consider the definition of the Fréchet distance for surfaces

restricted to simple polygons.

Definition 4.1. (Fréchet Distance for Simple Polygons) Let P and Q be two simple

polygons with p and q vertices, respectively. Then the Fréchet distance for surfaces

simplifies to:

δF (P,Q) = inf
σ:P→Q

max
t∈P

‖t− σ(t)‖

assuming f : P → P and g : Q → Q and where σ ranges only over orientation-

preserving homeomorphisms.

Note that σ is defined as orientation-preserving, and that this orientation will

be clear given an ordering of vertices. It is also worth noting that the theory and

algorithm developed below can be extended to orientation-reversing homeomorphisms

and, by extension, general homeomorphisms.

Definition 4.2. A map σ : P → Q such that maxt∈P ‖t− σ(t)‖ ≤ ε is an ε-realizing

map.

In other words, the Fréchet distance for simple polygons is the infimum over all

CHAPTER 4. FRÉCHET DISTANCE FOR SIMPLE POLYGONS 21

ε-realizing homeomorphisms. The decision problem then becomes

δf (P,Q) ≤ ε ⇔ for all ε′ > ε there exists an ε′-realizing homeomorphism

Note that an ε-realizing homeomorphism may not exist, but there will be a ε′-

realizing homomorphism such that ε′ is arbitrarily close to ε. In particular, the

infimum is not a minimum whenever the limit of the homeomorphisms is no longer

injective.

4.1.1 Fréchet Distance between Boundary Curves

It is a natural and necessary question to ask if the Fréchet distance between two

polygons is equal to the Fréchet distance between their boundaries. It can be shown

that this is not true in general.

Theorem 4.3. Let P and Q be simple polygons with boundary curves ∂P and ∂Q.

Then δF (P,Q) is not necessarily equal to δF (∂P, ∂Q)

The proof of the theorem can be found in [BBW07], and relies on the illustration

in Figure 4.1 and the shape known as “Fréchet’s pants.” It can be shown that the

Fréchet distance between the two surfaces of the polygons in Figure 4.1 is h/2 as w

and δ tend to zero, even while the Fréchet distance between their boundaries clearly

tends to zero under the same transformation.

CHAPTER 4. FRÉCHET DISTANCE FOR SIMPLE POLYGONS 22

δ

h

w

Figure 4.1: The Fréchet distance between the boundaries is different from the Fréchet
distance between the surfaces.

Theorem 4.4. The Fréchet distance between convex polygons equals the Fréchet dis-

tance between their boundary curves.

Theorem 4.4 is a direct corollary of Theorem 4.11. The convex decomposition

of a convex polygon is the polygon itself, and therefore a shortest path map is a

homeomorphism on the boundary. It can be shown that the theorem holds for convex

polytopes in general [BBW07].

Our ultimate goal is to restrict the homeomorphisms that we need to consider so

that they can be more easily computed. To that end, we present the following lemmas

needed to reach the result presented in Theorem 4.10. They are stated here without

proof, but a more in-depth treatment can be found in [BBW07].

First we review the concept of an hourglass, presented by Guibas et al. in [GHL+86].

Definition 4.5. (Hourglass) Let A be a simple polygon and let S1 and S2 be non-

adjacent sides of A with endpoints a1, a2 and b1, b2 respectively. The hourglass of S1

and S2 is the set H such that

H = {s ∈ A | s lies on the shortest path in A from ai to bi}

CHAPTER 4. FRÉCHET DISTANCE FOR SIMPLE POLYGONS 23

where a1 ≤ ai ≤ a2 and b1 ≤ bi ≤ b2.

Note that this defines a subset of the polygon, and that the boundaries of that

subset are defined by S1, S2 and the shortest path from a1 to a2 and b1 to b2.

S1

S2

b1

b2

a1

a2

Figure 4.2: The hourglass between S1 and S2

Figure 4.2 shows an example of an hourglass. It’s also important to note that the

concept holds for chains of edges as well, not simply subsets of two single edges.

Lemma 4.6. Let f : [0, 1] → Rd be a curve, let s : [0, 1] → Rd be a parameterized

line segment, and let 0 ≤ t1 < t2 ≤ 1. Define f ′ : [0, 1] → Rd to coincide with f

on [0, t1]∪ [t2, 1] and to coincide with a parameterized segment from f(t1) to f(t2) on

[t1, t2]. Then δF (f
′, s) ≤ δF (f, s).

Lemma 4.6 implies that, given a line segment and any arbitrary curve, we can

replace a portion of the curve with a line segment (known as “shortcutting”) without

increasing the Fréchet distance between the two. This will allows us to tame the

interior of the homeomorphisms we are considering into nicer maps.

It is easier to see why Lemma 4.6 is true with a picture (see Figure 4.3). The proof

hinges on the fact that the maximum distance between a segment and a polygonal line

is realized by the endpoints, thus, replacing part of the interior with a line segment

does not increase the overall Fréchet distance. In effect, we’re removing some of the

interior of the free space diagram, without changing (0, 0) or (p, q) — the parts that

matter.

CHAPTER 4. FRÉCHET DISTANCE FOR SIMPLE POLYGONS 24

ε

Figure 4.3: An illustration of simplifying a curve. Note that this simply removes a
column from the free space diagram.

Lemma 4.7. Let L be a line segment from a to b, and I1 and I2 be two non-

intersecting intervals along the boundary of a polygon such that I1 is in the ε-disk

around a and I2 is in the ε-disk around b. Suppose S is the shortest path connecting

i1 ∈ I1 and i2 ∈ I2, and that δF (L, S) ≤ ε. Then for all shortest paths S ′ connecting

ii ∈ I1 to ij ∈ I2, δF (L, S
′) ≤ ε

Lemma 4.7 makes a fairly bold statment: Given a line segment and an hourglass,

if the Fréchet distance between a single shortest path in the hourglass and the line is

less than ε, then the Fréchet distance between the segment and any shortest path in

the hourglass is also less than ε.

ε

I1

I2

Figure 4.4: Hourglass Lemma. The blue diagonal defines I1 and I2, and any shortest
path in the hourglass between them has Fréchet distance less than ε to the diagonal.

This, too, is more easily seen with a picture. Because any point in the intervals I1

and I2 is within an ε-ball of the endpoints of L, if the Fréchet distance between L and

CHAPTER 4. FRÉCHET DISTANCE FOR SIMPLE POLYGONS 25

one shortest path S is less than ε, then the same is true for any shortest path in the

hourglass. The hourglass restricts the interior of the path so that all paths behave

similarly, and the endpoints are restricted by the ε-ball that defines the interval.

Lemma 4.8. Given two simple polygons P and Q, a diagonal D of P and a homeo-

morphism σ : P → Q, let σ′ : P → Q map the diagonal D homeomorphically to the

shortest path between the images of its endpoints under σ. Then

δF (D, σ′(D)) ≤ δF (D, σ(D))

Lemma 4.8 simply states that by restricting the homeomorphisms to shortest path

maps, we do not increase the Fréchet distance. This relies on Lemma 4.6, and note

that any diagonal D is a line segment and that therefore the lemma is applicable.

We know that a homeomorphism σ must map the endpoints of D to the boundary

of Q, and that therefore D is mapped to some curve in Q. Using Lemma 4.6, we can

progressively refine the curve that D maps to, without increasing the Fréchet distance

between it and D, until the path is in fact the shortest path between the endpoints.

In other words, if δF (P,Q) ≤ ε, then for all ε′ < ε, there exists an ε′-realizing shortest

path map.

Lemma 4.9. Given two simple polygons P and Q, a convex decomposition C of P

and a shortest path map σ′ : C → Q, then for all δ > 0 there exists a homeomorphism

σδ : P → Q that realizes a Fréchet distance not larger than δ minus the Fréchet

distance realized by σ′. In other words,

max
t∈P

‖t− σδ(t)‖ ≤ max
t∈C

‖t− σ′(t)‖+ δ

Lemma 4.9 implies that, if for all ε′ > ε there exists an ε′ realizing shortest path

CHAPTER 4. FRÉCHET DISTANCE FOR SIMPLE POLYGONS 26

map. Lemma 4.9 and Lemma 4.8 together imply that

δF (P,Q) ≤ ε ⇔ for all ε′ > ε, there exists an ε′-realizing shortest path map.

This states that by restricting the homeomorphisms to shortest path maps, the

Fréchet distance does not change.

Theorem 4.10. Let P and Q be two simple polygons with p and q vertices, respec-

tively. Then the Fréchet distance between them can be defined as:

δF (P,Q) = inf
σ′:EC→Q

max
t∈C

‖t− σ′(t)‖

where C is an arbitrary convex decomposition of P and σ′ ranges only over orientatioin-

preserving shortest path maps from C to Q.

Furthermore, recall that the Fréchet distance between closed curves is equal to

the Hausdorff distance between them. Therefore, the Fréchet distance between two

convex polygons is equal to the Hausdorff distance between their boundary curves,

which can be computed in O((p+ q) log(p+ q))

Theorem 4.11. The Fréchet distance between two simple polygons P and Q such

that either P or Q is convex is equal to the Fréchet distance between their boundary

curves.

The convex decomposition of a convex polygon is the polygon itself, and therefore

a shortest path map is a homeomorphism on the boundery.

Now that we have restricted the homeomorphisms to shortest path maps, we have

something a bit easier to compute, and we are ready to develop the algorithm to do

so.

CHAPTER 4. FRÉCHET DISTANCE FOR SIMPLE POLYGONS 27

4.2 Algorithm for the Fréchet Distance for Simple

Polygons

In this section we develop an algorithm for the decision problem for the Fréchet

distance between simple polygons as outlined in [BBW07]. In Section 4.1, we demon-

strated that it suffices to restrict the space of homeomorphisms to only those that

map diagonals of a convex decomposition of P to shortest paths in Q such that the

Fréchet distance between each diagonal and its corresponding shortest path is at most

ε.

The approach is similar to that used for calculating the Fréchet distance for polyg-

onal curves. Before we characterize the decision problem in terms of the free space,

it is important to note that there are two major differences between the problem

for simple polygons and the problem for polygonal curves. The first is that polygo-

nal curves have a defined start and end point, and therefore it is known beforehand

where the path through the free space diagram should start and end (for the case of

polygonal curves, (0, 0) and (p, q)). The second problem is the issue of the distance

between the diagonal and the shortest paths. It is clear that we can change where the

endpoints of a diagonal in P map to in Q simply choosing a different path through

the free space diagram.

ε
∂P ∂P

∂Q

Q

P

Figure 4.5: The double free space for P and Q.

Alt and Godau proposed a solution to the first problem in [AG95]. Instead of

CHAPTER 4. FRÉCHET DISTANCE FOR SIMPLE POLYGONS 28

simply considering the free space diagram with the boundary of P on the x-axis

and the boundary of Q on the y-axis, we construct the double free space diagram

(Figure 4.5) so that the boundary of P is doubled on the bottom edge. This gives us

multiple places to start (possibly), which means that instead of finding a path from

(0, 0) to (p, q), one must find a path from somewhere in [0, 2p] to [q, 2p] such that the

difference in x-values of the start and end points is exactly p.

4.2.1 Reachability Structure

The reachability structure proposed by Alt and Godau [AG95] is a partition of the

boundary of the double free space diagram into O(pq) intervals. Each interval on

the bottom or left of the boundary is labeled n-type, s-type, or r-type, corresponding

to non-reachable, see-through, and reachable intervals respectively. These intervals

are calculated for each cell, and then recursively merged into the full reachability

structure.

Definition 4.12. Given a free space diagram D, let B, T , L, and R be the bottom,

top, left, and right boundaries of D, respectively. The reachability structure is a finite

partition of the boundary of D into three types of intervals:

• type n, non-reachable: a connected subset I ⊆ L ∪ B such that from no

point on I can any point on on R ∪ T be reached by a monotone path in Fε.

• type r, reachable: a connected subset I ⊆ L ∪ B such that from any two

points in I, the same set of points in R ∪ T can be reached.

• type s, see-through: a connected subset I ⊆ L (I ⊆ B) such that from any

point in I the horizontal (vertical) line segment connecting it with R (T) lies

completely within Fε.

In addition to storing the interval information, we also store a “high” and “low”

CHAPTER 4. FRÉCHET DISTANCE FOR SIMPLE POLYGONS 29

pointer for each interval of type r and s on L∪B, pointing to the highest and lowest

reachable points on R ∪ T . See Figure 4.6.

h pointer

l pointer

type r

type s

type n

Figure 4.6: Two free space cells with interval types and pointers marked.

If D is the free space diagram between two line segments, it’s clear that we can

compute the reachability structure in constant time. For a larger diagram we use a

divide-and-conquer approach by splitting along the longer side. This requires that we

define a method of merging two adjacent cells in the free space diagram.

h pointer

l pointer

type r

type s

type n

Figure 4.7: The same free space cells with their adjacent boundaries refined.

To merge two smaller reachability graphs, D1 and D2 along a vertical into a

larger one, D, we first refine the partitions of the shared edge (R1 and L2, using our

notation), which in turn causes a refinement of the partition along L1 and R2. Each

new interval acquires the type of the interval of which it is a subset, and the arrows

of the superset interval are transferred to the new one. See Figure 4.6 and Figure 4.7

for an example.

CHAPTER 4. FRÉCHET DISTANCE FOR SIMPLE POLYGONS 30

h pointer

l pointer

type r

type s

type n

Figure 4.8: Cells fully merged with all boundaries refined.

The details of transferring the refinement of the shared boundary (R1 and L2) are

omitted for brevity, but for the most part merging is intuitive; i.e., an r-interval on B

that points to an r-interval on the newly refined edge, then the r-interval on B gets

the high and low pointers that r-interval on the boundary has. See [AG95] for the

other cases, and Figure 4.8 for an example of the final, merged reachability graph D.

After all cells of the reachability structure are merged, if the start point lies within

an interval of type r or s, and the end point is between the high and low pointers

and the start point lies within the high and low pointers of the end point with the

directions of the graph reversed, then there exists a path through the free space.

Note that the reachability structure is similiar in concept to Algorithm 3.1. The

difference is that, instead of an algorithm that runs once and returns the answer

“yes” or “no,” we have a structure that we can then query for that answer. This

is important, because as we noted earlier, there is no defined start or endpoint for

closed curves. The reachability structure allows us to check each reachable interval

on the bottom to see if a path exists that will realize the Fréchet distance.

4.2.2 Combined Reachability Graph

In [BBW07], the solution to the problem of mapping diagonals to shortest paths is

discussed in detail. The idea of the reachability structure is extended to a structure

called the combined reachability graph. This is defined exactly as the reachability

CHAPTER 4. FRÉCHET DISTANCE FOR SIMPLE POLYGONS 31

structure is defined, except that during its construction, we remove intervals that

would create an invalid mapping of a diagonal.

There are a couple of key observations that highlight the need for a structure

different from the normal reachability graph. The first has been mentioned already,

which is simply that whatever method we use to compute the Fréchet distance between

P and Q must also ensure that the Fréchet distance between each diagonal and

its corresponding shortest path is also less than ε. The second observation is that

diagonals have an implicit ordering, and not only that, but this ordering is important

and must be accounted for by the algorithm.

s

d1 d2

d3

d0

s d1 d2 d3 d0

Figure 4.9: The diagonals of the convex decomposition define a nesting structure.

For example, consider the convex decomposition shown in Figure 4.9. Starting

at the point s, we walk around the polygon in counter-clockwise order, and note the

order of the vertices that we hit. If we then connect the diagonals as defined by

our decomposition, we see that a diagonal may be nested inside another diagonal; in

other words, we hit the start point of a diagonal, then the start point of a second

diagonal, then the endpoint of the second diagonal, and finally the end point of the

first diagonal. Figure 4.9 shows this nesting structure along the boundary.

This has implications for any algorithm that computes the Fréchet distance be-

tween simple polygons. Consider again the polygon with its decomposition shown

in Figure 4.9. Suppose that we find a homeomorphism that maps the boundary of

the polygon to another polygon, and maps d1 to d0 to points s1, s0 such that the

Fréchet distance between the diagonal and the shortest path from s1 to s0 is less than

ε. That information alone does not guarantee that the diagonal from d2 to d3 also

CHAPTER 4. FRÉCHET DISTANCE FOR SIMPLE POLYGONS 32

maps to points connected by a shortest path within ε.

It is clear, then, that we must first find a mapping for the inner diagonal, and

then find a mapping for the outer diagonal that respects the mapping of the inner.

(One could, theoretically, go in the other direction, but it would only require more

work — consider the case where one diagonal is nested within three larger diagonals;

the inner diagonal would need to be checked and possibly modified three times).

s

d1 d2

d3

d0

s d1 d2 d3 d0d0 d1

Figure 4.10: The diagonals of the convex decomposition correspond to a set of columns
in the free space.

Note that a diagonal in P corresponds to a set of columns in the free space (see Fig-

ure 4.10). This gives us a straightforward way to enforce our diagonal requirements

for constructing the combined reachability graph. First, we must determine the diag-

onal nesting structure, then we proceed as normal, except instead of simply merging

recursively, we merge according to the diagonal structure, so that inner diagonals are

merged first.

Theorem 4.13. The nesting structure of the diagonals depends on the start point s.

The proof of Theorem 4.13 can be seen by considering Figure 4.10. This means

that, given different start points, we will need to merge columns in a different order.

The effects of this can be minimized by memoizing columns that have been merged

and reusing them when appropriate.

CHAPTER 4. FRÉCHET DISTANCE FOR SIMPLE POLYGONS 33

4.2.3 Algorithm

We are finally able to define an algorithm to compute the Fréchet distance between

simple polygons.

Algorithm 4.1 Compute the Fréchet distance between simple polygons (decision
problem)

Compute the convex decomposition of P with d diagonals and compute the free

space diagram of the boundary curves of P and Q.

for all diagonals in the convex decomposition of P do

for all possible hourglasses for the given diagonal do

Decide if δF (diagonal, shortest path) ≤ ε for a shortest path in the hourglass

Store the result so that we can find valid intervals in O(1).

end for

end for

for All columns of the reachability graph do

Merge according to the diagonal nesting structure.

Query for a feasible path

end for

Answer “yes” if a feasible path has been found, else “no”

The runtime for this approach is O(dT (n)), where d is the number of diagonals and

O(T (n)) is the time it takes to multiply two N ×N matrices [BBW07]. The matrix

multiplication is used to compute the transitive closure of the reachable intervals

when merging columns. The näıve implemention is T (n) = O(n3), but this can be

improved using Strassen’s algorithm to O(nlog
2
7) = O(n2.807) [Str69]. There is an

algorithm that has a time complexity of O(n2.37) [Vas11], however, it is difficult to

impossible to implement and has huge constant factors.

If we allow that p = q = d = n, then the runtime for this algorithm is O(n7), or,

CHAPTER 4. FRÉCHET DISTANCE FOR SIMPLE POLYGONS 34

using Strassen’s algorithm, O(n6.614).

4.3 Improved Algorithm for the Fréchet Distance

for Simple Polgyons

In this section we develop an algorithm that improves the runtime of Algorithm 4.1

by a linear factor. It should be noted that for all of the algorithms mentioned above,

it is impossible to actually recover the path through the free space from the reacha-

bility graph or the combined reachability graph; the only information available after

building those structures is high and low pointers. The motivation for this algorithm

came from a desire to recover an original path, which it does, and does so with the

added benefit of being faster.

4.3.1 Intervals, Revisited

In Definition 4.12 we defined intervals of type n, r, or s. These intervals were defined

such that they could span multiple cells in the free space diagram, so that any given

merge step in the algorithm could cause some of the intervals to change or split.

We begin by redefining our interval types so that they better encapsulate local,

rather than global, free space information.

Definition 4.14. Given a cell Cij of a free space diagram D, let B, T , L, and R be

the bottom, top, left, and right boundaries of Cij, respectively. Then we define the

following types of intervals:

• type n, non-reachable: a connected subset I of a single edge of the boundary

of L or B such that from no point on I can any point on on R ∪ T be reached

by a monotone path in Fε.

CHAPTER 4. FRÉCHET DISTANCE FOR SIMPLE POLYGONS 35

• type c, combined-reachable: a connected subset I of a single edge of the

boundary of L or B such that for any i ∈ I, there exists a monotone path from

i to a point on R∪T that lies completely within Fε. Note that this is essentially

an (s ∪ r)-type interval.

We further define the corresponding intervals on R and T analogously, i.e., if a

point in a c-type interval can reach a point in R ∪ T , that point is part of a c-type

interval, otherwise it is an n-type interval.

P

Q

c-type

n-type

Figure 4.11: The c and n intervals for a single cell on L ∪ B, and the corresponding
intervals on R ∪ T .

Figure 4.11 demonstrates that for a single cell Cij of the free space, the c-intervals

correspond exactly with intervals defined by Fε ∩ Cij. The approach is the same as

before; we have seen what intervals look like for a single cell and we wish to find a

way to merge them so that we can use a divide-and-conquer approach to finding the

c-intervals for the entire free space.

4.3.2 Arrows

The merging step is considerably more involved in this case, so we introduce the

notion of an arrow. The definition aids with the merging steps but will have several

consequences which we explore in this section.

Definition 4.15. Given two c-intervals I1 and I2, we define an arrow from I1 to I2

iff for any point s ∈ I1 there exists a monotone path to some point p ∈ I2.

CHAPTER 4. FRÉCHET DISTANCE FOR SIMPLE POLYGONS 36

It should be clear from the definition that an arrow can only exist if I1 lies on

L ∪ B and I2 lies on R ∪ T . Recall that in this case, L, B, R, and T are defined

locally, and therefore I1 and I2 can be in different cells. For a single cell, the arrows

are as shown in Figure 4.12 below.

P

Q

ε

Fε

P

Q

Figure 4.12: A single cell of the free space with arrows added.

Stacking

It’s important to note that c-intervals can be stacked on top of one another. Suppose

we have two adjacent cells in the free space diagram, C1 and C2, such that there is a

c-interval on L1, R1, L2, and R2 each, which we will call l1, r1, l2, and r2, respectively.

Further suppose that, ignoring their x-values, l1 = r1 and r2 ⊂ l2. Now consider the

arrows that these intervals define:

• There is an arrow A1 from l1 to r1.

• There is an arrow A2 from l2 to r2.

• There is an arrow A from I ′ ⊂ l1 to r2.

Note that I ′ is a subset of I1, which is what we mean by stacked : two c-intervals

can occupy the same space on an interval, but the parts of R∪T that they can reach

are different (more precisely, they are defined with respect to a different R or T).

Figure 4.13 illustrates stacking.

CHAPTER 4. FRÉCHET DISTANCE FOR SIMPLE POLYGONS 37

C1 C2

L1 R1L2 R2

l1 r1
l2 r2

C1 C2

L1 R1L2 R2

l1 r1
l2 r2

Figure 4.13: On the right, A is drawn in so that I ′, the red interval, is stacked on top
of I1

We would like to develop a way to determine A from A1 and A2 so that we

ultimately have a way to merge cells. One of the key points of this approach is after

we have A, we no longer need A1 or A2. Any monotone path that would have passed

first through A1 and then A2 is now entirely represented by the arrow A. (It should

be noted, however, that this does not mean that stacking does not occur if we forget

A1 and A2 immediately after merging — what if there was a path from l1 to t2, a

c-interval on T2, that passes through r1?)

Sub-Arrows

A problem arises if we completely forget A1 and A2, however, which is that we lose

information about the boundary between C1 and C2. Without that intermediate

interval, we have no way to know what the path between Ib and r2 looks like. For

this reason we define the notion of a sub-arrow, which we will discuss in Section 4.3.2.

An arrow could have two sub-arrows, both or either of which have subarrows

themselves. This defines an arrow tree for any given arrow, such that the leaves

of the arrow tree are precisely the arrows that span a single cell in the free space

diagram.

CHAPTER 4. FRÉCHET DISTANCE FOR SIMPLE POLYGONS 38

Merging

It should be clear now that defining how to merge two cells together is the same as

defining how to merge two arrows together: for every pair of arrows in adjacent cells,

we merge them if necessary.

Figure 4.14: The arrows are merged and the new arrow has references to modified
copies of the original arrows.

Suppose we have two adjacent cells (either or both of which may have been merged

from other cells) in the free space diagram, C1 and C2 such that there is an arrow

A1 from l1 to r1 and an arrow A2 from l2 to r2. If r1 ∩ l2 is nonempty, we define

the merged arrow A by way of two sub-arrows A′

1 and A′

2 such that A′

1 ends at, and

A′

2 starts at r1 ∩ l2. A′

1 starts from the same interval that A starts and A′

2 ends at

the same interval A ends at. Note that the start and end intervals of A come from

the definition of an arrow; and the c-intervals defined by A can be modified by the

interim interval, r1 ∩ l2.

After merging, A1 or A2 may need to be kept. Consider the example in Figure 4.15,

and note that the gray arrows were used to construct the blue arrows. If we removed

the gray arrows before merging the other arrows, we would not end up with every blue

arrow that we should. After two cells have been merged, however, the gray arrows

are no longer necessary.

CHAPTER 4. FRÉCHET DISTANCE FOR SIMPLE POLYGONS 39

Figure 4.15: Two cells after merging arrows. The blue arrows are new, the gray
arrows are removed.

The idea that not all arrows need to be kept is the basis for our later runtime

analysis. It allows us to argue about the combinatorial complexity of intersecting

c-intervals without the number of comparisons becoming exponential. This will be

discussed in depth in Section 4.3.4.

We note, here, that the above merging strategy means that two arrows cannot

be merged in constant time. The time it takes to merge will be proportional to the

number of sub-arrows, which is in the worst case O(p+ q).

It may be apparent that, when merging large numbers of cells together, there may

be multiple arrows that point from the same start interval (or subset of the same start

interval) to the same end interval (or subset of the same end interval). We would like

to ensure that, in a case like that, we can pick exactly one of those arrows to keep

without losing any information for the decision problem.

Theorem 4.16. Suppose there exists two arrows A and B such that both start from

the same side of the one cell and end on the same side of another cell. It suffices to

keep only the arrow whose final interval is the largest.

CHAPTER 4. FRÉCHET DISTANCE FOR SIMPLE POLYGONS 40

Proof. Assume that the end interval E is on the right side of the final cell, let I ⊆ E

be the final interval of A and let J ⊆ E be the final interval of B, without loss of

generality. There are three cases:

1. A and B both pass through (i.e., the path they define must pass through) the

bottom interval of the final cell. Then I = J = E, and we can pick either to

keep. However, this can never happen, because if A and B both pass through

the bottom, then one of the two would have been invalid earlier.

2. A passes through the bottom interval of the final cell, and B passes through

the left interval of the final cell. Then I = E and J ⊆ I is connected. Then we

keep A over B always, and we are still guaranteed a monotone path through

the free space between the same intervals.

3. A and B both pass through the left side of the final cell. Then either I ⊆ J or

J ⊆ I, and we keep the arrow of whichever is larger. However, this can never

happen, because if A and B both pass through the left, then one of the two would

have been invalid earlier.

Theorem 4.16 gives us an equivalence between the maximum number of distinct

arrows that could represent monotone paths, and the maximum number of distinct

arrows that point monotonically from edges of the free space diagram. I.e., if there is

a possible path between two intervals in the free space, it suffices to count only one

arrow between them.

4.3.3 Diagonals

We discussed before how diagonals correspond to columns in the free space, and that

they must be merged in a specific order. The switch from intervals and pointers to

arrows does not change this requirement.

CHAPTER 4. FRÉCHET DISTANCE FOR SIMPLE POLYGONS 41

s d1 d2 d3 d0d0 d1

d0 to d1

d1 to d3 d3 to d0

d1 to d2 d2 to d3

Figure 4.16: The diagonals drawn over the free space, which corresponds to the nodes
of the diagonal tree.

We define a diagonal tree to be a tree structure that encodes an ordering of the

diagonals such that a depth-first traversal of the tree yields the correct merge order.

Figure 4.16 shows how a diagonal tree might look with respect to a given diagonal

nesting structure.

Note that we can populate the tree in O(p) time. There are p nodes, d of which

are true diagonals, and p − d of which are not true diagonals but aid in the correct

merge order (i.e., no shortest path checks must be performed).

4.3.4 Runtime Preliminaries

Before we give the full algorithm and its runtime, we consider smaller parts of the

algorithm and compute the runtimes of those parts first. When the final algorithm is

presented, it should be easy to cross-reference with this section.

The analyses below are not complicated — they are, for the most part, counting

arguments — but they are somewhat involved. For the following, assume that we are

working with two polygons P and Q with p and q vertices, respectively.

Merging a Column of Cells

The näıve approach to merging a column of cells vertically would simply be to check

every arrow in the ith cell against every arrow in the (i+1)th cell for every 0 ≤ i ≤ q.

This would yield an undesirable runtime, and it forgets what we’ve already shown,

CHAPTER 4. FRÉCHET DISTANCE FOR SIMPLE POLYGONS 42

which is that after merging two cells, some are no longer needed.

The approach is to count how many arrows remain after merging a column of cells

of height q. By height, we mean the number of vertical cells spanned by the arrow.

By enumerating all of the arrows that are possible after a column is merged, we will

know how many interval comparisons are actually necessary for merging a column.

top

middle

bottom

Figure 4.17: A column of height q with top, bottom, and middle arrows drawn in.
Arrows of height q omitted.

We introduce a notion of top, bottom, and middle arrows. For a column of height

q and arrows of height h < q, top arrows are those that end in the top cell, bottom

arrows are arrows that begin in the bottom cell, and the rest are middle arrows. The

distinction makes counting easier, which we will see in a moment. Figure 4.17 shows

an example of a top, middle, and bottom arrow. Note that for h = q, it is unclear

how to classify the arrows; for this reason we remove them from our analysis, noting

that there are always at most four arrows of height q in a given column.

For every h < q there are at most two top arrows, one for the top and right sides

each of the top cell. Similarly, for every h < q, there are at most two bottom arrows,

one for the bottom and left sides each of the bottom cell. See Figure 4.17 for an

illustration. Therefore there are are a total of 4(q − 1) bottom and top arrows for a

CHAPTER 4. FRÉCHET DISTANCE FOR SIMPLE POLYGONS 43

single column.

1

...

q − 2

q − 3

1

q − 3

...

Figure 4.18: A column of height q showing how many middle arrows of height 1 and
2 can fit.

Counting the middle arrows requires some small amount of work. No arrows of

height q or q − 1 can fit in a column. However, we can fit one arrow of height q − 2,

two arrows of height q−3, three arrows of height q−4, and so on, until we see that we

can fit q−1 middle arrows of height q−2. See Figure 4.18 for a visual representation

of how arrows “fit.” The number of middle arrows that can fit in a column of height

q is then
q−2∑

1

k =
1

2
(q − 1)(q − 2)

CHAPTER 4. FRÉCHET DISTANCE FOR SIMPLE POLYGONS 44

Therefore see see that for a column of height q, we have that the number of arrows is

4 + 4(q − 1) + 1
2
(q − 1)(q − 2), which is O(q2).

Merging a column of cells must therefore require O(q2) arrow merges. As stated

before, two arrows cannot be merged in constant time, since their arrow trees must

be appropriately modified to enforce monotonicity. In a single column of cells, the

maximum number of leaves in the arrow tree (and therefore the maximum number of

nodes in the tree as well) is O(q).

Thus a columns of cells requires O(q2) arrow merges which each costs O(q) each,

so that the expected runtime for merging a single column of cells is O(q3).

Merging Two Columns of Cells

Now that we know how long it takes to merge a single column of cells, we wish to

know how long it takes to merge two adjacent columns of cells, and, further, that this

time does not increase on consecutive column merges.

Exiting Entering

2

3

q + 1

q

q − 1

2

3

q + 1

q

4

Figure 4.19: Counting how many arrows enter and exit at each row. Some arrows
have been drawn in for reference.

The proof, as before, is a counting argument, though we take a slightly different

CHAPTER 4. FRÉCHET DISTANCE FOR SIMPLE POLYGONS 45

approach. If we have two columns of cells, and we count the number of arrows

exiting and entering at each row, then we know how many arrows might intersect,

and therefore how long it will take to merge.

We assume that our columns are already merged as described in the previous

section. It is a fairly simple matter to enumerate the number of arrows entering

on the left side of each cell and exiting on the right side of each cell. Figure 4.19

illustrates the situation, and Table 4.1 shows exactly how many arrows enter and

exit each row, and the product of the two, which is the total number of arrows to be

checked per row.

Table 4.1: Number of arrows entering and exiting at each row.

q q − 1 q − 2 q − 3 · · · 2 1

enter 2 3 4 5 q q+1

exit q + 1 q q − 1 q − 2 3 2

checks 2(q + 1) 3q 4(q − 1) 5(q − 2) 3q 2(q+1)

It is clear from Table 4.1 that the total number of arrow merges required for

merging two columns is

q+1∑

k=2

k(q − (k − 3)) =
1

6
(q3 + 9q2 − 16q − 12)

Therefore merging two columns requires O(q3) arrows to merged. As before, the time

to merge two arrows is not constant, but in this case each arrow tree has a maximum

of p+ q leaves. Therefore the time two merge two columns is O(q3(p+ q)).

It is important to make the point that, although we have shown that merging two

columns takes O(q3(p+q)), we have not shown that successive merges do not increase

the runtime. In other words, we need to demonstrate that merging 3 columns takes

asymptotically the same time as simply merging 2 columns.

CHAPTER 4. FRÉCHET DISTANCE FOR SIMPLE POLYGONS 46

Exiting Entering

3

4

q + 2

q + 1

q

3

4

q + 2

q + 1

5

Figure 4.20: Counting how many arrows enter and exit at each row for pre-merged
columns. Some arrows have been drawn in for reference.

The proof follows the same argument as before. We assume we have two columns

already merged and wish to merge a third with it. We again count how many arrows

enter and exit at each row; we know these values for a single column of height q

and so must only count how many arrows enter and exit the pre-merged columns.

Figure 4.20 enumerates these arrows explicitly by height and width of the arrow.

We can see from Figure 4.20 that we have the same relationship as before, in fact

the same numbers as before increased by a constant factor. However, this constant

factor depends on the number of previously merged columns, and therefore on p.

If we merge one column onto two pre-merged columns (either on the left or right,

order doesn’t matter), then we find the following number of arrow checks:

q+1∑

k=2

k(q − (k − 4))

For completeness’ sake, merging the pth column onto p+1 pre-merged columns takes:

q+1∑

k=2

k(q − (k − (p+ 1))) =
1

6
q(3p(q + 3) + q2 + 3q − 4)

CHAPTER 4. FRÉCHET DISTANCE FOR SIMPLE POLYGONS 47

We can then sum over all merges:

p+1∑

j=3

q+1∑

k=2

k(q − (k − (2 + j))) =
1

12
q(3p2(q + 3) + p(2q2 + 21q + 37)− 2(q2 + 12q + 23))

so that the total number of arrow checks for merging p columns is O(q2p2 + q3p).

We noted earlier that the each arrow merge takes O(p + q) in the worst case;

however, the worst does not occur in every merge. We would then like to include the

cost of merging arrows in the overall runtime calculation.

Note that the maximum number of leaves that an arrow tree can have is q + m

where m is the number of already merged columns. Using our previous notation,

m = j − 2. Therefore the total runtime for merging all of the arows in p columns is

p+1∑

j=3

q+1∑

k=2

(q + (j − 2))(k(q − (k − (2 + j)))) =

1

6
q(p3(q + 3) + p2(2q2 + 9q + 7) + p(q3 + 10q2 + 13q − 10)− q(q2 + 12q + 23))

which is O(q2p3 + p2q3). This is the runtime for merging p columns together.

4.3.5 Algorithm

We now know everything we need to perform an analysis of an arrow-based algorithm.

CHAPTER 4. FRÉCHET DISTANCE FOR SIMPLE POLYGONS 48

Algorithm 4.2 Compute the Fréchet distance between simple polygons (decision
problem)

Compute the convex decomposition of P with d diagonals and compute the free

space diagram of the boundary curves of P and Q.

for all diagonals in the convex decomposition of P do

for all possible hourglasses for the given diagonal do

Decide if δF (diagonal, shortest path) ≤ ε for a shotest path in the hourglass

Store the result so that we can find valid intervals in O(1).

end for

end for

for all columns in the free space do

Merge column down

Record feasible start points

Build the diagonal tree if a feasible point exists

end for

for every diagonal tree do

Walk each tree, merge columns, perform shortest path checks if necessary

end for

for every remaining arrow do

Check if arrow spans P and Q, if so, a feasible path has been found

end for

Answer “yes” if a feasible path has been found, else “no”

Algorithm 4.2 is dominated by the merge step. There are d diagonal trees, each

with p columns which need to be merged. Each merging of p columns takes O(q2p3+

p2q3) time. We assumed, as before, that we can pre-compute the diagonal-to-hourglass

mappings so that they can be determined in constant time. Therefore the total

runtime is O(d(q2p3 + p2q3)).

CHAPTER 4. FRÉCHET DISTANCE FOR SIMPLE POLYGONS 49

If we allow that p = q = n, this algorithm has a runtime of O(n6), which is (at

most) a linear factor faster than Algorithm 4.1.

5

Applications and Further Research

In this section we discuss several applications of the ideas outlined above, and areas

that require further consideration or reasearch.

5.1 Morphing

One of the motivations for the arrow-based approach of Algorithm 4.2 was so that

one could recover the original path through the free space and therefore a mapping

between P and Q. It was postulated that the restrictions on the parameterizations

might lead to some nice class of maps that could be useful in morphing problems.

Morphing refers to continuously deforming one surface into another. [EGHP+01]

provides a good overview of the problems, approaches, algorithms, and applications.

As it happens, there appears to be no appreciable link between a Fréchet distance

realizing map and any qualitative properties of a morphing based on that map.

50

CHAPTER 5. APPLICATIONS AND FURTHER RESEARCH 51

Figure 5.1: Two polygons, with diagonal and shortest path in blue, and an interme-
diate polygon between them based on the Fréchet distance.

Figure 5.1 shows one of the results of our experiment. The mapping defined by the

Fréchet distance yields the intermediate polygon pictured when interpolating linearly.

It should be noted that our approach allowed us to recover the original path

through the free space. Figure 5.2 shows the polygons P andQ with their intermediate

polygon, as well as the path through the free space that defined the mapping. The

path is drawn at the ε value that realizes the Fréchet distance.

Figure 5.2: Morphing defined by a path in the free space. The diagonals have been
drawn in.

CHAPTER 5. APPLICATIONS AND FURTHER RESEARCH 52

5.1.1 Isotopic Fréchet Distance

Although we saw no useful results with the Fréchet distance as a morphing map, there

is some related work that links the Fréchet distance and morphing.

The isotopic Fréchet distance (Definition 2.20) is a variant of the Fréchet dis-

tance which forces the motion between the input objects to follow an ambient isotopy

(Definition 2.19). This maintains topologically equivalent shapes throughout a defor-

mation; i.e., intermediate polygons of a morphing between simple polygons defined

by the isotopic Fréchet distance would also be simple [CJLL11].

Chambers et al. show that the isotopic Fréchet distance is not equivalent to

the homotopic Fréchet distance (for a which a polynomial time algorithm exists,

as described in [CVE+10].) Currently no algorithm exists to compute the isotopic

Fréchet distance. It should also be noted that a polynomial time algorithm exists to

compute a morphing between polygons that does have simple intermediate polygons

[EGHP+01].

5.2 ICP

Algorithm 4.2 could have applications in Iterative Closest Point algorithms, using

the Fréchet distance instead of some other metric. ICP algorithms match shapes by

moving one to another in small increments [ESE08]. It would be interesting to see

when such an ICP algorithm reaches the optimal solution.

5.3 Future Research

There are several interesting paths that arise simply relating to the work done for

Algorithm 4.2. It would appear, for example, that there is nothing preventing the

use of the matrix multiplication approach of Algorithm 4.1. This could bring the

CHAPTER 5. APPLICATIONS AND FURTHER RESEARCH 53

runtime down by another small factor (depending, as discussed in Section 4.2.3, on

the multiplication algorithm).

It also seems that the arrow trees are only necessary if one wishes to recover the

path through the free space, as we did for morphing. If it can be shown that an arrow

does not need to keep a reference to its sub-arrows, then arrow merges can be done

in O(1) time, and the runtime of the algorithm drops by another linear factor, for a

total of O(n5) for the decision problem.

The approach of using arrows seems to relate to graph-traversal, but with mono-

tonicity enforced. If the approach could be generalized it may be more broadly

applicable than just to Fréchet distance problems. Already, it seems that the arrow

approach can improve the runtime of any algorithm that would otherwise require the

combined reachability graph.

Bibliography

[AB10] Helmut Alt and Maike Buchin, Can we compute the similarity between

surfaces?, Discrete & Computational Geometry 43 (2010), no. 1, 78–99.

[ABB95] Helmut Alt, Bernd Behrends, and Johannes Blömer, Approximate

matching of polygonal shapes, Annals of Mathematics and Artificial In-

telligence 13 (1995), no. 3-4, 251–265.

[ABG+03] Helmut Alt, Peter Braß, Michael Godau, Christian Knauer, and Car-

ola Wenk, Computing the hausdorff distance of geometric patterns and

shapes, Discrete and Computational Geometry (Boris Aronov, Saugata

Basu, János Pach, and Micha Sharir, eds.), Algorithms and Combina-

torics, vol. 25, Springer Berlin Heidelberg, 2003, pp. 65–76 (English).

[ABW90] Helmut Alt, Johannes Blömer, and Hubert Wagener, Approximation of

convex polygons, Automata, Languages and Programming (MichaelS.

Paterson, ed.), Lecture Notes in Computer Science, vol. 443, Springer

Berlin Heidelberg, 1990, pp. 703–716.

[AG95] Helmut Alt and Michael Godau, Computing the Fréchet distance between

two polygonal curves, Internat. J. Comput. Geom. Appl. 5 (1995), 75–91.

[AG99] H. Alt and L. Guibas, Discrete geometric shapes: Matching, interpola-

tion, and approximation, Handbook of Computational Geometry (Jörg-

54

BIBLIOGRAPHY 55

Rüdiger Sack and Jorge Urrutia, eds.), Elsevier Science Publishers, 1999,

pp. 121 – 153.

[AST92] Pankaj K. Agarwal, Micha Sharir, and Sivan Toledo, Applications of

parametric searching in geometric optimization, Proceedings of the third

annual ACM-SIAM symposium on discrete algorithms (Philadelphia,

PA, USA), SODA ’92, Society for Industrial and Applied Mathemat-

ics, 1992, pp. 72–82.

[AW12] Mahmuda Ahmed and Carola Wenk, Constructing street networks from

GPS trajectories, European Symposium on Algorithms (Leah Epstein

and Paolo Ferragina, eds.), Lecture Notes in Computer Science, vol.

7501, Springer, 2012, pp. 60–71.

[BBG08a] K. Buchin, M. Buchin, and J. Gudmundsson, Detecting single file move-

ment, Proceedings of the 16th ACM SIGSPATIAL international confer-

ence on Advances in geographic information systems (New York, NY,

USA), GIS ’08, ACM, 2008, pp. 33:1–33:10.

[BBG+08b] Kevin Buchin, Maike Buchin, Joachim Gudmundsson, Maarten Löffler,

and Jun Luo, Detecting commuting patterns by clustering subtrajectories,

Algorithms and Computation (Seok-Hee Hong, Hiroshi Nagamochi, and

Takuro Fukunaga, eds.), Lecture Notes in Computer Science, vol. 5369,

Springer Berlin Heidelberg, 2008, pp. 644–655.

[BBS10] Kevin Buchin, Maike Buchin, and André Schulz, Fréchet distance of

surfaces: Some simple hard cases, European Symposium on Algorithms

(Mark Berg and Ulrich Mayer, eds.), Lecture Notes in Computer Science,

vol. 6347, Springer Berlin Heidelberg, 2010, pp. 63–74.

BIBLIOGRAPHY 56

[BBW07] Kevin Buchin, Maike Buchin, and Carola Wenk, Computing the Fréchet

distance between simple polygons, 2007.

[CDG+11] Daniel Chen, Anne Driemel, Leonidas J. Guibas, Andy Nguyen, and Car-

ola Wenk, Approximate map matching with respect to the Fréchet dis-

tance, ALENEX (Matthias Müller-Hannemann and Renato Fonseca F.

Werneck, eds.), SIAM, 2011, pp. 75–83.

[CDHP+11] Atlas F. Cook, IV, Anne Driemel, Sariel Har-Peled, Jessica Sherette,

and Carola Wenk, Computing the Fréchet distance between folded poly-

gons, Proceedings of the 12th international conference on algorithms and

data structures (Berlin, Heidelberg), WADS’11, Springer-Verlag, 2011,

pp. 267–278.

[CJLL11] Eric W. Chambers, Tao Ju, Devid Letscher, and Lu Liu, Isotopic Fréchet

distance, CCCG, 2011.

[Col87] Richard Cole, Slowing down sorting networks to obtain faster sorting

algorithms, J. ACM 34 (1987), no. 1, 200–208.

[CVE+10] Erin Wolf Chambers, Éric Colin De Verdiére, Jeff Erickson, Sylvain

Lazard, Francis Lazarus, and Shripad Thite, Homotopic fréchet distance

between curves or, walking your dog in the woods in polynomial time,

2010.

[EEMM94] Thomas Eiter, Thomas Eiter, Heikki Mannila, and Heikki Mannila,

Computing discrete Fréchet distance, Tech. report, Technische Univer-

sität Wien, 1994.

[EGHP+01] Alon Efrat, Leonidas J. Guibas, Sariel Har-Peled, Joseph S. B. Mitchell,

and T. M. Murali, New similarity measures between polylines with ap-

plications to morphing and polygon sweeping, Proceedings of the 12th

BIBLIOGRAPHY 57

Annual ACM-SIAM Symposium on Discrete Algorithms, 2001, pp. 680–

689.

[ESE08] Esther Ezra, Micha Sharir, and Alon Efrat, On the performance of the

ICP algorithm, Computational Geometry 41 (2008), no. 1-2, 77–93.

[GHL+86] L Guibas, J Hershberger, D Leven, M Sharir, and R Tarjan, Linear time

algorithms for visibility and shortest path problems inside simple poly-

gons, Proceedings of the second annual symposium on Computational

geometry (New York, NY, USA), SCG ’86, ACM, 1986, pp. 1–13.

[God98] Michael Godau, On the complexity of measuring the similarity between

geometric objects in higher dimensions, Ph.D. thesis, Freie Universität

Berlin, 1998.

[JXZ07] Minghui Jian, Ying Xu, and Binhai Zhu, Protein structure-structure

alignment with discrete Fréchet distance, Proc. 5th Asia-Pacific Bioin-

form. Conf., 2007, pp. 131–141.

[KHM+98] S. Kwong, Q. H. He, K. F. Man, K. S. Tang, and C. W. Chau, Par-

allel genetic-based hybrid pattern matching algorithm for isolated word

recognition, International Journal of Pattern Recognition and Artificial

Intelligence 12 (1998), no. 05, 573–594.

[KKS05] Man-Soon Kim, Sang-Wook Kim, and Miyoung Shin, Optimization of

subsequence matching under time warping in time-series databases, SAC

’05: Proceedings of the 2005 ACM symposium on Applied computing

(New York, NY, USA), ACM Press, 2005, pp. 581–586.

[Knu98] Donald E. Knuth, The art of computer programming, volume 3: (2nd

ed.) sorting and searching, Addison Wesley Longman Publishing Co.,

Inc., Redwood City, CA, USA, 1998.

BIBLIOGRAPHY 58

[KP99] Eamonn J. Keogh and Michael J. Pazzani, Scaling up dynamic time

warping to massive datasets, Springer, 1999, pp. 1–11.

[MDH06] A. Mascret, T. Devogele, and A. Hénaff, Coastline matching process

based on the discrete Fréchet distance, Proceedings of the 12th Interna-

tional Symposium on Spatial Data Handling (SDH) (Vienna, Austria),

Springer-Verlag, 2006, pp. 383–400.

[Meg83] Nimrod Megiddo, Applying parallel computation algorithms in the design

of serial algorithms, J. ACM 30 (1983), no. 4, 852–865.

[MP99] Mario E. Munich and Pietro Perona, Continuous dynamic time warping

for translation-invariant curve alignment with applications to signature

verification, In Proceedings of 7th International Conference on Computer

Vision, 1999, pp. 108–115.

[OV02] René Van Oostrum and Remco C. Veltkamp, Parametric search made

practical, SoCG: 18th Symposium on Computational Geometry, ACM

Press, 2002, pp. 1–9.

[SGHS08] J. Serrà, E. Gómez, P. Herrera, and X. Serra, Chroma binary similarity

and local alignment applied to cover song identification, IEEE Transac-

tions on Audio, Speech and Language Processing 16 (2008), 1138–1151.

[SKB07] E. Sriraghavendra, Karthik K., and C. Bhattacharyya, Fréchet distance

based approach for searching online handwritten documents, Proceed-

ings of the Ninth International Conference on Document Analysis and

Recognition - Volume 01 (Washington, DC, USA), ICDAR ’07, IEEE

Computer Society, 2007, pp. 461–465.

[Str69] Volker Strassen, Gaussian elimination is not optimal, Numerische Math-

ematik 13 (1969), no. 4, 354–356.

BIBLIOGRAPHY 59

[SW12] Jessica Sherette and Carola Wenk, Partial matching between surfaces

using Fréchet distance, Algorithm Theory - SWAT 2012 (FedorV. Fomin

and Petteri Kaski, eds.), Lecture Notes in Computer Science, vol. 7357,

Springer Berlin Heidelberg, 2012, pp. 13–23.

[Vas11] Virginia Vassilevska Williams, Breaking the Coppersmith-Winograd bar-

rier, 2011.

[WS06] Carola Wenk and Randall Salas, Addressing the need for map-matching

speed: Localizing global curve-matching algorithms, In SSDBM, 2006,

pp. 379–388.

